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The EI value problem
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Figure S1. Decay of Expected Improvement values during Bayesian
Optimization. Optimization performance using Bayesian Optimization with EI on the
Rastrigin function, illustrating the decline of EI value over iterations: (a) Best-so-far values, (b) EI

values and (c) logEI values as a function of experimental iterations.

Figure S1 illustrates the common issue encountered when using Bayesian Optimization with
Expected Improvement (EI), where the EI value often approaches zero. Using an optimization
curve for the Rastrigin function as an example, panel a) shows the test function value over 200
experimental iterations. In the early iterations, the EI value (panel b) remains within a normal
range. However, as iterations progress, the EI value diminishes to nearly zero. Panel ¢) displays
the logarithm of the EI value, further highlighting this decline. This phenomenon presents a
significant challenge to applying EI as an acquisition function in black-box optimization, as the

reduction in EI value limits the algorithm's effectiveness.

To investigate vanishing EI values commonly encountered in BO, we examined the effectiveness
of using logarithmic Expected Improvement (logEI)! as an alternative acquisition function to
address the issue of EI values tending to zero in later iterations (as shown in Figure S1). We
conducted comparative experiments on the two test functions with dimensionality of 10 (D=10).
For the Ackley function (Figure 3a), BO-logEI showed improved convergence compared to
standard BO. However, for the Rastrigin function (Figure 3b), despite the implementation of
logEI, both BO variants still struggled to match the performance of RL, suggesting that the
challenges faced by BO in high-dimensional spaces extend beyond the vanishing EI problem,
particularly in landscapes with multiple local optima. The RL approach outperformed both BO
variants for the Rastrigin function, showing more robust exploration and better final optimization
results. This superior performance can be attributed to RL's ability to learn and adapt its
exploration strategy through experience, rather than relying solely on myopic acquisition function
values. These findings further support that RL provides a more effective framework for high-
dimensional optimization problems, particularly in complex landscapes where traditional BO



approaches, even with modifications such as logEI, often face limitations.

The HEA test environment

To establish reliable ground truth models for evaluating optimization algorithms, we developed
neural networks trained on experimental data from high-entropy alloys (HEAs). These networks
serve as efficient substitutes for time-consuming experimental measurements during the
optimization process evaluation. The neural networks were trained using 501 composition-
property pairs for HEAs, focusing on yield strength (o,), ultimate strength (o,), and elongation (g)
to balance strength and ductility. Data were sourced from both laboratory experiments and
published literature. Following the training procedure outlined in’, each dataset was randomly split
into training (70%), validation (15%), and test (15%) subsets. Training was conducted for 500
epochs with a learning rate of 5x107*. Elemental features serve as part of the input into the neural
networks to improve the predictive performance, with no gradient flow needed. Each network
begins with a convolutional section followed by a residual connection, where process conditions
are concatenated with outputs before entering the fully connected section. The convolutional
section consists of two layers with a kernel size of 3XNeiem* Nieature, With batch normalization
applied after each layer to enhance robustness. The output is flattened and passed through two
fully connected layers, configured as (Neiem*Nrfeawre) <128 and 128x1, incorporating Exponential
Linear Units (ELUs) for nonlinear activation and a dropout layer for stability. The networks were
trained using the Adam optimizer with a batch size of 16. These neural networks serve as ground
truth models to evaluate the optimization performance of different methods, providing figures of
merit (FOM) values that combine multiple properties into a single objective to optimize, reflecting
practical material development priorities and providing a complex, multi-objective optimization
landscape suitable for comparing the relative strengths of BO and on-the-fly DQN.

Table S1 Composition constraints and design space for HEAs

Maximum number of dimensions®

Lower limit Upper limit Step
Element 4 6 8 10
(at. ratio) (at. ratio) (at. ratio)
dimensions dimensions dimensions dimensions
C 0 0.06 v v
Al 0 0.16 v v v
v 0 0.33 v v v v
Cr 0 0.4 v v v v
Mn 0 0.5 v v v v
0.001
Fe 0 0.6 v v v v
Co 0 0.5 v v
Ni 0 0.6 v v
Cu 0 0.36 v
Mo 0 0.1 v

 The actual optimization dimensionality is one less than the number of elements shown, as the atomic ratios must

sum to 1.

For the on-the-fly DQN agent, we have implemented a three-layer fully connected architecture,
employing an e-greedy policy and experience replay mechanism to predict action values, as



detailed in the Methods section.

Following the implementation of BoTorch?, our BO here utilized the Matérn 2.5 kernel, with the
LBFGS-2 gradient-based optimizer employed to maximize the Expected Improvement (EI)
acquisition function in the inner loop. Each BO run started with 20 random initial data points for
training of the surrogate. While on-the-fly DQN agents required a randomly initialized memory
buffer of 300 state-action-reward-next state (s, a, 7, s') transition tuples to facilitate effective
learning, fulfilling the sample requirements characteristic of reinforcement learning algorithms. To
ensure fair comparison, we conducted 64 independent runs for each method across all
dimensionalities tested. Statistical significance was assessed using paired T-tests comparing the
final FOM values achieved by different methods for the case of 10 components.
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