
Supplementary Information1321

S1 Conditions for validity of method1322

SI Figure S1: Temporal autocorrelation of detrended residuals of Rx1d for lags from 1 to 50, for all eight
CMIP6 models used. Detrending was done by subtracting the loess-filtered ensemble mean timeseries
per gridcell.

As mentioned in the main text, the temporal independence of Rx1d values is a prerequisite for1323

temporal independence of record breaking probabilities and validity of equations (1), (2) and (3). Fig.1324

S1 shows that autocorrelations between Rx1d values at both high and low frequencies (short and long1325

lags) are 0. The autocorrelation of the non-detrended values is positive and gradually decaying because1326

there is a long term trend. This trend affects the record breaking probabilities over time, but does not1327

violate temporal independence of Rx1d values.1328

S2 Spatial pooling methods for observational/reanalysis GEV1329

fits1330

As mentioned in Sect. 4.2, we tested two different spatial pooling methods to improve the GEV fits to1331

the short observational and reanalysis timeseries. Below we outline the effects of shape-only and naive1332

spatial pooling.1333

For shape-only spatial pooling, strength is borrowed from neighbouring gridcells to improve the1334

estimate of ξ only [88]. In practice, we pool Rx1d data within a spatial window of 5× 5 gridcells to fit a1335

GEV, determining unique µ and σ values for each gridcell in the window, but allowing only one universal1336

ξ value for all gridcells in the window. This is achieved by defining spatial covariates for µ and σ that,1337

as it were, ‘turn on’ the individual gridcells in the fitting procedure, while ξ has no spatial covariate.1338

The resulting GEV parameters are assigned to the middle gridcell of the window. Naive spatial pooling,1339

on the other hand, implies we simply fit one GEV to all the Rx1d data pooled in a spatial window, and1340

assign the GEV parameters to the middle gridcell, as used by e.g. [89]. There is thus a degree of spatial1341

smoothing for all three GEV parameters in this case, whereas the shape-only method aims at smoothing1342

only ξ. [36] compares several GEV estimation methods including the two we test and finds that both1343

are equally effective at improving accuracy of Rx1d return level estimates for return periods longer than1344

the sample size.1345

Supplementary Fig. S2 shows the effect of the pooling schemes on the distribution of quantiles.1346

Supplementary Fig. S2a-c show the normalised density of record quantiles, where the black lines show1347

the model means determined based on full-ensemble GEV distributions, i.e. the “target”, and grey lines1348
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show the model results when members are treated as HadEX3 observations. The coloured dashed lines1349

correspond to record quantiles in the observational and reanalysis data. Supplementary Fig. S2a shows1350

the quantiles obtained for GEV distributions fitted ‘as observations’ to timeseries without spatial pooling.1351

The peak lies too low, and also low quantiles are underestimated: the record quantile distribution is too1352

narrow. Below we discuss the effects of pooling and how the impact the record quantile distribution.1353

Shape-only pooling leads to smoother patterns and smaller magnitudes of ξ, which makes them more1354

similar to the full-ensemble distribution’s ξ, see Supplementary Fig. S3b. However, also σ responds1355

strongly to this pooling scheme, since the setup aims to fit a σ and µ that are specific to single gridcell1356

data. One might say that shape-only pooling partly decouples the fit of µ and σ from the fit of ξ, where1357

the µ and σ are fit with only part of the information (one gridcell). This leads to compensation effects1358

in primarily the σ values, which strongly affect the estimated record quantiles. In part of the gridcells,1359

the compensation leads to decreases in σ relative to the single-gridcell fits, which are associated with1360

strong increases in quantiles estimated – the smaller the initial quantile, the stronger the increase. In1361

another subset of gridcells, the compensation leads to increases in σ, which leads to decreasing quantile1362

values, especially for already lower quantiles. The combination of these two σ-related quantile changes1363

leads to clustering of most of the quantiles at very high values, and some being moved to very low values.1364

Therefore we see a certain ”pulling apart” in the quantile distribution which leaves a gap in the middle1365

ranges where quantiles between 0.95 and 0.99 should be found, Supplementary Fig. S2b. This effect is1366

seen for the observational and reanalysis record quantiles as well. Most of the quantiles are overestimated1367

in this approach, leading to a strong underestimation of record breaking probabilities. We tried different1368

pooling window sizes of 3× 3 and 5× 5 on the HadEX3 grid, and see that the 5× 5 window size results1369

in smoother shape parameters, more similar to those of the full-ensemble fit, however, the discrepancy1370

in the quantile distributions increases with increasing window size.1371

In the naive pooling setting, a coherent scale and shape is fit to the pooled sample, leading to less1372

local compensation effects of the scale parameter: we see much smaller changes relative to the single-1373

gridcell fit, whereas the smoothing of the shape parameter is almost as effective as in the shape-only1374

pooling setting. From Supplementary Fig. S2a to c we see improvement in the location of the peak and1375

and higher quantiles brought about by spatial pooling, and minor improvement for the lower quantiles1376

as well. Between quantiles 0.98 and 0.94 the offset remains however considerable, explaining the biases1377

in the CCP values, shown below in the validation section. Also for the observations and reanalysis1378

(coloured dashed lines) we see improvement in the peak location and a shape more similar to the black1379

full-ensemble target lines. The comparison here is imperfect since we do not know the true quantile1380

distribution of the observational and reanalysis record quantiles – the distribution can differ from the1381

model distributions due to model and observational errors, and differences in coverage.1382

SI Figure S2: Normalised density plots of the historical record quantiles determined using different
GEV fitting methods. In all plots, solid grey lines show the ‘true’ record quantiles determined from
full-ensemble GEV fits, and solid black lines show the model-as-observations comparisons, where GEV
distributions were fitted ‘as observations’ to the simulation data. Dashed coloured lines correspond to
the observational and reanalysis datasets. (a) shows the results for GEV distributions fitted to single
gridcell data, (b) shows the results for GEV distributions fitted using shape-only spatial pooling, and
(c) shows the results for GEV distributions fitted using naive spatial pooling. See also Sect. 4.2.

We perform a few additional tests to confirm the seemingly better performance of naive spatial1383

pooling. As the aim of our study is to estimate record breaking probabilities, we assess the skill of1384

the probability estimate for each spatial pooling method using ranked probability skill scores (RPSS).1385

These are determined by estimating cumulative record breaking probabilities treating model members as1386
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observations, and comparing the estimate to the actual future evolution of the model member; see Sect.1387

4.4 on validation for a full explanation. The RPSS represents the improvement of the estimation method1388

in question relative to a benchmark. Table 3 in Sect. 4.4 shows RPSS values of the record breaking1389

probability estimates corresponding to different GEV-methods used to determine the record quantiles.1390

The first row refers to GEV distributions fitted to the 1950–2015 timeseries of single gridcells, where no1391

optimisation has been done to reduce biases in the GEV fit due to the small sample size. We see a minor1392

skill improvement of 5% over the benchmark. For shape-only spatial pooling, the improvement over1393

the benchmark is in fact negative, i.e. the probability estimates are worse. We tested different spatial1394

window sizes for the shape-only pooling, and see that 5 × 5 on the HadEX3 grid is the minimum size1395

to achieve clearly smoother patterns of ξ. For larger windows, the results are similar but the prediction1396

gets slightly worse as window size is increased. GEV fits using naive spatial pooling lead to more than1397

twice as much skill gain as the single gridcell GEV. We tested larger window sizes and see that a window1398

size of 3× 3 on the HadEX3 grid is better than larger windows. The probability estimates based on full1399

ensemble GEV distributions are 30% more accurate than the benchmark.1400

Lastly, we confirm that not just bulk properties, but also the spatial pattern of ξ and the probability1401

metrics improve most when naive spatial pooling is used. Supplementary Fig. S3 shows the ξ (a-d), record1402

quantile (e-g), state likelihood (i-l) and CCP (m-p) maps of one single member of ACCESS-ESM1-5 –1403

the largest ensemble in our model selection. We show metrics based on single gridcell, shape-only pooled,1404

naively pooled and full-ensemble GEV fits for visual comparison, and Supplementary table S4 provides1405

the multi-model spatial correlations of these quantities obtained from the different ‘as observations’ GEV1406

fits to those obtained using the full-ensemble GEV.1407

The maps and spatial correlations show a much stronger agreement of the naive pooling GEV based1408

results with the full-ensemble GEV based results. For shape-only pooling, strong patterning appears1409

that seems influenced by the climatology and leads to artificial regions of low state likelihood and high1410

future record breaking probability.1411

Given the clearly better performance (for our purposes) of naive spatial pooling in all tests performed,1412

we employ naive spatial pooling for the observational/reanalysis GEV fits in our analysis.1413

SI Table S4: Spatial correlation coefficients of the variables listed in the top row; correlations of the
result obtained using the GEV fitting method listed in the first column with the result obtained using
the full-ensemble GEV. SL refers to state likelihood: 1 − P (T < YNR ≤ 2015|L) and CCP to P (YNR ≤
2050|L, T = 2015)

GEV fitting method ξ µ σ F (L) SL CCP
Single gridcell ‘as obs’ GEV 0.70 0.91 0.97 0.45 0.69 0.61
Shape-only spatial pooling GEV, 5 × 5 window 0.78 0.87 0.91 0.53 0.67 0.60
Naive spatial pooling GEV, 3 × 3 window 0.74 0.94 0.98 0.75 0.84 0.80

S3 Climate model results - comparison of GEV fitting methods1414

In Fig. S3 the sensitivity to the GEV fitting method is shown. In the first three columns the single1415

model member is treated as an observational record. The single gridcell GEV leads to too much spatial1416

variability, yet too little spread in the quantiles. The strong increase in spread but artificical pattern1417

resulting from shape-only pooling (see Sect. 4) is very apparent in the second column. The moderate1418

changes due to naive spatial pooling (third column) clearly do not reproduce the ‘true’ full-ensemble1419

patterns (right column), but are closest in terms of magnitude, spread, and spatial pattern. The full-1420

ensemble patterns, showing more distinct (random) regions of low record quantiles and state likelihood,1421

and high future record breaking probabilities are indicative of what any true observational pattern could1422

look like if we were able to determine the true underlying distribution. The pattern of record quantiles1423

is random, and elevated or damped record breaking probabilities due to natural variability can occur1424

anywhere.1425
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SI Figure S3: Patterns of GEV shape parameter ξ (a-d), historical record quantile in the year of record
occurrence (e-h), 2015 state likelihood (j-l), and PCC in 2050 (m-p). All patterns are from a single
member randomly selected from the ACCESS-ESM1-5 ensemble. Shape parameter and historical record
quantiles are computed based on GEV fits following the method indicated above the columns. GEV for
future quantile evolution are in all cases based on the full ensemble, as in the main text, see 4 for details.
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SI Figure S4: As main Fig. 3d-e, but with empirical (non-parametric) CDF per quantile level bin (on
right y-axis), showing fraction of gridcells subject to the corresponding probability ratios

S4 Supplementary figure to main Fig. 3d-e1426

S5 Derivation quantile level of records1427

Intuitively, the expected quantile level of the maximum Mj of an i.i.d. sample {X1, . . . , Xj} of length j1428

should correspond to 1− 1
j+1 . This follows from the fact that the marginal record breaking probability1429

at timestep j is 1
j . For example, for timestep j = 3, the average record breaking rate is 1

3 , meaning that1430

the quantile level of the current record at time j = 2 is 1 − 1
3 . This means that the record set at time1431

j = 1 has an average quantile level of 0.5, hence, 1− 1
j+1 .1432

Formally, we derive this result as follows. We are looking for the quantile level of the maximum1433
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Mj , i.e. FX(Mj), where FX is the CDF of each of the i.i.d. data points Xi and Mj is the maximum1434

of X1, . . . , Xj . In order to find the expected value of FX(Mj), we need an expression for the PDF of1435

FX(Mj), which we find by determining the CDF of FX(Mj) in equation (11) and taking the derivative1436

of that expression in equation (12).1437

F (FX(Mj)) = P (FX(Mj) ≤ FX(m)) =

P (Mj ≤ m) = P (max (X1, . . . , Xj) ≤ m) = P (X1 ≤ m) · · · · · P (Xj ≤ m) = FX(m)j (11)

In the equation above we use the property that P (FX(Mj) ≤ FX(m)) = P (Mj ≤ m). To find the1438

PDF for FX(Mj), we take the derivative of the previous expression:1439

f(FX(Mj)) = jFX(m)j−1fX(m) (12)

Now we can determine the expected value of FX(Mj) as follows:1440

E[FX(Mj)] =

∫
FX(m)f(FX(Mj))dm =

∫
FX(m)jFX(m)j−1fX(m)dm = j

∫
FX(x)jfX(x)dx (13)

We can substitute u = FX(x) in the previous integral and instead of integrating fX(x)dx we then1441

integrate over du from 0 to 1, leading to the final result:1442

E[FX(Mj)] = j

∫ 1

0

ujdu = j ·
[

1

j + 1
uj+1

]1
0

=
j

j + 1
= 1− 1

j + 1
(14)

Note: the above holds if {X1, ..., Xj} is a stationary, i.i.d. sample. This property manifests in the1443

stationary CCP/MCP ratios in Fig. 3d-e.1444

S6 Marginal cumulative record breaking probability patterns1445

SI Figure S5: Marginal cumulative record breaking probability (MCP) by 2050 as defined in the main
text for HadEX3 (a), REGEN (b) and ERA5 (c).

Figure S5 shows the MCP by 2050 for the observational and reanalysis datasets. The MCP includes1446

only the effect of climate change on record breaking probabilities, and is independent of the historical1447

record level to be exceeded. The difference in magnitude between HadEX3 and REGEN on the one1448

hand and ERA5 on the other hand is due to the start year; for HadEX3 and REGEN the cumulative1449

summation starts in 2016, for ERA5 in 2024.1450
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S7 Additional validation state likelihood1451

SI Figure S6: Correlation of the state likelihood (binned) in 2015 with the year of next record occurrence
(a) and with the number of records in the period 2016–2100 (B), evaluated in all CMIP6 models. The
colour shading of the bars show the associated bin-means of record quantile level and record-setting year
T , with a clear gradient towards lower record quantile levels (less extreme) and longer-ago years as the
state likelihood decreases.

Fig. S6 shows the correlation between state likelihood and indicators of future record breaking in1452

CMIP6 models, in part validating its use as an indicator of disaster potential.1453

Fig. S7 shows that the selected single station data in the regions discussed in the main text shows1454

a clear signature corresponding to the events we associated with the record breaking. These stations1455

were selected based on their location being in the gridcells of interest; gridcells with 2009 state likelihood1456

≤ 0.25 and record breaking in the years 2010–2015, and reported in the disaster reports of the events1457

in question [57–60]. Not all stations show the maximum daily event, which is expected as HadEX31458

aggregates multiple stations in their Rx1d product, but all stations show daily precipitation values in1459

the uppermost quantiles of the full sample. Storm Agatha (San Salvador) is least well represented, also1460

in other stations in the region that we assessed. The lower data quality in Central America plays a big1461

part (exemplified by the sparsity of the record for San Salvador): this impairs confidence in both the1462

accuracy of records in HadEX3 as well in the verification data itself.1463

For reference, we added a marker for Hurricane Sandy in the timeseries for Cape May, which evidently1464

led to record-breaking precipitation in New Jersey, where it made landfall. This event of October 20121465

is not clearly visible as record breaking cluster in HadEX3, which we hypothesise could be associated1466

with the single landfall of Sandy, as opposed to the repeated ‘bouncing’ landfall of Irene.1467
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SI Figure S7: Daily precipitation observations from single stations from the GHCN-Daily network [90–93]
and the Australian Bureau of Meteorology [94, 95]. Events mentioned in the main text are indicated
with markers [57–60].
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S8 Model uncertainty in probability estimates1468

SI Figure S8: Intermodel range (difference between maximum and minimum projected value) for CCP
2050. The spread is due to model uncertainty in the temporal evolution of the record quantile, thus a
combined measure of differences in climate sensitivity and local patterns of Rx1d changes

Fig. S8 shows the model uncertainty in record breaking projections – the range of the model-mean1469

ensemble of CCP 2050 projections is shown. The overarching pattern is the well-known uncertainty1470

pattern where precipitation and/or Rx1d changes in the tropics and monsoon regions are most uncertain1471

and feature highest intermodel differences. These are also the regions that are projected to see the1472

largest changes in both absolute and relative magnitude of extreme precipitation [52], and are also most1473

vulnerable. The pattern is modified by the local record quantiles; where CCP values are largest due to1474

the combination of low record quantiles and strong climate change, the uncertainties are largest too.1475
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