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SUPPLEMENTAL BACKGROUND 

Table S1. Overview of all ScanSTRESS and Montreal Imaging Stress Task (MIST) studies including sample size for imaging analysis (N); sex ratio 

(women/men/non-binary; w/m/n); information on female subjects regarding menstrual cycle phase, contraception (OC), and reproductive status; 

paradigm version (OV, original version; SV, shortened version; MV, modified version); as well as information on the stress induction categorised 

by cortisol, negative affect, and heart rate response to the stressor (↑, increase; ↔, unchanged; ↓, decrease). For negative affect ratings, we 

considered different measures (e.g., negative affect, stress, bad mood, state anxiety, current distress). 
 

 

 

Studies 

Sample Stress response 

N (w/m/n) 

 

Women: menstrual cycle phase,  

contraception, reproductive status 

Paradigm  

version 

Cortisol Negative  

Affect 

Heart  

rate 

 

ScanSTRESS studies 

      

Akdeniz et al.1; Streit et al2 80 (41/39/0) n/a OV ↑ ↑ ↑ 

Bärtl et al.3 106 (56/59/0) 13 OCs, 25 luteal, 18 post-menopause OV ↑ ↑ ↑ 

Chand et al.4 39 (0/39/0) - SV  ↔ ↑ ↑ 

Dahm et al.5; Dimitrov et al.6 86 (50/36/0) 23 OCs, 27 luteal OV ↑ ↑  

Giglberger et al.7 111 (70/41/0) 56 OCs, 14 luteal OV ↑   

Henze et al.8–11 67 (31/36/0) OCs OV ↑ ↑ ↑ 

Hermann et al.12; Nanni-Zapeda et al.13 36 (0/36/0) - SV     

Hu et al.14; Li et al.15 70 (31/39/0) luteal OV ↑ ↑  

Konzok et al.16 61 (30/31/0) 15 OCs, 15 luteal OV ↑ ↑ ↑ 

Kuhn et al.17 39 (0/39/0) - OV ↑ ↑  

Kuhn et al.18 140 (67/73/0) OCs OV  ↑ ↑ 

Lederbogen et al.19 57 (25/32/0) n/a OV ↑ ↑ ↑ 

Liu et al. 20 &  

Ren et al21;  

Zhao et al.22  

72 (32/40/0) 

71 (31/40/0) 

77 (35/42/0) luteal OV ↑ ↑  

Nowak et al.23 & 

Dimitrov et al.24,25 

45 (0/45/0) 

42 (0/42/0) - SV ↑ ↑ ↑ 

Sandner et al.26 40 (12/28/0) OCs Compact ↑ ↑ ↑ 

Sandner et al.27 40 (n/a) n/a Compact ↑ ↑ ↑ 

Speicher et al.28 40 (0/40/0) - OV ↑ ↑ ↑  

Streit et al.2,29; Lederbogen et al.30 42 (20/22/0) luteal OV ↔  ↑ 

 

 

       



MIST studies 

Ackermann et al.31 39 (23/16/0) OCs OV ↑ ↑  

Albert et al.32 28 (28/0/0) 10 early follicular, 10 ovulation OV ↑   

Albert et al.33 65 (65/0/0) post-menopause OV    

Allenby et al.34 75 (35/40/0) n/a MV ↔ ↑  

Alpheis et al.35* 79 (28/51/0) n/a MV ↑ (n.s.) ↑  

Alyan et al.36 10 (0/10/0) - MV    

Alyan et al.37 23 (0/23/0) - MV    

Alyan et al.38 15 (0/15/0) - MV    

Ashare et al.39 39 (17/22/0) n/a OV  ↑  

Baumeister et al.40 84 (62/22/0) n/a OV ↑ ↑  

Bloomfield et al.41 34 (17/17/0) n/a MV ↑ ↑ ↑** 

Boehringer et al.30  

Lederbogen et al.30 

25 (14/11/0) 

32 (16/16/0) n/a OV ↑ ↑ ↑ 

Brugnera et al.42,43 60 (31/29/0) 8 OCs MV  ↑ ↑ 

Bürger et al.44 73 (40/43/0) 19 early follicular 2 ovulation, 19 midluteal MV ↔ ↑  

Choi45 37 (20/17/0) n/a MV    

Chung et al.46 31 (31/0/0) 15 early follicular, 16 midluteal MV ↓ ↑  

Chung et al.47 46 (30/16/0) 15 early follicular, 15 OCs MV ↓ ↑  

Cohen et al.48 42 (21/21/0) early follicular MV ↑ ↑  

Corbett et al.49 78 (0/78/0) - OV ↓   

Corr et al.50–52 101 (44/57/0) n/a MV ↑ ↑ ↑ 

Dagher et al.53 15 (7/8/0) n/a  OV ↔   

De Calheiros Velozo et al.54 

53 (45/8/0)  

30 (27/3/0) 

31 OCs 

n/a 

OV 

rMIST 

↓ 

↓ 

↑ 

↑ 

↑ 

↑ 

De Calheiros Velozo et al.55  53 (46/7/0) n/a MV   ↑ 

De Wandel et al.56 60 (31/29/0) OCs MV  ↑  

Dedovic et al.57 22 (0/22/0) - OV ↑   

Dedovic et al.58  28 (0/28/0) - eventMIST ↔   

Dedovic et al.59* 49 (25/24/0) 8 follicular, 2 luteal, 15 OCs MV ↔ ↔  

Degroote et al.60 56 (0/56/0) - OV ↑   

Dettweiler61 48 (20/28/0) - MV     

Dong et al.62 148 (85/63/0) n/a OV ↑ ↑  

Dong et al.63,64 367 (213/154/0) n/a OV ↑ ↑  

Edebol Carlman et al.65 22 (16/6/0) n/a OV ↔ ↑  

Ethridge et al.66 100 (0/100/0) - MV ↑ ↑  

Fan et al.67 18 (0/18/0) - OV ↑ ↑  

Geva et al.68 29 (0/29/0) - MV ↑ ↑ ↑ 

Geva et al.69 25 (0/25/0) - MV ↑ ↑ ↑ 



Geva et al.70 148 (82/66/0) n/a MV ↑ ↑ ↑ 

Gheorghe et al.71 48 (27/21/0) 

before exclusion N = 35 women: 

17 follicular, 8 luteal, 1 amenorrhea, 9 OCs MV ↔ ↑  

Golde et al.72 46 (46/0/0) 10 OCs, 8 follicular, 23 luteal, 4 post-menopause, 1 n/a MV ↑ ↑ ↑ 

Golde et al.73 41 (22/19/0) n/a MV   ↑ ↑ 

Goodman et al.74 51 (22/29/0) n/a MV    

Goodman et al.75,76 120 (67/53/0) n/a MV     

Goodman et al.77* 72 (55/17/0) n/a MV ↓  ↑ 

Goodman et al.78 15 (6/9/0) n/a MV   ↑ 

Goodman et al.79 84 (72/12/0) n/a MV    

Gossett et al.70 57 (21/36/0) n/a MV ↓  ↑ 

Grimm et al.80 32 (0/32/0) - OV ↑   

Grodin et al.81* 25 (10/15/0) n/a OV  ↔  

Guffanti et al.,82; Treadway et al.83 

75 (75/0/0) 

70 (70/0/0) n/a MV ↔ ↑  

Hachtel et al.70 32 (0/32/0) - OV ↑ ↑  

Hakimi et al.84 20 (0/20/0) - MV    

Hoegh et al.85 25 (0/25/0) - MV ↔ ↑  

Inagaki et al.70 36 (16/20/0) n/a MV  ↑  

Jones et al.86 22 (11/11/0) n/a MV ↑  ↑ 

Joseph et al.87* 119 (50/69/0) n/a OV    

Khalili-Mahani et al.88 19 (0/19/0) - OV ↔   

Kim et al.89 18 (0/18/0) - OV    

Kirsch et al.90,91* 42 (30/12/0) n/a MV   ↑ 

Kogler et al.92,93* 43 (23/20/0) 11 OCs  MV ↔ ↑  

Kogler et al.94 80 (40/40/0) 20 mid-luteal, 20 early follicular  MV ↓ ↑  

König et al.95 62 (n/a/0) n/a MV  ↑  

La Marca et al.96 43 (0/43/0) - OV ↑ ↑ ↑ 

Leicht-Deobald et al.97 31 (14/17/0) n/a OV   ↑ 

Li et al.98 140 (71/69/0) natural cycling OV ↑ ↑  

Lord et al.99* 39 (39/0/0) postpartum MV ↔ ↑  

Luo et al.100 44 (23/21/0) luteal OV ↑ ↑  

Ming et al.101* 105 (54/51/0) n/a OV ↑ ↑  

Minguillon et al.102 6 (n/a) - MV   ↑ 

Murray et al.103 47 (27/20/0) n/a MV   ↑ 

Murray et al.104* 73 (50/23/0) n/a MV   ↑ 

Nair et al.105 32 (21/11/0) n/a MV   ↔ 

Nair et al.106  36 (24/12/0) n/a MV    ↔ 

Nathan et al.107* 37 (37/0/0) peri- & post-menopause OV    



Nitschke et al.108 46 (26/20/0) natural cycling OV ↑   

Orem et al.109 239 (113/126/0) n/a MV ↓ ↑ ↑ 

Perez-Valero et al.110 23 (14/9/0) n/a MV    

Pruessner et al.111 39 (16/23/0) n/a OV    

Pruessner et al.112; Lederbogen et al.30 40 (20/20/0) OCs OV ↑   

Raufelder et al.113 41 (22/19/0) n/a MV    

Ren et al.114 44 (23/11/0) luteal OV ↑ ↑  

Ren et al.115 53 (0/53/0) - MV ↑ ↑  

Richer et al.116 25 (20/5/0) n/a MV ↑ ↑ ↑ 

Richter et al.117 31 (16/15/0) n/a OV ↔ ↑ ↑ 

Rojas-Thomas et al.118 62 (0/62/0) - MV ↑ ↑ ↑ 

Saraf et al.119* 20 (6/14/0) OCs, pre-menopause MV ↔  ↔ 

Schifani et al.120 33 (14/19/0) n/a MV  ↑  

Shakra et al.121 35 (14/21/0) n/a OV  ↑  

Shermohammed et al.70 54 (27/27/0) n/a MV ↑ ↑ ↑ 

Sigrist et al.122 27 (27/0/0) OCs, natural cycling OV   ↑ 

Soliman et al.123* 40 (27/13/0) natural cycling OV   ↑  

Sun et al.124 307 (153/154/0) n/a OV ↑ ↑  

Sun et al.125 101 (0/101/0) - OV ↑ ↑  

Tomova et al.126 67 (0/67/0) - MV ↑ ↑  

Vaessen et al.127* 29 (13/16/0) n/a MV  ↑  

Vaquero-Blasco et al.128 20 (n/a) n/a MV  ↑  

Vaquero-Blasco et al.129 23 (14/8/1) n/a MV  ↑  

Voellmin et al.130 104 (104/0/0) OCs, luteal OV ↑ ↑ ↑ 

Voges et al.131 65 (39/26/0) n/a OV ↔ ↔  

Wheelock et al.132 53 (23/30/0) n/a eventMIST ↔ ↑ ↑ 

Yamaoka et al.133 59 (0/59/0) - MV  ↑ ↑ 

Zhang et al.134 115(62/53/0) n/a OV ↑ ↑  

Zhao et al.135 51 (0/51/0) - MV  ↑ ↑** 

Zhong et al.136 96 (57/39/0) n/a OV ↑ ↑  

Zhukovsky et al.137* 115 (n/a)  follicular MV ↑   

Zschucke et al.138 36 (0/36/0) - MV  ↑  

Note. *Studies including (pre-)clinical samples; n.s., not significant; **Increase in BP, Blood Pressure; rMIST, repeated Montreal Imaging Stress 

Task. 



SUPPLEMENTAL RESULTS 

 

Figure S1. Comparison of whole-brain responses for 

the total sample (corrected for age, sex, and site) with 

(A) four sites (Regensburg, Mannheim, Berlin 1, and 

Berlin 2; 𝑧𝐹𝐷𝑅 > 3.77) and with (B) three sites, 

excluding Berlin 2 (𝑧𝐹𝐷𝑅 > 3.82). 

 



Table S2. One-sample t-test results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) structures during psychosocial stress 

for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and 

Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-

integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.77.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 90511 24.90 46 53 36 -4.50 -26.50 -6.50  Brain stem  

2 60 8.43 40 51 68 -16.50 -30.50 57.50 L Precentral gyrus Motor 

            

3 22533 -19.50 29 57 49 -38.50 -18.50 19.50 L Central opercular cortex SN 

4 3716 -21.00 44 40 55 -8.50 -52.50 31.50 L Posterior cingulate cortex DMN 

5 1104 -19.60 23 33 55 -50.50 -66.50 31.50 L Lateral occipital cortex Visual 

6 625 -15.60 77 34 57 57.50 -64.50 35.50 R Lateral occipital cortex Visual 

7 91 -9.38 67 84 32 37.50 35.50 -14.50 R Frontal pole CEN 

8 51 -6.33 20 80 40 -56.50 27.50 1.50 L Inferior frontal gyrus Speech 

Note. SN, Salience Network; DMN, Default Mode Network.  



Table S3. One-sample t-test results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) structures during psychosocial stress 

for the Regensburg site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal 

Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-

discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.45. 

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 86839 20.80 64 80 39 31.50 27.50 -0.50 R Orbitofrontal cortex SN 

            

2 19208 -16.60 28 57 48 -40.50 -18.50 17.50 L Central opercular cortex SN 

3 4147 -15.90 67 58 49 37.50 -16.50 19.50 R Central opercular cortex SN 

4 4119 -17.30 45 39 53 -6.50 -54.50 27.50 L Posterior cingulatex cortex DMN 

5 1039 -16.10 24 33 55 -48.50 -66.50 31.50 L Lateral occipital cortex Visual 

6 571 -12.70 77 35 57 57.50 -62.50 35.50 R Lateral occipital cortex Visual 

7 222 -5.59 56 93 60 15.50 53.50 41.50 R Frontal pole CEN 

8 57 -7.62 68 85 31 39.50 37.50 -16.50 R Frontal pole CEN 

9 32 -5.28 19 79 43 -58.50 25.50 7.50 L Inferior frontal gyrus Speech 

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.



Table S4. One-sample t-test results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) structures during psychosocial stress 

for the Mannheim site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal 

Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-

discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.53. 

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 68145 9.13 46 53 36 -4.50 -26.50 -6.50  Brain stem  

2 208 6.18 61 96 33 25.50 59.50 -12.50 R Frontal pole CEN 

3 165 6.76 49 53 52 1.50 -26.50 25.50 R Posterior cingulate cortex DMN 

4 39 4.49 18 53 41 -60.50 -26.50 3.50 L Planum temporale Auditory 

5 23 4.92 57 53 68 17.50 -26.50 57.50 R Precentral gyrus Motor 

6 19 4.65 31 48 47 -34.50 -36.50 15.50 L Planum temporale Auditory 

            

7 2684 -7.18 45 85 31 -6.50 37.50 -16.50 L Medial prefrontal cortex DMN 

8 941 -7.59 44 39 55 -8.50 -54.50 31.50 L Posterior cingulate cortex DMN 

9 558 -7.63 20 33 58 -56.50 -66.50 37.50 L Lateral occipital cortex Visual 

10 304 -5.11 16 65 27 -64.50 -2.50 -24.50 L Middle temporal gyrus SN 

11 148 -5.58 68 60 48 39.50 -12.50 17.50 R Central opercular cortex SN 

12 135 -5.77 76 32 56 55.50 -68.50 33.50 R Lateral occipital cortex Visual 

13 88 -5.62 65 78 20 33.50 23.50 -38.50 R Temporal pole SN 

14 40 -4.81 35 57 30 -26.50 -18.50 -18.50 L Hippocampus DMN 

15 34 -5.05 29 57 49 -38.50 -18.50 -18.50 L Parahippocampus DMN 

16 30 -4.92 27 78 22 -42.50 23.50 -34.50 L Temporal pole SN 

17 29 -4.55 42 96 57 -12.50 59.50 35.50 L Frontal pole CEN 

18 20 -4.13 26 83 32 -44.50 33.50 -14.50 L Orbitofrontal cortex SN 



Table S5. One-sample t-test results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) structures during psychosocial stress 

for the Berlin 1 site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal 

Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-

discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.50. 

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 63679 10.60 46 54 37 -4.50 -24.50 -4.50 L Thalamus SN 

2 119 5.57 76 71 30 55.50 9.50 -18.50 R Temporal pole SN 

3 92 5.50 35 55 68 -26.50 -22.50 57.50 L Precentral gyrus Motor 

4 24 4.85 60 55 68 23.50 -22.50 57.50 L Precentral gyrus Motor 

            

5 1292 -8.63 44 40 55 -8.50 -52.50 31.50 L Posterior cingulate cortex DMN 

6 1040 -7.22 44 95 36 -8.50 57.50 -6.50 L Frontal pole CEN 

7 755 -6.95 22 65 22 -52.50 -2.50 -34.50 L Middle temporal gyrus SN 

8 737 -8.39 29 57 49 -38.50 -18.50 19.50 L Central opercular cortex SN 

9 606 -7.63 67 58 49 37.50 -16.50 19.50 R Central opercular cortex SN 

10 577 -8.48 23 32 58 -50.50 -68.50 37.50 L Lateral occipital cortex Visual 

11 268 -7.13 76 35 58 55.50 -62.50 37.50 R Lateral occipital cortex Visual 

12 142 -5.48 54 71 33 11.50 9.50 -12.50 R Ncl. accumbens SN 

13 138 -6.46 41 72 34 -14.50 11.50 -10.50 R Putamen  SN 

14 102 -4.70 40 86 65 -16.50 39.50 51.50 L Frontal pole CEN 

15 90 -5.44 35 56 31 -26.50 -20.50 -16.50 L Hippocampus DMN 

16 74 -5.43 76 63 24 55.50 -6.50 -30.50 R Middle temporal gyrus SN 

17 66 -4.93 36 77 29 -24.50 21.50 -20.50 L Orbitofrontal cortex SN 

18 53 -5.22 58 67 22 19.50 1.50 -34.50 R Parahippocampus DMN 

19 33 -5.25 45 95 59 -6.50 57.50 39.50 L Frontal pole CEN 

20 25 -4.15 65 86 34 33.50 39.50 -10.50 R Frontal pole CEN 



Table S6. One-sample t-test results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) structures during psychosocial stress 

for the Berlin 2 site (corrected for age and sex) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal 

Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-

discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.85. 

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 1804 7.40 41 61 44 -14.50 -10.50 9.50 L Thalamus SN 

2 1156 6.73 27 83 49 -42.50 33.50 19.50 L Middle frontal gyrus CEN 

3 689 5.65 69 85 51 41.50 37.50 23.50 R Frontal pole CEN 

4 543 7.20 53 72 64 9.50 9.50 49.50 R Paracingulate gyrus DMN 

5 535 7.21 37 64 63 -22.50 -4.50 47.50 L Superior frontal gyrus CEN 

6 528 7.85 64 79 42 31.50 25.50 5.50 R Insular cortex SN 

7 515 7.35 44 74 65 -8.50 15.50 51.50 L Superior frontal gyrus CEN 

8 465 7.18 32 78 45 -32.50 23.50 11.50 L Frontal opercular cortex SN 

9 395 6.54 65 65 65 33.50 -2.50 51.50 R Middle frontal gyrus CEN 

10 357 5.79 71 71 51 45.40 9.50 23.50 R Inferior frontal gyrus Speech 

11 41 5.62 57 53 59 17.50 -26.50 39.50 R Precentral gyrus Motor 

12 29 5.29 50 72 53 3.50 11.50 27.50 R Anterior cingulate cortex SN 

13 25 5.13 31 59 60 -34.50 -14.50 41.50 L Precentral gyrus Motor 

14 23 5.72 63 92 32 29.50 51.50 -14.50 R Frontal pole CEN 

            

15 3214 -7.96 53 87 37 9.50 41.50 -4.50 R Paracingulate gyrus DMN 

16 1338 -7.00 26 72 22 -44.50 11.50 -34.50 L Temporal pole SN 

17 665 -6.70 21 33 56 -54.50 -66.50 33.50 L Lateral occipital cortex Visual 

18 411 -6.20 77 62 43 57.50 -8.50 7.50 R Central opercular cortex SN 

19 409 -5.98 67 78 22 37.50 23.50 -34.50 R Temporal pole SN 

20 246 -5.70 40 89 59 -16.50 45.50 39.50 L Frontal pole CEN 

21 219 -6.54 64 62 28 31.50 -8.50 -22.50 R Hippocampus DMN 

22 194 -6.75 63 83 33 29.50 33.50 -12.50 R Frontal pole CEN 

23 182 -5.33 78 36 55 59.50 -60.50 31.50 R Lateral occipital cortex Visual 

24 168 -6.08 55 78 39 13.50 23.50 -0.50 R Ncl. caudatus SN 

25 66 -5.28 74 63 31 51.50 -6.50 -16.50 R Superior temporal gyrus SN 



Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.

26 50 -5.65 68 74 28 39.50 15.50 -22.50 R Temporal pole SN 

27 44 -5.22 47 52 70 -2.50 -28.50 61.50 L Precentral gyrus Motor 

28 35 -4.94 30 55 49 -36.50 -22.50 19.50 L Central opercular cortex SN 

29 29 -4.90 74 52 47 51.50 -28.50 15.50 R Parietal opercular cortex SN 

30 27 -4.94 77 68 25 57.50 3.50 -28.50 R Middle temporal gyrus SN 

31 26 -5.27 48 60 57 -0.50 -12.50 35.50 R Anterior cingulate cortex SN 

32 20 -5.76 57 81 69 17.50 29.50 59.50 R Superior frontal gyrus CEN 



Figure S2. Two-sample 

unpaired t-test results 

(𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛) for the 

total sample (corrected for 

age and site; 𝑧𝐹𝐷𝑅 > 3.44).  



Table S7. Two-sample unpaired t-test results (𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛): Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) and deactivated (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 > 𝑠𝑡𝑟𝑒𝑠𝑠) 

structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual z-values, localisation 

of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-

right) and network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.44. 

Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 171 5.57 69 37 48 41.50 -58.50 17.50 R Angular gyrus DMN 

            

2 284 -5.35 77 50 57 57.50 -32.50 35.50 R Supramarginal gyrus DMN 

3 250 -4.97 66 93 48 35.50 53.50 17.50 R Frontal pole CEN 

4 161 -5.03 28 79 38 -40.50 78.50 36.50 L Frontal opercular cortex SN 

5 113 -5.33 56 46 66 15.50 -40.50 53.50 R Postcentral gyrus Motor 

6 74 -4.51 43 26 63 -10.50 -80.50 47.50 L Lateral occipital cortex Visual 

7 64 -4.86 55 25 63 13.50 -82.50 47.50 R Lateral occipital cortex Visual 

8 42 -4.32 18 50 51 -60.50 -32.50 23.50 L Parietal opercular cortex SN 

9 37 -4.50 55 54 59 13.50 -24.50 39.50 R Posterior cingulate cortex DMN 

10 27 -4.18 18 45 55 -60.50 -42.50 31.50 L Supramarginal gyrus DMN 

11 24 -5.09 27 89 53 -42.50 45.50 27.50 L Frontal pole CEN 

12 22 -4.25 77 72 47 57.50 11.50 15.50 R Inferior frontal gyrus Speech 

13 22 -4.51 30 91 44 -36.50 49.50 9.50 L Frontal pole CEN 

14 22 -3.82 72 69 41 47.50 5.50 3.50 R Central opercular cortex SN 

15 21 -3.99 72 80 35 47.50 27.50 -8.50 R Orbitofrontal cortex SN 

16 21 -4.13 34 84 54 -38.50 35.50 29.50 R Middle frontal gyrus CEN 



Table S8. One-sample t-test with additional covariate (age) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial stress for 

the total sample (corrected for sex and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and Montréal 

Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-integration. False-

discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.76. 

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 2252 7.46 47 34 50 -2.50 -64.50 21.50 L Precuneus cortex DMN 

2 1079 6.99 25 29 61 -46.50 -74.50 43.50 L Lateral occipital cortex Visual 

3 730 6.04 44 92 35 -8.50 51.50 -8.50 L Medial prefrontal cortex DMN 

4 714 6.03 77 36 58 57.50 -60.50 37.50 R Lateral occipital cortex Visual 

5 343 5.15 37 83 64 -22.50 33.50 49.50 L Superior frontal gyrus CEN 

6 237 5.42 16 50 38 -64.50 -32.50 -2.50 L Middle temporal gyrus SN 

7 208 5.30 62 53 67 27.50 -26.50 55.50 R Precentral gyrus Motor 

8 205 5.27 74 56 49 51.50 -20.50 19.50 R Parietal opercular cortex SN 

9 196 5.73 50 91 31 3.50 49.50 -16.50 R Medial prefrontal cortex DMN 

10 162 5.97 64 61 42 31.50 -10.50 5.50 R Putamen SN 

11 85 5.57 41 51 73 -14.50 -30.50 67.50 L Precentral gyrus Motor 

12 74 5.76 35 55 32 -26.50 -22.50 -14.50 L Hippocampus DMN 

13 60 4.82 49 55 68 1.50 -22.50 57.50 R Precentral gyrus Motor 

14 60 5.74 32 61 41 -32.50 -10.50 3.50 L Putamen SN 

15 47 5.59 39 97 53 -18.50 61.50 27.50 L Frontal pole CEN 

16 44 4.63 61 82 64 25.50 31.50 49.50 R Superior frontal gyrus  CEN 

17 44 4.56 23 81 34 -50.50 29.50 -10.50 L Orbitofrontal cortex SN 

18 42 4.61 28 59 51 28.50 57.00 49.30 L Central opercular cortex SN 

19 37 4.63 69 83 31 41.50 33.50 -16.50 R Frontal pole CEN 

20 34 4.70 63 60 29 29.50 -12.50 -20.50 R Hippocampus DMN 

21 33 4.75 52 49 67 7.50 -34.50 55.50 R Postcentral gyrus Motor 

22 32 4.64 17 65 32 -62.50 -2.50 -14.50 L Middle Temporal Gyrus SN 

23 31 5.18 36 48 31 -24.50 -36.50 -16.50 L Parahippocampus DMN 

24 28 4.64 68 58 65 39.50 -16.50 51.50 R Precentral gyrus Motor 

25 26 4.11 70 59 58 43.50 -14.50 37.50 R Postcentral gyrus Motor 

26 25 5.00 75 83 38 53.50 33.50 -2.50 R Frontal pole CEN 



Note. SN, Salience Network; DMN, Default Mode Network; CEN, Central Executive Network.

27 24 4.37 66 63 22 35.50 -6.50 -34.50 R Temporal fusiform cortex Visual 

28 24 5.00 46 60 58 -4.50 -12.50 37.50 L Anterior cingulate cortex SN 

29 23 5.89 56 43 79 15.50 -46.50 79.50 R Postcentral gyrus Motor 

30 23 6.15 41 44 79 -14.50 -44.50 79.50 L Postcentral gyrus Motor 



Figure S3. One-sample t-test with additional 

covariate (age) results: Comparison of whole-brain 

responses for the total sample (corrected for sex and 

site) including (A) all samples of all sites 

(Regensburg, Mannheim, Berlin 1, and Berlin 2; 

𝑧𝐹𝐷𝑅 > 3.76) and (B) omitting one sample from the 

Regensburg site (Bärtl et al.3; 𝑧𝐹𝐷𝑅 > 3.10). 

 

 
 



Table S9. Exposure-time effect results (𝑟𝑢𝑛 1 > 𝑟𝑢𝑛 2): Structures showing more activations (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) in the first run compared 

to the second run of ScanSTRESS for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation 

of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-

right) and network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 4.95. 

Note. SN, Salience Network; DMN, Default Mode Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 55539 18.4 21 36 51 -54.50 -60.50 23.50 L Angular gyrus DMN 

2 1514 15.1 61 26 21 25.50 -80.50 -36.50 R Cerebellum Motor 

3 1106 14.5 36 26 21 -24.50 -80.50 -36.50 L Cerebellum Motor 

4 620 12.2 51 40 18 5.50 -52.50 -42.50 R Cerebellum Motor 

5 169 7.17 67 58 48 37.50 -16.50 17.50 R Central opercular cortex SN 

6 119 7.14 68 59 58 39.50 -14.50 37.50 R Precentral gyrus Motor 

7 36 6.78 29 57 59 -38.50 -18.50 39.50 L Postcentral gyrus Motor 

8 31 6.02 30 56 48 -36.50 -20.50 17.50 L Insular cortex SN 



Table S10. One-sample t-test with additional covariate (cortisol increase) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during 

psychosocial stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak 

voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and 

network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 2.54. 

Note. SN, Salience Network; DMN, Default Mode Network. 

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 47 3.93 57 65 32 17.50 -2.50 -14.50 R Amygdala SN 

2 26 4.18 67 64 34 37.50 -4.50 -10.50 R Insular cortex SN 

3 25 3.11 76 44 52 55.50 -44.50 25.50 R Angular gyrus DMN 

4 23 3.23 42 61 27 -12.50 -10.50 -24.50 L Parahippocampus DMN 



Figure S4. One-sample t-test with additional covariate (cortisol) results: Comparison of 

whole-brain responses (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑧𝐹𝐷𝑅 > 2.54) for the total sample (corrected for 

age, sex, and site) for peak voxel in the right amygdala for (A) cortisol increase (voxel 

coordinates: 57 65 32, 𝑘 = 47), (B) AUCg (voxel coordinates: 55 65 33, 𝑘 = 18), and (C) 

AUCi (voxel coordinates: 55 65 33, 𝑘 = 32). 



Table S11. Unpaired two-group (𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛) difference with continuous covariate interaction (cortisol increase) results: Activated 

(𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual 

z-values, localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure 

labelling (L-R, left-right) and network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 2.94. 

Note. SN, Salience Network; DMN, Default Mode Network.

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 182 -5.18 69 64 36 41.50 -4.50 -6.50 R Insular cortex SN 

2 173 -4.55 51 62 61 5.50 -8.50 43.50 R Dorsal anterior cingulate 

cortex 

SN 

3 93 -4.18 44 74 42 -8.50 15.50 5.50 L Ncl. caudatus SN 

4 48 -3.69 47 79 49 -2.50 25.50 19.50 L Dorsal anterior cingulate 

cortex 

SN 

5 46 -3.56 40 51 42 -16.50 -30.50 5.50 L Thalamus SN 

6 42 -3.56 60 65 31 23.50 -2.50 -16.50 R Amygdala SN 

7 39 -3.81 35 56 24 -26.50 -20.50 -30.50 L Parahippocampus DMN 

8 38 -3.70 50 91 35 3.50 49.50 -8.50 R Medial prefrontal cortex DMN 

9 34 -3.94 45 46 55 -6.50 -40.50 31.50 L Posterior cingulate cortex DMN 

10 30 -3.85 63 77 41 29.50 21.50 3.50 R Insular cortex SN 

11 26 -4.21 30 57 39 -36.50 -18.50 -0.50 L Insular cortex SN 



Figure S5. Unpaired two-group (𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛) difference with continuous covariate 

interaction (cortisol increase) results: Comparison of whole-brain responses (𝑠𝑡𝑟𝑒𝑠𝑠 >
𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑧𝐹𝐷𝑅 > 2.94) for the total sample (corrected for age, sex, and site) for peak voxel in 

the right insula for (A) cortisol increase (voxel coordinates: 69 64 36, 𝑘 = 182), (B) AUCg 

(voxel coordinates: 69 64 36, 𝑘 = 5), and (C) AUCi (voxel coordinates: 69 64 36, 𝑘 = 18). 

 
 



Table S12. One-sample t-test with additional covariate (heart rate) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial 

stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and 

Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-

integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.1. 

Note. DMN, Default Mode Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 36 -3.74 48 50 54 -0.50 -32.50 29.50 L Posterior cingulate cortex DMN 

2 35 -3.94 16 43 49 -64.50 -46.50 19.50 L Supramarginal gyrus DMN 

3 33 -3.70 46 91 44 -4.50 49.50 9.50 L Paracingulate gyrus DMN 

4 31 -4.08 38 63 21 -20.50 -6.50 -36.50 L Parahippocampus DMN 



Table S13. One-sample t-test with additional covariate (negative affect) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial 

stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and 

Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-

integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 2.77. 

Note. SN, Salience Network; DMN, Default Mode Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 64 3.78 69 68 41 41.5 3.5 3.5 R Insular cortex SN 

2 51 3.79 52 63 62 7.5 -6.5 45.5 R Dorsal anterior cingulate 

cortex 

SN 

3 46 3.44 76 53 56 55.5 -26.5 33.5 R Supramarginal gyrus DMN 



Table S14. Unpaired two-group (𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛) difference with continuous covariate interaction (negative affect) results: Activated 

(𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual 

z-values, localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure 

labelling (L-R, left-right) and network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.10. 

Note. SN, Salience Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 41 -4.38 49 70 56 1.5 7.5 33.5 R Dorsal anterior cingulate 

cortex 

SN 



Table S15. One-sample t-test with additional covariate (error rate) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 > 𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial 

stress for the total sample (corrected for age, sex, and site) including cluster size k, individual z-values, localisation of peak voxels (voxel and 

Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling (L-R, left-right) and network-

integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.10. 

Note. DMN, Default Mode Network; CEN, Central Executive Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 31 4.2 49 77 31 1.5 21.5 -16.5 R Subgenual anterior 

cingulate cortex 

DMN 

2 20 3.99 51 94 29 5.5 55.5 -20.5 R Frontal pole CEN 



Table S16. Unpaired two-group (𝑚𝑒𝑛 > 𝑤𝑜𝑚𝑒𝑛) difference with continuous covariate interaction (error rate) results: Activated (𝑠𝑡𝑟𝑒𝑠𝑠 >
𝑐𝑜𝑛𝑡𝑟𝑜𝑙) structures during psychosocial stress for the total sample (corrected for age and site) including cluster size k, individual z-values, 

localisation of peak voxels (voxel and Montréal Neurological Institute, MNI coordinates), as well as hemisphere-specific structure labelling 

(L-R, left-right) and network-integration. False-discovery rate (FDR, 𝑝 < .05) correction at 𝑧𝐹𝐷𝑅 > 3.10. 

Note. CEN, Central Executive Network.  

   Voxel coordinates MNI coordinates   

Cluster k z X  Y  Z  X  Y  Z  Structure Network 

1 29 3.84 51 94 29 5.5 55.5 -20.5 R Frontal pole CEN 



Table S17. Generalized Psychophysiological Interaction (gPPI) results: Structures with increased/positive connectivity (PPI+) during 

psychosocial stress to seed regions of the triple network for the total sample (corrected for age, sex, and site) including localisation of peak 

voxels (Montréal Neurological Institute, MNI coordinates), hemisphere-specific structure labelling (L-R, left-right), and network-integration, 

as well as cluster size k, individual z-values, and Family-wise error (𝑝𝐹𝑊𝐸 < .05) correction at 𝑧𝐹𝑊𝐸 > 3.10. 

Seed MNI      

X Y Z Structure Network k z pFWE 

SN: left FIC          

SN: right FIC -26.5 27.5 -14.5 L Orbitofrontal cortex SN 149 4.15 .0003 

-46.5 33.5 -12.5 L Frontal pole CEN  4.08  

-44.5 23.5 -20.5 L Temporal pole SN  3.93  

-32.5 31.5 -18.5 L Orbitofrontal cortex SN  3.74  

-46.5 31.5 -4.5 L Inferior frontal gyrus Speech  3.33  

29.5 3.5 -20.5 R Amygdala SN 112 4.49 .0026 

DMN: PCU/PCC 61.5 -40.5 33.5 R Supramarginal gyrus DMN 8591 8.59 .0001 

37.5 7.5 -4.5 R Insular cortex SN  7.41  

53.5 13.5 -8.5 R Temporal pole SN  7.19  

-62.5 -40.5 31.5 L Supramarginal gyrus DMN 5302 8.38 .0001 

-40.5 -10.5 -12.5 L Planum polare Auditory  7.59  

-42.5 5.5 -6.5 L Insular cortex SN  7.24  

-58.5 -32.5 21.5 L Parietal opercular cortex SN  6.61  

3.5 -20.5 25.5 R Middle cingulate cortex SN 3578 7.17 .0001 

-4.5 9.5 29.5 L Dorsal anterior cingulate cortex SN  6.30  

7.5 5.5 37.5 R Dorsal anterior cingulate cortex SN  6.21  

-10.5 -32.5 41.5 L Middle cingulate cortex SN  5.99  

-4.5 -88.5 21.5 L Cuneal cortex Visual 1252 5.22 .0001 

-12.5 -88.5 29.5 L Occipital pole Visual  5.19  

5.5 -82.5 27.5 R Cuneal cortex Visual  4.98  

-42.5 37.5 23.5 L Dorsolateral prefrontal cortex CEN 1018 6.52 .0001 

-38.5 43.5 23.5 L Frontal pole CEN  6.04  

-28.5 35.5 19.5 L Middle frontal gyrus CEN  5.17  

-30.5 43.5 -20.5 L Frontal pole CEN 173 5.66 .0001 

-26.5 35.5 -16.5 L Orbitofrontal cortex SN  4.89  



25.5 39.5 -22.5 R Frontal pole CEN 144 4.66 .0005 

21.5 15.5 -6.5 R Putamen SN 104 4.56 .0045 

CEN: left dlPFC -36.5 37.5 -6.5 L Frontal pole CEN 204 4.62 .0001 

9.5 -34.5 5.5 R Thalamus SN 195 4.82 .0001 

27.5 -38.5 3.5 R Hippocampus DMN  4.42  

35.5 -36.5 -16.5 R Parahippocampus DMN  4.36  

37.5 -44.5 -14.5 R Temporooccipital fusiform cortex Visual  3.95  

19.5 33.5 -10.5 R Frontal pole CEN 133 3.40 .0001 

19.5 9.5 17.5 R Ncl. caudatus SN 103 4.27 .0051 

CEN: right rdlPFC -54.5 19.5 9.5 L Inferior frontal gyrus Speech 581 4.91 .0001 

-46.5 41.5 -12.5 L Frontal pole CEN  4.22  

-44.5 33.5 -8.5 L Orbitofrontal cortex SN  4.21  

-6.5 29.5 -4.5 L Subgenual anterior cingulate cortex DMN 98 4.39 .0075 

-8.5 29.5 -10.5 L Subcallosal cortex DMN  3.72  

-4.5 -14.5 -4.5 L Thalamus SN 88 4.70 .0134 

1.5 -12.5 -4.5 R Thalamus SN  4.37  

Note. SN, Salience Network; FIC, frontoinsular cortex; DMN, Default Mode Network; PCU/PCC, precuneus/posterior cingulate 

cortex; CEN, Central Executive Network, dlPFC, dorsolateral prefrontal cortex.  



Table S18. Generalized Psychophysiological Interaction (gPPI) results: Structures with decreased/negative connectivity (PPI-) during 

psychosocial stress to seed regions of the triple network for the total sample (corrected for age, sex, and site) including localisation of peak 

voxels (Montréal Neurological Institute, MNI coordinates), hemisphere-specific structure labelling (L-R, left-right), and network-integration, 

as well as cluster size k, individual z-values, and Family-wise error (𝑝𝐹𝑊𝐸 < .05) correction at 𝑧𝐹𝑊𝐸 > 3.10. 

Seed MNI      

X Y Z Structure Network k z p-FWE 

SN: left FIC -52.5 -56.5 25.5 L Angular gyrus DMN 378 4.86 .0001 

-48.5 -68.5 35.5 R Lateral occipital cortex Visual  4.21  

-56.5 -50.5 33.5 L Supramarginal gyrus DMN  3.84  

-4.5 11.5 51.5 L Paracingulate gyrus DMN 292 4.54 .0001 

-4.5 -0.5 47.5 L Supplementary motor cortex Motor  3.35  

-54.5 13.5 29.5 L Inferior frontal gyrus Speech 261 4.95 .0001 

-44.5 3.5 45.5 L Middle frontal gyrus CEN  4.94  

-42.5 -0.5 33.5 L Precentral gyrus Motor  4.55  

-60.5 -54.5 -10.5 L Middle temporal gyrus SN 90 4.08 .0096 

-6.5 47.5 45.5 L Frontal pole CEN 83 4.06 .0147 

-4.5 33.5 51.5 L Superior frontal gyrus CEN  3.71  

SN: right FIC 43.5 41.5 19.5 R Frontal pole CEN 1469 6.23 .0001 

11.5 -86.5 -0.5 R Intracalcarine cortex Visual 914 5.29 .0001 

-10.5 -78.5 7.5 L Intracalcarine cortex Visual  5.20  

35.5 -04.5 -8.5 R Occipital pole Visual  4.68  

5.5 29.5 25.5 R Dorsal anterior cingulate cortex SN 878 5.72 .0001 

-2.5 27.5 33.5 L Paracingulate gyrus DMN  5.64  

3.5 33.5 35.5 R Paracingulate gyrus DMN  5.57  

41.5 -48.5 43.5 R Angular gyrus DMN 639 6.46 .0001 

47.5 -44.5 33.5 R Supramarginal gyrus DMN  4.96  

37.5 -58.5 43.5 R Lateral occipital cortex Visual  4.77  

-30.5 43.5 27.5 L Frontal pole CEN 611 5.56 .0001 

-48.5 -48.5 39.5 L Supramarginal gyrus DMN 513 6.05 .0001 

-32.4 -58.5 33.5 L Lateral occipital cortex Visual  5.64  

-50.5 -56.5 39.5 L Angular gyrus DMN  4.41  

-46.5 -23.5 29.5 L Postcentral gyrus Motor 409 4.94 .0001 



-54.5 15.5 29.5 L Inferior frontal gyrus  Speech  4.76  

-50.5 29.5 21.5 L Middle frontal gyrus CEN  4.56  

-50.5 5.5 33.5 L Precentral gyrus Motor  4.44  

-60.5 -16.5 5.5 L Planum temporale Auditory 361 5.00 .0001 

-60.5 -2.5 23.5 L Precentral gyrus Motor  4.78  

-66.5 -14.5 13.5 L Postcentral gyrus  Motor  4.74  

-52.5 -16.5 7.5 L Heschl’s gyrus Auditory  4.19  

59.5 -10.5 -0.5 R Planum polare Auditory 310 5.38 .0001 

49.5 -10.5 1.5 R Heschl’s gyrus Auditory  3.94  

57.5 -6.5 -15.5 R Middle temporal gyrus SN 219 4.76 .0001 

59.5 -2.5 25.5 R Precentral gyrus Motor  4.16  

55.5 -8.5  R Postcentral gyrus Motor  3.90  

39.5 9.5 -6.5 R Insular cortex SN 218 5.06 .0001 

49.5 17.5 -8.5 R Temporal pole SN  4.60  

51.5 11.5 25.5 R Inferior frontal gyrus Speech 197 4.78 .0001 

15.5 3.5 13.5 R Ncl. caudatus SN 163 4.73 .0001 

15.5 9.5 -4.5 R Putamen SN  3.31  

-18.5 5.5 7.5 L Putamen SN 151 4.32 .0003 

-8.5 7.5 9.5 L Ncl. caudatus SN  3.60  

-42.5 -22.5 47.5 L Postcentral gyrus Motor 141 4.68 .0005 

63.5 -22.5 -8.5 R Middle temporal gyrus SN 134 4.85 .0008 

DMN: PCU/PCC -12.5 -52.5 1.5 L Lingual gyrus Visual 1314 6.47 .0001 

21.5 19.5 43.5 R Superior frontal gyrus CEN 519 5.72 .0001 

25.5 27.5 47.5 R Middle frontal gyrus CEN  5.69  

3.5 -20.5 25.5 R Lateral occipital cortex Visual 495 7.07 .0001 

-42.5 -78.5 33.5 L Lateral occipital cortex Visual 478 9.12 .0001 

-30.5 9.5 49.5 L Middle frontal gyrus CEN 375 5.47 .0001 

-24.5 23.5 37.5 L Superior frontal gyrus CEN  4.99  

-0.5 51.5 -18.5 L Medial prefrontal cortex DMN 350 6.98 .0001 

-0.5 55.5 -16.5 L Frontal pole CEN  6.89  

63.5 -8.5 -20.5 R Middle temporal gyrus SN 130 5.25 .0010 

CEN: left ldlPFC 57.5 -38.5 45.5 R Supramarginal gyrus DMN 5992 7.26 .0001 



31.5 -52.5 39.5 R Superior parietal lobule CEN  6.37  

-60.5 -42.5 41.5 L Supramarginal gyrus DMN 3788 8.46 .0001 

-60.5 -68.5 -2.5 L Lateral occipital cortex Visual  6.31  

-62.5 -56.5 -6.5 L Middle temporal gyrus SN  5.79  

-4.5 -31.5 23.5 L Posterior cingulate cortex DMN 1929 5.91 .0001 

3.5 -22.5 41.5 R Posterior cingulate cortex DMN  5.37  

-0.5 -42.5 45.5 L Precuneus DMN  5.35  

45.5 11.5 -8.5 R Insular cortex SN 893 6.94 .0001 

49.5 17.5 -12.5 R Temporal pole SN  6.03  

55.5 13.5 1.5 R Inferior frontal gyrus Speech  5.54  

-42.5 -20.5 45.5 L Postcentral gyrus Motor 272 5.03 .0001 

-0.5 15.5 31.5 L Dorsal anterior cingulate cortex SN 262 5.25 .0001 

7.5 9.5 35.5 R Anterior cingulate cortex SN  3.93  

-46.5 45.5 9.5 L Frontal pole CEN 232 4.51 .0001 

-48.5 13.5 -10.5 L Temporal pole SN 130 5.24 .0012 

1.5 -94.5 13.5 R Occipital pole Visual 83 4.50 .0165 

-0.5 -72.5 9.5 L Intracalcarine cortex Visual  4.05  

1.5 -82.5 15.5 R Supracalcarine cortex Visual  3.69  

CEN: right rdlPFC 35.5 -58.5 43.5 R Lateral occipital cortex Visual 2490 6.97 .0001 

33.5 -52.5 37.5 R Angular gyrus DMN  6.77  

3.5 -76.5 35.5 R Cuneal cortex Visual 1838 5.97 .0001 

7.5 -70.5 39.5 R Precuneus  DMN  5.80  

13.5 -48.5 33.5 R Posterior cingulate cortex DMN  5.36  

-0.5 -44.5 43.5 L Precuneus DMN  4.85  

-38.5 -60.5 39.5 L Lateral occipital cortex Visual 994 5.59 .0001 

-40.5 -50.5 43.5 L Supramarginal gyrus DMN  5.10  

41.5 5.5 49.5 R Middle Frontal gyrus CEN 780 5.61 .0001 

55.5 -10.5 37.5 R Postcentral gyrus Motor  4.94  

-54.5 -14.5 49.5 L Postcentral gyrus Motor 561 5.58 .0001 

-60.5 -4.5 33.5 L Precentral gyrus Motor  4.47  

45.5 13.5 -8.5 R Insular cortex SN 254 5.26 .0001 

53.5 17.5 -10.5 R Temporal pole SN  4.64  



41.5 19.5 -6.5 R Orbitofrontal cortex SN  4.49  

45.5 35.5 27.5 R Frontal pole CEN 136 4.19 .0001 

49.5 33.5 19.5 R Middle frontal gyrus CEN  3.89  

51.5 27.5 21.5 R Inferior frontal gyrus Speech  3.29  

-4.5 -10.5 53.5 L Supplementary Motor cortex Motor 131 4.19 .00125 

Note. SN, Salience Network; FIC, frontoinsular cortex; DMN, Default Mode Network; PCU/PCC, precuneus/posterior cingulate 

cortex; CEN, Central Executive Network, dlPFC, dorsolateral prefrontal cortex.
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