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The EI value problem 

 

Figure S1. Decay of Expected Improvement values during Bayesian 

Optimization. Optimization performance using Bayesian Optimization with EI on the 

Rastrigin function, illustrating the decline of EI value over iterations: (a) Best-so-far values, (b) EI 

values and (c) logEI values as a function of experimental iterations. 

 

Figure S1 illustrates the common issue encountered when using Bayesian Optimization with 

Expected Improvement (EI), where the EI value often approaches zero. Using an optimization 

curve for the Rastrigin function as an example, panel a) shows the test function value over 200 

experimental iterations. In the early iterations, the EI value (panel b) remains within a normal 

range. However, as iterations progress, the EI value diminishes to nearly zero. Panel c) displays 

the logarithm of the EI value, further highlighting this decline. This phenomenon presents a 

significant challenge to applying EI as an acquisition function in black-box optimization, as the 

reduction in EI value limits the algorithm's effectiveness. 

 

To investigate vanishing EI values commonly encountered in BO, we examined the effectiveness 

of using logarithmic Expected Improvement (logEI)1 as an alternative acquisition function to 

address the issue of EI values tending to zero in later iterations (as shown in Figure S1). We 

conducted comparative experiments on the two test functions with dimensionality of 10 (D=10). 

For the Ackley function (Figure 3a), BO-logEI showed improved convergence compared to 

standard BO. However, for the Rastrigin function (Figure 3b), despite the implementation of 

logEI, both BO variants still struggled to match the performance of RL, suggesting that the 

challenges faced by BO in high-dimensional spaces extend beyond the vanishing EI problem, 

particularly in landscapes with multiple local optima. The RL approach outperformed both BO 

variants for the Rastrigin function, showing more robust exploration and better final optimization 

results. This superior performance can be attributed to RL's ability to learn and adapt its 

exploration strategy through experience, rather than relying solely on myopic acquisition function 

values. These findings further support that RL provides a more effective framework for high-

dimensional optimization problems, particularly in complex landscapes where traditional BO 



approaches, even with modifications such as logEI, often face limitations. 

 

The HEA test environment 

To establish reliable ground truth models for evaluating optimization algorithms, we developed 

neural networks trained on experimental data from high-entropy alloys (HEAs). These networks 

serve as efficient substitutes for time-consuming experimental measurements during the 

optimization process evaluation. The neural networks were trained using 501 composition-

property pairs for HEAs, focusing on yield strength (σᵧ), ultimate strength (σᵤ), and elongation (ε) 

to balance strength and ductility. Data were sourced from both laboratory experiments and 

published literature. Following the training procedure outlined in2, each dataset was randomly split 

into training (70%), validation (15%), and test (15%) subsets. Training was conducted for 500 

epochs with a learning rate of 5×10⁻⁴. Elemental features serve as part of the input into the neural 

networks to improve the predictive performance, with no gradient flow needed. Each network 

begins with a convolutional section followed by a residual connection, where process conditions 

are concatenated with outputs before entering the fully connected section. The convolutional 

section consists of two layers with a kernel size of 3×Nelem×Nfeature, with batch normalization 

applied after each layer to enhance robustness. The output is flattened and passed through two 

fully connected layers, configured as (Nelem×Nfeature)×128 and 128×1, incorporating Exponential 

Linear Units (ELUs) for nonlinear activation and a dropout layer for stability. The networks were 

trained using the Adam optimizer with a batch size of 16. These neural networks serve as ground 

truth models to evaluate the optimization performance of different methods, providing figures of 

merit (FOM) values that combine multiple properties into a single objective to optimize, reflecting 

practical material development priorities and providing a complex, multi-objective optimization 

landscape suitable for comparing the relative strengths of BO and on-the-fly DQN. 

 

Table S1 Composition constraints and design space for HEAs 

Element 
Lower limit 

(at. ratio) 

Upper limit 

(at. ratio) 

Step 

(at. ratio) 

Maximum number of dimensions† 

4 

dimensions 

6 

dimensions 

8 

dimensions 

10 

dimensions 

C 0 0.06 

0.001 

 ✓ ✓ ✓ 

Al 0 0.16  ✓ ✓ ✓ 

V 0 0.33 ✓ ✓ ✓ ✓ 

Cr 0 0.4 ✓ ✓ ✓ ✓ 

Mn 0 0.5 ✓ ✓ ✓ ✓ 

Fe 0 0.6 ✓ ✓ ✓ ✓ 

Co 0 0.5   ✓ ✓ 

Ni 0 0.6   ✓ ✓ 

Cu 0 0.36    ✓ 

Mo 0 0.1    ✓ 

† The actual optimization dimensionality is one less than the number of elements shown, as the atomic ratios must 

sum to 1. 

 

For the on-the-fly DQN agent, we have implemented a three-layer fully connected architecture, 

employing an ε-greedy policy and experience replay mechanism to predict action values, as 



detailed in the Methods section. 

 

Following the implementation of BoTorch3, our BO here utilized the Matérn 2.5 kernel, with the 

LBFGS-2 gradient-based optimizer employed to maximize the Expected Improvement (EI) 

acquisition function in the inner loop. Each BO run started with 20 random initial data points for 

training of the surrogate. While on-the-fly DQN agents required a randomly initialized memory 

buffer of 300 state-action-reward-next state (s, a, r, s') transition tuples to facilitate effective 

learning, fulfilling the sample requirements characteristic of reinforcement learning algorithms. To 

ensure fair comparison, we conducted 64 independent runs for each method across all 

dimensionalities tested. Statistical significance was assessed using paired T-tests comparing the 

final FOM values achieved by different methods for the case of 10 components. 
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