Supplementary information

Table 1 Comparison of CNN architectures

Architecture	Learning rate	Optimizing function	Tile-level accuracy	Time per epoch
ResNet18 ViT ConvNeXt MobilNetV3	4e-3 1e-4 4e-3 1e-3	Adam Adam Adam Adam	74.5 % 75.7 % 81.0 % 79.3 %	5 min 5 min 20 min 3 min

Four architectures for comparison were chosen based on the literature. Training data included 10.000 image patches, and testing data 5.000 image patches. The two best-performing architectures at the tile level were ConvNeXt and MobileNetV3, the latter of which was chosen based on the lighter computational load.

Table 2 Hyperparameters of the individual models

Model	Learning rate	Optimizing function		
TUM5x	1e-3	Adam		
TUM20x	5e-2	SGD		
OTHER5x	1e-2	Adam		

The hyperparameters were chosen with 5-fold cross-validation on the validation data.

Table 3 Hyperparameters of the XGBoost layer

Model	Estimators	Depth	Learning rate	Objective	Scale	Subsample
XGBoost-5x	120	3	2e-2	'binary:logistic'		0.1
XGBoost-20x	65	3	2e-2	'binary:logistic'		0.1

Hyperparameters of the XGBoost models of the two branches (5x and 20x). Depth = maximum depth of the tree, objective = the objective function, scale = scaling factor in the case of imbalanced data, subsample = subsample ratio of the training instances. All other parameters were set to their default values.