The ups and downs of brain stress: Extending the triple network hypothesis

Gina-lIsabelle Henze?*4", Marina Giglberger®, Christoph Bartl*?#, Julian Konzok*®, Maja
Neidhart'26, Tabea Krause!, Emin Serin*?, Lea Waller*?, Hannah L. Peter®, Ludwig Kreuzpointner?,
Nina Speicher*, Fabian Streit”®°, Ilya M. Veer*, Peter Kirsch®!!, Thomas E. Nichols®!?, Brigitte M.

Kudielka*, Stefan Wust*, Susanne Erk>? & Henrik Walter2

'Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy CCM, Charité-
Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Humboldt-Universitat zu
Berlin, and Berlin Institute of Health, Berlin, Germany

2German Center for Mental Health (DZPG), Partner Site Berlin - Potsdam, Germany

3Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of
Population Health, University of Oxford, Oxford, United Kingdom

“Institute of Psychology, University of Regensburg, Regensburg, Germany

SDepartment of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg,
Germany

Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental
Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

"Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical
Faculty Mannheim, Heidelberg University, Mannheim, Germany

8Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty
Mannheim, Heidelberg University, Mannheim, Germany

%German Center for Mental Health (DZPG), Partner Site Mannheim - Heidelberg - Ulm, Germany
1°Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands

1Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim,
University of Heidelberg, Heidelberg, Germany

12\Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical
Neurosciences, University of Oxford, Oxford, United Kingdom

*Corresponding author email: gina-isabelle.henze@charite.de

Supplemental Material


mailto:gina-isabelle.henze@charite.de

SUPPLEMENTAL BACKGROUND

Table S1. Overview of all ScanSTRESS and Montreal Imaging Stress Task (MIST) studies including sample size for imaging analysis (N); sex ratio
(women/men/non-binary; w/m/n); information on female subjects regarding menstrual cycle phase, contraception (OC), and reproductive status;
paradigm version (OV, original version; SV, shortened version; MV, modified version); as well as information on the stress induction categorised
by cortisol, negative affect, and heart rate response to the stressor (1, increase; <>, unchanged; |, decrease). For negative affect ratings, we
considered different measures (e.g., negative affect, stress, bad mood, state anxiety, current distress).

Sample Stress response

Studies N (w/m/n) Women: menstrual cycle phase, Paradigm  Cortisol Negative Heart

contraception, reproductive status version Affect rate
ScanSTRESS studies
Akdeniz et al.%; Streit et al? 80 (41/39/0) n/a oV 1 1 1
Bartl et al.® 106 (56/59/0) 13 OCs, 25 luteal, 18 post-menopause ov 1 1 1
Chand et al.* 39 (0/39/0) - SV P 1 1
Dahm et al.%; Dimitrov et al.? 86 (50/36/0) 23 OCs, 27 luteal oV 1 1
Giglberger et al.” 111 (70/41/0) 56 OCs, 14 luteal oV 1
Henze et al.® ! 67 (31/36/0) OCs oV 1 1 0
Hermann et al.%; Nanni-Zapeda et al.*3 36 (0/36/0) - N\
Hu et al.*#; Li et al.®® 70 (31/39/0) luteal oV 1 0
Konzok et al.® 61 (30/31/0) 15 OCs, 15 luteal oV 1 0 )
Kuhn et al. 39 (0/39/0) - oV 1 0
Kuhn et al 18 140 (67/73/0) OCs oV J 1 0
Lederbogen et al.1® 57 (25/32/0) n/a oV 1 0 1
Liuetal. * & 72 (32/40/0)
Ren et al?; 71 (31/40/0)
Zhao et al.? 77 (35/42/0) luteal oV 0 0
Nowak et al.?® & 45 (0/45/0)
Dimitrov et al.?4% 42 (0/42/0) - SV 1 1 1
Sandner et al.? 40 (12/28/0) OCs Compact 1 1 1
Sandner et al.?’ 40 (n/a) n/a Compact 1 1 1
Speicher et al.?8 40 (0/40/0) - ov 1 1 1
Streit et al.>?°; Lederbogen et al.* 42 (20/22/0) luteal oV - 1




MIST studies

Ackermann et al.3*
Albert et al.*2
Albert et al.*
Allenby et al.3*
Alpheis et al.>5*
Alyan et al.*
Alyan et al.¥
Alyan et al.*®8
Ashare et al.®
Baumeister et al.*
Bloomfield et al.*
Boehringer et al.*
Lederbogen et al.*°
Brugnera et al.#243
Birger et al.*
Choi*®

Chung et al.*
Chung et al.*
Cohen et al.*®
Corbett et al.*°
Corr et al.>0-%2
Dagher et al.®

De Calheiros Velozo et al.>
De Calheiros Velozo et al.®
De Wandel et al.>®

Dedovic et al.*’

Dedovic et al.®®

Dedovic et al.>*

Degroote et al.®°
Dettweilers!

Dong et al.®?

Dong et al.8364

Edebol Carlman et al.5®
Ethridge et al.®

Fan et al.®”

Geva et al.%®

Geva et al.%°

39 (23/16/0)
28 (28/0/0)
65 (65/0/0)

75 (35/40/0)

79 (28/51/0)
10 (0/10/0)
23 (0/23/0)
15 (0/15/0)

39 (17/22/0)

84 (62/22/0)

34 (17/17/0)

25 (14/11/0)

32 (16/16/0)

60 (31/29/0)

73 (40/43/0)

37 (20/17/0)
31 (31/0/0)

46 (30/16/0)

42 (21/21/0)
78 (0/78/0)

101 (44/57/0)
15 (7/8/0)

53 (45/8/0)
30 (27/3/0)
53 (46/7/0)

60 (31/29/0)
22 (0/22/0)
28 (0/28/0)

49 (25/24/0)
56 (0/56/0)

48 (20/28/0)

148 (85/63/0)
367 (213/154/0)
22 (16/6/0)

100 (0/100/0)
18 (0/18/0)

29 (0/29/0)

25 (0/25/0)
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Geva et al.”®

Gheorghe et al.™
Golde et al.”
Golde et al.”™
Goodman et al.”*
Goodman et al.”>"®
Goodman et al.”’*
Goodman et al.”
Goodman et al.”
Gossett et al.”
Grimm et al.&
Grodin et al 81>

Guffanti et al.,®; Treadway et al.®

Hachtel et al.”
Hakimi et al .8
Hoegh et al.®
Inagaki et al.”
Jones et al.®
Joseph et al.&*
Khalili-Mahani et al .28
Kim et al.&

Kirsch et al.?0:91*
Kogler et al.%29*
Kogler et al.%
Konig et al.%®

La Marca et al.%
Leicht-Deobald et al.”
Li et al.%®

Lord et al.%%*

Luo et al.10

Ming et al.10%*
Minguillon et al.1%?
Murray et al.1%
Murray et al.104*
Nair et al.10®

Nair et al.108
Nathan et al.107*

148 (82/66/0)

48 (27/21/0)
46 (46/0/0)
41 (22/19/0)
51 (22/29/0)
120 (67/53/0)
72 (55/17/0)
15 (6/9/0)

84 (72/12/0)
57 (21/36/0)
32 (0/32/0)
25 (10/15/0)
75 (75/0/0)
70 (70/0/0)
32 (0/32/0)
20 (0/20/0)
25 (0/25/0)
36 (16/20/0)
22 (11/11/0)
119 (50/69/0)
19 (0/19/0)
18 (0/18/0)
42 (30/12/0)
43 (23/20/0)
80 (40/40/0)
62 (n/a/0)

43 (0/43/0)
31 (14/17/0)
140 (71/69/0)
39 (39/0/0)
44 (23/21/0)
105 (54/51/0)
6 (n/a)

47 (27/20/0)
73 (50/23/0)
32 (21/11/0)
36 (24/12/0)
37 (37/0/0)

n/a

before exclusion N = 35 women:

17 follicular, 8 luteal, 1 amenorrhea, 9 OCs
10 OCs, 8 follicular, 23 luteal, 4 post-menopause, 1 nfa
n/a
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Nitschke et al.108
Orem et al.1®
Perez-Valero et al.110
Pruessner et al.1!

Pruessner et al.'*?; Lederbogen et al.*°

Raufelder et al.**®

Ren et al.1%4

Ren et al.115

Richer et al.116

Richter et al.1”
Rojas-Thomas et al '8
Saraf et al.119*

Schifani et al.1?
Shakra et al .12
Shermohammed et al.”
Sigrist et al.1?2

Soliman et al.123*

Sun et al.*?4

Sun et al.1?®

Tomova et al.1?®
Vaessen et al.127*
Vaquero-Blasco et al.'?8
Vaquero-Blasco et al.*?°
Voellmin et al.13°
Voges et al.*3!
Wheelock et al.132
Yamaoka et al.133
Zhang et al.***

Zhao et al.1%®

Zhong et al.*3¢
Zhukovsky et al.*37*
Zschucke et al.38

46 (26/20/0)
239 (113/126/0)
23 (14/9/0)
39 (16/23/0)
40 (20/20/0)
41 (22/19/0)
44 (23/11/0)
53 (0/53/0)
25 (20/5/0)
31 (16/15/0)
62 (0/62/0)
20 (6/14/0)
33 (14/19/0)
35 (14/21/0)
54 (27/27/0)
27 (27/0/0)
40 (27/13/0)
307 (153/154/0)
101 (0/101/0)
67 (0/67/0)
29 (13/16/0)
20 (n/a)

23 (14/8/1)
104 (104/0/0)
65 (39/26/0)
53 (23/30/0)
59 (0/59/0)
115(62/53/0)
51 (0/51/0)
96 (57/39/0)
115 (n/a)

36 (0/36/0)
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Note. *Studies including (pre-)clinical samples; n.s., not significant; **Increase in BP, Blood Pressure; rMIST, repeated Montreal Imaging Stress

Task.



SUPPLEMENTAL RESULTS

Figure S1. Comparison of whole-brain responses for
the total sample (corrected for age, sex, and site) with
(A) four sites (Regensburg, Mannheim, Berlin 1, and
Berlin 2; zppgr >3.77) and with (B) three sites,
excluding Berlin 2 (zzpr > 3.82).

Mega-Analysis: 4 sites Mega-Analysis: 3 sites



Table S2. One-sample t-test results: Activated (stress > control) and deactivated (control > stress) structures during psychosocial stress
for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and
Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-
integration. False-discovery rate (FDR, p < .05) correction at zzpr > 3.77.

Voxel coordinates

MNI coordinates

Cluster k z X Y Z X Y Z Structure Network
1 90511 24.90 46 53 36 -4.50 -26.50 -6.50 Brain stem
2 60 8.43 40 51 68 -16.50 -30.50 57.50 L Precentral gyrus Motor
3 22533 -19.50 29 57 49 -38.50 -18.50 19.50 L Central opercular cortex SN
4 3716  -21.00 44 40 55 -8.50 -52.50 31.50 L Posterior cingulate cortex DMN
5 1104 -19.60 23 33 55 -50.50 -66.50 31.50 L Lateral occipital cortex Visual
6 625 -15.60 77 34 57 57.50 -64.50 35.50 R Lateral occipital cortex Visual
7 91  -9.38 67 84 32 37.50 35.50 -14.50 R Frontal pole CEN
8 51 -6.33 20 80 40 -56.50 27.50 1.50 L |Inferior frontal gyrus Speech

Note. SN, Salience Network; DMN, Default Mode Network.



Table S3. One-sample t-test results: Activated (stress > control) and deactivated (control > stress) structures during psychosocial stress
for the Regensburg site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal
Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-
discovery rate (FDR, p < .05) correction at z,, > 3.45.

Voxel coordinates

MNI coordinates

Cluster K z X Y Z X Y Z Structure Network

1 86839 20.80 64 80 39 31.50 27.50 -0.50 R Orbitofrontal cortex SN

2 19208 -16.60 28 57 48 -40.50 -18.50 17.50 L Central opercular cortex SN

3 4147 -15.90 67 58 49 37.50 -16.50 19.50 R Central opercular cortex SN

4 4119 -17.30 45 39 53 -6.50 -54.50 27.50 L Posterior cingulatex cortex DMN

5 1039 -16.10 24 33 55 -48.50 -66.50 31.50 L Lateral occipital cortex Visual

6 571 -12.70 77 35 57 57.50 -62.50 35.50 R Lateral occipital cortex Visual

7 222  -5.59 56 93 60 15.50 53.50 4150 R Frontal pole CEN

8 57 -7.62 68 85 31 39.50 37.50 -16.50 R Frontal pole CEN

9 32 -5.28 19 79 43 -58.50 25.50 7.50 L Inferior frontal gyrus Speech

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Table S4. One-sample t-test results: Activated (stress > control) and deactivated (control > stress) structures during psychosocial stress
for the Mannheim site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal
Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-
discovery rate (FDR, p < .05) correction at zzp; > 3.53.

Voxel coordinates MNI coordinates
Cluster k 4 X Y 4 X Y Z Structure Network
1 68145 9.13 46 53 36 -4.50 -26.50 -6.50 Brain stem
2 208 6.18 61 96 33 25.50 59.50 -12.50 R Frontal pole CEN
3 165 6.76 49 53 52 1.50 -26.50 25.50 R Posterior cingulate cortex DMN
4 39 4.49 18 53 41 -60.50 -26.50 3.50 L Planum temporale Auditory
5 23 4.92 57 53 68 17.50 -26.50 57.50 R Precentral gyrus Motor
6 19 4.65 31 48 47 -34.50 -36.50 1550 L Planum temporale Auditory
7 2684  -7.18 45 85 31 -6.50 37.50 -16.50 L Medial prefrontal cortex DMN
8 941  -7.59 44 39 55 -8.50 -54.50 31.50 L Posterior cingulate cortex DMN
9 558  -7.63 20 33 58 -56.50 -66.50 37.50 L Lateral occipital cortex Visual
10 304 -511 16 65 27 -64.50 -2.50 -2450 L Middle temporal gyrus SN
11 148 -5.58 68 60 48 39.50 -12.50 1750 R Central opercular cortex SN
12 135 -5.77 76 32 56 55.50 -68.50 33.50 R Lateral occipital cortex Visual
13 88  -5.62 65 78 20 33.50 23.50 -38.50 R Temporal pole SN
14 40 -4.81 35 57 30 -26.50 -18.50 -18.50 L Hippocampus DMN
15 34  -5.05 29 57 49 -38.50 -18.50 -18.50 L Parahippocampus DMN
16 30 -4.92 27 78 22 -42.50 23.50 -34.50 L Temporal pole SN
17 29  -4.55 42 96 57 -12.50 59.50 35,50 L Frontal pole CEN
18 20 -4.13 26 83 32 -44.50 33.50 -14.50 L Orbitofrontal cortex SN

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Table S5. One-sample t-test results: Activated (stress > control) and deactivated (control > stress) structures during psychosocial stress
for the Berlin 1 site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montreal
Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-
discovery rate (FDR, p < .05) correction at zz,; > 3.50.

Voxel coordinates

MNI coordinates

Cluster Kk z X Y Z X Y Z Structure Network
1 63679 10.60 46 54 37 -4.50 -24.50 -450 L Thalamus SN
2 119 5.57 76 71 30 55.50 9.50 -18.50 R Temporal pole SN
3 92 5.50 35 55 68 -26.50 -22.50 57.50 L Precentral gyrus Motor
4 24 4.85 60 55 68 23.50 -22.50 57.50 L Precentral gyrus Motor
5 1292  -8.63 44 40 55 -8.50 -52.50 31.50 L Posterior cingulate cortex DMN
6 1040  -7.22 44 95 36 -8.50 57.50 -6.50 L Frontal pole CEN
7 755  -6.95 22 65 22 -52.50 -2.50 -3450 L Middle temporal gyrus SN
8 737 -8.39 29 57 49 -38.50 -18.50 19.50 L Central opercular cortex SN
9 606 -7.63 67 58 49 37.50 -16.50 19.50 R Central opercular cortex SN
10 577  -8.48 23 32 58 -50.50 -68.50 37.50 L Lateral occipital cortex Visual
11 268  -7.13 76 35 58 55.50 -62.50 37.50 R Lateral occipital cortex Visual
12 142  -5.48 54 71 33 11.50 9.50 -12.50 R Ncl. accumbens SN
13 138  -6.46 41 72 34 -14.50 11.50 -10.50 R Putamen SN
14 102 -4.70 40 86 65 -16.50 39.50 51.50 L Frontal pole CEN
15 90 -5.44 35 56 31 -26.50 -20.50 -16.50 L Hippocampus DMN
16 74  -543 76 63 24 55.50 -6.50 -30.50 R Middle temporal gyrus SN
17 66  -4.93 36 77 29 -24.50 21.50 -20.50 L Orbitofrontal cortex SN
18 53 -5.22 58 67 22 19.50 1.50 -34.50 R Parahippocampus DMN
19 33 525 45 95 59 -6.50 57.50 39.50 L Frontal pole CEN
20 25  -4.15 65 86 34 33.50 39.50 -10.50 R Frontal pole CEN

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Table S6. One-sample t-test results: Activated (stress > control) and deactivated (control > stress) structures during psychosocial stress
for the Berlin 2 site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montreal
Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-
discovery rate (FDR, p < .05) correction at z,; > 3.85.

Voxel coordinates

MNI coordinates

Cluster k 4 X Y 4 X Y Z Structure Network
1 1804 7.40 41 61 44 -14.50 -10.50 950 L Thalamus SN
2 1156 6.73 27 83 49 -42.50 33.50 19.50 L Middle frontal gyrus CEN
3 689 5.65 69 85 51 41.50 37.50 23.50 R Frontal pole CEN
4 543 7.20 53 72 64 9.50 9.50 49.50 R Paracingulate gyrus DMN
5 535 7.21 37 64 63 -22.50 -4.50 4750 L Superior frontal gyrus CEN
6 528 7.85 64 79 42 31.50 25.50 550 R Insular cortex SN
7 515 7.35 44 74 65 -8.50 15.50 51.50 L Superior frontal gyrus CEN
8 465 7.18 32 78 45 -32.50 23.50 1150 L Frontal opercular cortex SN
9 395 6.54 65 65 65 33.50 -2.50 51.50 R Middle frontal gyrus CEN
10 357 5.79 71 71 51 45.40 9.50 23.50 R Inferior frontal gyrus Speech
11 41 5.62 57 53 59 17.50 -26.50 39.50 R Precentral gyrus Motor
12 29 5.29 50 72 53 3.50 11.50 27.50 R Anterior cingulate cortex SN
13 25 5.13 31 59 60 -34.50 -14.50 4150 L Precentral gyrus Motor
14 23 5.72 63 92 32 29.50 51.50 -1450 R Frontal pole CEN
15 3214 -7.96 53 87 37 9.50 41.50 -450 R Paracingulate gyrus DMN
16 1338 -7.00 26 72 22 -44.50 11.50 -34.50 L Temporal pole SN
17 665 -6.70 21 33 56 -54.50 -66.50 33.50 L Lateral occipital cortex Visual
18 411 -6.20 77 62 43 57.50 -8.50 7.50 R Central opercular cortex SN
19 409  -5.98 67 78 22 37.50 23.50 -3450 R Temporal pole SN
20 246  -5.70 40 89 59 -16.50 45.50 39.50 L Frontal pole CEN
21 219  -6.54 64 62 28 31.50 -8.50 -22.50 R Hippocampus DMN
22 194  -6.75 63 83 33 29.50 33.50 -1250 R Frontal pole CEN
23 182  -5.33 78 36 55 59.50 -60.50 31.50 R Lateral occipital cortex Visual
24 168  -6.08 55 78 39 13.50 23.50 -0.50 R Ncl. caudatus SN
25 66  -5.28 74 63 31 51.50 -6.50 -16.50 R Superior temporal gyrus SN
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Figure S2. Two-sample
unpaired  t-test  results
(men > women) for the
total sample (corrected for
age and site; zppr > 3.44).




Table S7. Two-sample unpaired t-test results (men > women): Activated (stress > control) and deactivated (control > stress)
structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual z-values, localisation
of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-

right) and network-integration. False-discovery rate (FDR, p < .05) correction at zppr > 3.44.

Voxel coordinates

MNI coordinates

Cluster k 4 X Y 4 X Y Z Structure Network
1 171 5.57 69 37 48 41.50 -58.50 1750 R Angular gyrus DMN
2 284 535 77 50 57 57.50 -32.50 35.50 R Supramarginal gyrus DMN
3 250  -4.97 66 93 48 35.50 53.50 1750 R Frontal pole CEN
4 161  -5.03 28 79 38 -40.50 78.50 36.50 L Frontal opercular cortex SN
5 113 -5.33 56 46 66 15.50 -40.50 53.50 R Postcentral gyrus Motor
6 74 -451 43 26 63 -10.50 -80.50 4750 L Lateral occipital cortex Visual
7 64 -4.86 55 25 63 13.50 -82.50 4750 R Lateral occipital cortex Visual
8 42  -4.32 18 50 51 -60.50 -32.50 23.50 L Parietal opercular cortex SN
9 37  -4.50 55 54 59 13.50 -24.50 39.50 R Posterior cingulate cortex DMN

10 27  -4.18 18 45 55 -60.50 -42.50 31.50 L Supramarginal gyrus DMN
11 24 -5.09 27 89 53 -42.50 45.50 2750 L Frontal pole CEN
12 22  -4.25 77 72 47 57.50 11.50 15.50 R Inferior frontal gyrus Speech
13 22 451 30 91 44 -36.50 49.50 9.50 L Frontal pole CEN
14 22 -3.82 72 69 41 47.50 5.50 3.50 R Central opercular cortex SN

15 21 -3.99 72 80 35 47.50 27.50 -8.50 R Orbitofrontal cortex SN

16 21  -4.13 34 84 54 -38.50 35.50 29.50 R Middle frontal gyrus CEN

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Table S8. One-sample t-test with additional covariate (age) results: Activated (stress > control) structures during psychosocial stress for
the total sample (corrected for sex and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal
Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-
discovery rate (FDR, p < .05) correction at zzp; > 3.76.

Voxel coordinates

MNI coordinates

Cluster k 4 X Y 4 X Y Z Structure Network
1 2252 7.46 47 34 50 -2.50 -64.50 21.50 L Precuneus cortex DMN
2 1079 6.99 25 29 61 -46.50 -74.50 43.50 L Lateral occipital cortex Visual
3 730 6.04 44 92 35 -8.50 51.50 -8.50 L Medial prefrontal cortex DMN
4 714 6.03 77 36 58 57.50 -60.50 37.50 R Lateral occipital cortex Visual
5 343 5.15 37 83 64 -22.50 33.50 4950 L Superior frontal gyrus CEN
6 237 5.42 16 50 38 -64.50 -32.50 -2.50 L Middle temporal gyrus SN
7 208 5.30 62 53 67 27.50 -26.50 55.50 R Precentral gyrus Motor
8 205 5.27 74 56 49 51.50 -20.50 19.50 R Parietal opercular cortex SN
9 196 5.73 50 91 31 3.50 49.50 -16.50 R Medial prefrontal cortex DMN

10 162 5.97 64 61 42 31.50 -10.50 550 R Putamen SN

11 85 5.57 41 51 73 -14.50 -30.50 67.50 L Precentral gyrus Motor
12 74 5.76 35 55 32 -26.50 -22.50 -1450 L Hippocampus DMN
13 60 4.82 49 55 68 1.50 -22.50 57.50 R Precentral gyrus Motor
14 60 5.74 32 61 41 -32.50 -10.50 3,50 L Putamen SN

15 47 5.59 39 97 53 -18.50 61.50 2750 L Frontal pole CEN
16 44 4.63 61 82 64 25.50 31.50 4950 R Superior frontal gyrus CEN
17 44 4.56 23 81 34 -50.50 29.50 -10.50 L Orbitofrontal cortex SN

18 42 4.61 28 59 51 28.50 57.00 49.30 L Central opercular cortex SN

19 37 4.63 69 83 31 41.50 33.50 -16.50 R Frontal pole CEN
20 34 4.70 63 60 29 29.50 -12.50 -20.50 R Hippocampus DMN
21 33 4.75 52 49 67 7.50 -34.50 55.50 R Postcentral gyrus Motor
22 32 4.64 17 65 32 -62.50 -2.50 -1450 L Middle Temporal Gyrus SN

23 31 5.18 36 48 31 -24.50 -36.50 -16.50 L Parahippocampus DMN
24 28 4.64 68 58 65 39.50 -16.50 51.50 R Precentral gyrus Motor
25 26 411 70 59 58 43.50 -14.50 37.50 R Postcentral gyrus Motor
26 25 5.00 75 83 38 53.50 33.50 -2.50 R Frontal pole CEN



27 24 4.37 66 63 22 35.50 -6.50 -3450 R Temporal fusiform cortex  Visual
28 24 5.00 46 60 58 -4.50 -12.50 3750 L Anterior cingulate cortex SN

29 23 5.89 56 43 79 15.50 -46.50 79.50 R Postcentral gyrus Motor
30 23 6.15 41 44 79 -14.50 -44.50 79.50 L Postcentral gyrus Motor

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Figure S3. One-sample t-test with additional
covariate (age) results: Comparison of whole-brain
responses for the total sample (corrected for sex and
site) including (A) all samples of all sites
(Regensburg, Mannheim, Berlin 1, and Berlin 2;
Zppr > 3.76) and (B) omitting one sample from the
Regensburg site (Bartl et al.3; zzpr > 3.10).

all samples omitting Bartl et al. (2024)



Table S9. Exposure-time effect results (run 1 > run 2): Structures showing more activations (stress > control) in the first run compared
to the second run of ScanSTRESS for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation
of peak voxels (voxel and Montreal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-
right) and network-integration. False-discovery rate (FDR, p < .05) correction at zppr > 4.95.

Voxel coordinates MNI coordinates
Cluster k z X Y Z X Y Z Structure Network

1 55539 18.4 21 36 51 -54.50 -60.50 23.50 L Angular gyrus DMN
2 1514 15.1 61 26 21 25.50 -80.50 -36.50 R Cerebellum Motor
3 1106 14.5 36 26 21 -24.50 -80.50 -36.50 L Cerebellum Motor
4 620 12.2 51 40 18 5.50 -52.50 -42.50 R Cerebellum Motor
5 169 7.17 67 58 48 37.50 -16.50 1750 R Central opercular cortex SN

6 119 7.14 68 59 58 39.50 -14.50 37.50 R Precentral gyrus Motor
7 36 6.78 29 57 59 -38.50 -18.50 39.50 L Postcentral gyrus Motor
8 31 6.02 30 56 48 -36.50 -20.50 17.50 L Insular cortex SN

Note. SN, Salience Network; DMN, Default Mode Network.



Table S10. One-sample t-test with additional covariate (cortisol increase) results: Activated (stress > control) structures during
psychosocial stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak
voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and
network-integration. False-discovery rate (FDR, p < .05) correction at zzp; > 2.54.

Voxel coordinates

MNI coordinates

Cluster k z X Y Z X Y Z Structure Network
1 47 3.93 57 65 32 17.50 -2.50 -1450 R Amygdala SN
2 26 4.18 67 64 34 37.50 -4.50 -10.50 R Insular cortex SN
3 25 3.11 76 44 52 55.50 -44.50 25.50 R Angular gyrus DMN
4 23 3.23 42 61 27 -12.50 -10.50 -24.50 L Parahippocampus DMN

Note. SN, Salience Network; DMN, Default Mode Network.



Figure S4. One-sample t-test with additional covariate (cortisol) results: Comparison of
whole-brain responses (stress > control, zzpr > 2.54) for the total sample (corrected for
age, sex, and site) for peak voxel in the right amygdala for (A) cortisol increase (voxel
coordinates: 57 65 32, k = 47), (B) AUCqg (voxel coordinates: 55 65 33, k = 18), and (C)

AUCI (voxel coordinates: 55 65 33, k = 32).

A Cortisol Increase B AUCg C AUCi

27 3.0 33 36 27 3.0 2.7




Table S11. Unpaired two-group (men > women) difference with continuous covariate interaction (cortisol increase) results: Activated
(stress > control) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual
z-values, localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure
labelling (L-R, left-right) and network-integration. False-discovery rate (FDR, p < .05) correction at zz,z > 2.94.

Voxel coordinates MNI coordinates
Cluster K z X Y Z X Y Z Structure Network
1 182 -5.18 69 64 36 41.50 -4.50 -6.50 R Insular cortex SN
2 173 -455 51 62 61 5.50 -8.50 43.50 R Dorsal anterior cingulate SN
cortex
3 93 -4.18 44 74 42 -8.50 15.50 550 L Ncl. caudatus SN
4 48  -3.69 47 79 49 -2.50 25.50 19.50 L Dorsal anterior cingulate SN
cortex
5 46  -3.56 40 51 42 -16.50 -30.50 550 L Thalamus SN
6 42  -3.56 60 65 31 23.50 -2.50 -16.50 R Amygdala SN
7 39 -3.81 35 56 24 -26.50 -20.50 -30.50 L Parahippocampus DMN
8 38 -3.70 50 91 35 3.50 49.50 -8.50 R Medial prefrontal cortex DMN
9 34 -394 45 46 55 -6.50 -40.50 31.50 L Posterior cingulate cortex DMN
10 30 -3.85 63 77 41 29.50 21.50 3.50 R Insular cortex SN
11 26 -4.21 30 57 39 -36.50 -18.50 -0.50 L Insular cortex SN

Note. SN, Salience Network; DMN, Default Mode Network.



Figure S5. Unpaired two-group (men > women) difference with continuous covariate
interaction (cortisol increase) results: Comparison of whole-brain responses (stress >
control, zgpr > 2.94) for the total sample (corrected for age, sex, and site) for peak voxel in
the right insula for (A) cortisol increase (voxel coordinates: 69 64 36, k = 182), (B) AUCg
(voxel coordinates: 69 64 36, k = 5), and (C) AUCIi (voxel coordinates: 69 64 36, k = 18).

A Cortisol Increase B AUCg C AUCi

-3.0 -31 3.2 -33 3.4 -3.0 -3.2 -34 3.6




Table S12. One-sample t-test with additional covariate (heart rate) results: Activated (stress > control) structures during psychosocial
stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and
Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-
integration. False-discovery rate (FDR, p < .05) correction at zzpr > 3.1.

Voxel coordinates MNI coordinates
Cluster Kk z X Y Z X Y Z Structure Network
1 36 -3.74 48 50 54 -0.50 -32.50 29.50 L Posterior cingulate cortex DMN
2 35 -394 16 43 49 -64.50 -46.50 19.50 L Supramarginal gyrus DMN
3 33 -3.70 46 91 44 -4.50 49.50 9.50 L Paracingulate gyrus DMN
4 31  -4.08 38 63 21 -20.50 -6.50 -36.50 L Parahippocampus DMN

Note. DMN, Default Mode Network.



Table S13. One-sample t-test with additional covariate (negative affect) results: Activated (stress > control) structures during psychosocial
stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and
Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-
integration. False-discovery rate (FDR, p < .05) correction at zzpr > 2.77.

Voxel coordinates MNI coordinates
Cluster k z X Y Z X Y Z Structure Network
1 64 3.78 69 68 41 41.5 3.5 3.5 R Insular cortex SN
2 51 3.79 52 63 62 7.5 -6.5 455 R Dorsal anterior cingulate SN
cortex
3 46 3.44 76 53 56 55.5 -26.5 33.5 R Supramarginal gyrus DMN

Note. SN, Salience Network; DMN, Default Mode Network.



Table S14. Unpaired two-group (men > women) difference with continuous covariate interaction (negative affect) results: Activated
(stress > control) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual
z-values, localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure
labelling (L-R, left-right) and network-integration. False-discovery rate (FDR, p < .05) correction at zz,z > 3.10.

Voxel coordinates MNI coordinates
Cluster k yA X Y Z X Y Z Structure Network
1 41  -4.38 49 70 56 1.5 75 33.5 R Dorsal anterior cingulate SN

cortex

Note. SN, Salience Network.



Table S15. One-sample t-test with additional covariate (error rate) results: Activated (stress > control) structures during psychosocial
stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and

Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-
integration. False-discovery rate (FDR, p < .05) correction at zzpr > 3.10.

Voxel coordinates MNI coordinates
Cluster k z X Y Z X Y Z Structure Network
1 31 4.2 49 77 31 1.5 21.5 -16.5 R Subgenual anterior DMN
cingulate cortex
2 20 3.99 51 94 29 55 55.5 -20.5 R Frontal pole CEN

Note. DMN, Default Mode Network; CEN, Central Executive Network.



Table S16. Unpaired two-group (men > women) difference with continuous covariate interaction (error rate) results: Activated (stress >
control) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual z-values,
localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling
(L-R, left-right) and network-integration. False-discovery rate (FDR, p < .05) correction at zzp, > 3.10.

Voxel coordinates MNI coordinates
Cluster k yA X Y Z X Y Z Structure Network
1 29 3.84 51 94 29 55 55.5 -20.5 R Frontal pole CEN

Note. CEN, Central Executive Network.



Table S17. Generalized Psychophysiological Interaction (gPPI) results: Structures with increased/positive connectivity (PPI+) during
psychosocial stress to seed regions of the triple network for the total sample (corrected for age, sex, and site) including localisation of peak
voxels (Montréal Neurological Institute, MNI coordinates), hemisphere-specific structure labelling (L-R, left-right), and network-integration,
as well as cluster size k, individual z-values, and Family-wise error (pgyr < .05) correction at zgy,z > 3.10.

Seed MNI

X Y Z Structure Network K z PFWE
SN: left FIC
SN: right FIC -26.5 275 -145 L Orbitofrontal cortex SN 149 415 .0003
-46.5 335 -125 L Frontal pole CEN 4.08
-445 235 -205 L Temporal pole SN 3.93
-325 315 -185 L Orbitofrontal cortex SN 3.74
-46.5 315 -45 L Inferior frontal gyrus Speech 3.33
29.5 35 -205 R Amygdala SN 112 449 .0026
DMN: PCU/PCC 61.5 -40.5 335 R Supramarginal gyrus DMN 8591 8.59 .0001
37.5 7.5 -45 R Insular cortex SN 741
53.5 135 -85 R Temporal pole SN 7.19
-62.5 -405 315 L Supramarginal gyrus DMN 5302 8.38 .0001
-405 -105 -125 L Planum polare Auditory 7.59
-42.5 55 -6.5 L Insular cortex SN 7.24
-585 -325 215 L Parietal opercular cortex SN 6.61
35 -205 255 R Middle cingulate cortex SN 3578 7.17 .0001
-4.5 9.5 29.5 L Dorsal anterior cingulate cortex SN 6.30
7.5 55 375 R Dorsal anterior cingulate cortex SN 6.21
-105 -325 415 L Middle cingulate cortex SN 5.99
-45 -885 215 L Cuneal cortex Visual 1252 5.22 .0001
-125 -885 295 L Occipital pole Visual 5.19
55 -825 275 R Cuneal cortex Visual 4.98
-425 375 235 L Dorsolateral prefrontal cortex CEN 1018 6.52 .0001
-385 435 235 L Frontal pole CEN 6.04
-285 355 195 L Middle frontal gyrus CEN 5.17
-30.5 435 -20.5 L Frontal pole CEN 173 5.66 .0001
-26.5 355 -16.5 L Orbitofrontal cortex SN 4.89



255 395 -225 R Frontal pole CEN 144 466 .0005
215 155 -6.5 R Putamen SN 104 456 .0045
CEN: left dIPFC -36.5 375 -6.5 L Frontal pole CEN 204 462 .0001
95 -345 55 R Thalamus SN 195 4.82 .0001
275 -385 3.5 R Hippocampus DMN 4.42
35,5 -36.5 -16.5 R Parahippocampus DMN 4.36
375 -445 -145 R Temporooccipital fusiform cortex Visual 3.95
195 335 -105 R Frontal pole CEN 133 3.40 .0001
19.5 95 175 R Ncl. caudatus SN 103 4.27 .0051
CEN:rightrdIPFC ~ -545 195 9.5 L Inferior frontal gyrus Speech 581 491 .0001
-46.5 415 -125 L Frontal pole CEN 4.22
-445 335 -85 L Orbitofrontal cortex SN 4.21
-6.5 295 -4.5 L Subgenual anterior cingulate cortex DMN 98 4.39 .0075
-85 295 -105 L Subcallosal cortex DMN 3.72
-45 -145 -45 L Thalamus SN 88 470 .0134
15 -125 -45 R Thalamus SN 4.37

Note. SN, Salience Network; FIC, frontoinsular cortex; DMN, Default Mode Network; PCU/PCC, precuneus/posterior cingulate
cortex; CEN, Central Executive Network, dIPFC, dorsolateral prefrontal cortex.



Table S18. Generalized Psychophysiological Interaction (gPPI1) results: Structures with decreased/negative connectivity (PPI-) during
psychosocial stress to seed regions of the triple network for the total sample (corrected for age, sex, and site) including localisation of peak
voxels (Montréal Neurological Institute, MNI coordinates), hemisphere-specific structure labelling (L-R, left-right), and network-integration,
as well as cluster size k, individual z-values, and Family-wise error (pgyr < .05) correction at zgy,z > 3.10.

Seed MNI

X Y Z Structure Network Kk z p-FWE
SN: left FIC -525 -56.5 255 L Angular gyrus DMN 378 4.86 .0001
-485 -685 355 R Lateral occipital cortex Visual 4.21
-56.5 -50.5 33,5 L Supramarginal gyrus DMN 3.84
-45 115 515 L Paracingulate gyrus DMN 292 454 .0001
-4.5 -05 475 L Supplementary motor cortex Motor 3.35
-545 135 295 L Inferior frontal gyrus Speech 261 495 .0001
-44.5 3.5 455 L Middle frontal gyrus CEN 4.94
-42.5 -0.5 33.5 L Precentral gyrus Motor 4.55
-60.5 -545 -10.5 L Middle temporal gyrus SN 90 4.08 .0096
-6.5 475 455 L Frontal pole CEN 83 406 .0147
-45 335 515 L Superior frontal gyrus CEN 3.71
SN: right FIC 435 415 195 R Frontal pole CEN 1469 6.23 .0001
115 -86.5 -0.5 R Intracalcarine cortex Visual 914 529 .0001
-105 -785 7.5 L Intracalcarine cortex Visual 5.20
35,5 -045 -85 R Occipital pole Visual 4.68
55 295 255 R Dorsal anterior cingulate cortex SN 878 572 .0001
-25 275 335 L Paracingulate gyrus DMN 5.64
35 335 355 R Paracingulate gyrus DMN 5.57
415 -485 43.5 R Angular gyrus DMN 639 6.46 .0001
475 -445 335 R Supramarginal gyrus DMN 4.96
375 -585 435 R Lateral occipital cortex Visual 4.77
-30.5 435 275 L Frontal pole CEN 611 556 .0001
-485 -485 395 L Supramarginal gyrus DMN 513 6.05 .0001
-324 -585 335 L Lateral occipital cortex Visual 5.64
-50.5 -56.5 39.5 L Angular gyrus DMN 441
-46.5 -235 29.5 L Postcentral gyrus Motor 409 4.94 .0001



-545 155 295 L Inferior frontal gyrus Speech 4.76
-50.5 29.5 21.5 L Middle frontal gyrus CEN 4.56
-50.5 5.5 33.5 L Precentral gyrus Motor 4.44
-60.5 -16.5 55 L Planum temporale Auditory 361 5.00 .0001
-60.5 -25 235 L Precentral gyrus Motor 4.78
-66.5 -14.5 13.5 L Postcentral gyrus Motor 4,74
-525 -16.5 7.5 L Heschl’s gyrus Auditory 4.19
59.5 -10.5 -0.5 R Planum polare Auditory 310 538 .0001
495 -10.5 1.5 R Heschl’s gyrus Auditory 3.94
57.5 -6.5 -155 R Middle temporal gyrus SN 219 476  .0001
59.5 -25 255 R Precentral gyrus Motor 4.16
55.5 -8.5 R Postcentral gyrus Motor 3.90
39.5 9.5 -6.5 R Insular cortex SN 218 5.06 .0001
49.5 17.5 -85 R Temporal pole SN 4.60
515 115 255 R Inferior frontal gyrus Speech 197 4,78 .0001
15.5 35 135 R Ncl. caudatus SN 163 473 .0001
15.5 9.5 -4.5 R Putamen SN 3.31
-18.5 55 7.5 L Putamen SN 151 432 .0003
-8.5 7.5 9.5 L Ncl. caudatus SN 3.60
-425 -225 475 L Postcentral gyrus Motor 141 4.68 .0005
635 -225 -8.5 R Middle temporal gyrus SN 134 4.85 .0008
DMN: PCU/PCC -125 -525 1.5 L Lingual gyrus Visual 1314 6.47 .0001
215 195 435 R Superior frontal gyrus CEN 519 5.72 .0001
255 275 475 R Middle frontal gyrus CEN 5.69
35 -205 255 R Lateral occipital cortex Visual 495 7.07 .0001
-425 -785 335 L Lateral occipital cortex Visual 478 9.12 .0001
-30.5 95 495 L Middle frontal gyrus CEN 375 547 .0001
-245 235 375 L Superior frontal gyrus CEN 4.99
-05 515 -185 L Medial prefrontal cortex DMN 350 6.98 .0001
-05 555 -16.5 L Frontal pole CEN 6.89
63.5 -85 -20.5 R Middle temporal gyrus SN 130 525 .0010
CEN: left IdIPFC 575 -385 455 R Supramarginal gyrus DMN 5992 7.26 .0001



315 -525 395 R Superior parietal lobule CEN 6.37
-60.5 -425 415 L Supramarginal gyrus DMN 3788 8.46 .0001
-60.5 -68.5 -2.5 L Lateral occipital cortex Visual 6.31
-625 -56.5 -6.5 L Middle temporal gyrus SN 5.79
-45 -315 235 L Posterior cingulate cortex DMN 1929 591 .0001
35 -225 415 R Posterior cingulate cortex DMN 5.37
-0.5 -425 45.5 L Precuneus DMN 5.35
455 115 -8.5 R Insular cortex SN 893 6.94 .0001
495 175 -125 R Temporal pole SN 6.03
555 135 1.5 R Inferior frontal gyrus Speech 5.54
-425 -205 455 L Postcentral gyrus Motor 272 5.03 .0001
-05 155 315 L Dorsal anterior cingulate cortex SN 262 525 .0001
7.5 95 355 R Anterior cingulate cortex SN 3.93
-46.5 455 9.5 L Frontal pole CEN 232 451 .0001
-485 135 -105 L Temporal pole SN 130 524 .0012
1.5 -945 135 R Occipital pole Visual 83 450 .0165
-0.5 -725 9.5 L Intracalcarine cortex Visual 4.05
15 -825 15,5 R Supracalcarine cortex Visual 3.69
CEN: right rdIPFC 35,5 -585 435 R Lateral occipital cortex Visual 2490 6.97 .0001
335 -525 375 R Angular gyrus DMN 6.77
35 -76.5 355 R Cuneal cortex Visual 1838 5.97 .0001
75 -70.5 39.5 R Precuneus DMN 5.80
135 -485 33.5 R Posterior cingulate cortex DMN 5.36
-05 -445 435 L Precuneus DMN 4.85
-385 -60.5 395 L Lateral occipital cortex Visual 994 559 .0001
-40.5 -50.5 435 L Supramarginal gyrus DMN 5.10
41.5 55 495 R Middle Frontal gyrus CEN 780 5.61 .0001
555 -10.5 37.5 R Postcentral gyrus Motor 4,94
-545 -145 49.5 L Postcentral gyrus Motor 561 558 .0001
-60.5 -45 335 L Precentral gyrus Motor 4.47
45.5 135 -85 R Insular cortex SN 254 5.26 .0001
535 175 -105 R Temporal pole SN 4.64



415 195 -6.5 R Orbitofrontal cortex SN 4.49

455 355 27.5 R Frontal pole CEN 136 4.19 .0001
495 335 195 R Middle frontal gyrus CEN 3.89

515 275 215 R Inferior frontal gyrus Speech 3.29

-45 -105 535 L Supplementary Motor cortex Motor 131 419 .00125

Note. SN, Salience Network; FIC, frontoinsular cortex; DMN, Default Mode Network; PCU/PCC, precuneus/posterior cingulate
cortex; CEN, Central Executive Network, dIPFC, dorsolateral prefrontal cortex.
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