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Supplementary Information A: Details on Result 1

Proof for Result 1 — First, we introduce Lemma 1, which give a probability bound that two random vectors have
overlap.

Lemma 1. Suppose u, v be two d-dimension random vectors whose elements are chosen from N (0, 1/d), for some
ϵ ∈ (0, 1) there is

Pr(||⟨u|v⟩|| ≥ ϵ) ≤ 4e−
dϵ2

8 (A1)

where ⟨·|·⟩ denotes the inner product and || · || denotes the absolute value.

Proof. Since u and v are both chosen randomly from N (0, 1/d), so w = [w1, · · · , wd] =
u+v√

2
∼ N (0, 1/d), too.

We have the probability

Pr(||w||2 − 1 ≥ ϵ) = Pr(eλ(||w||2−1) ≥ eλϵ)
≤ min

λ>0
e−λϵE[eλ(||w||2−1)]

= min
λ>0

e−λ(ϵ+1)E[eλ(||w||2)]

= min
λ>0

e−λ(ϵ+1)
∏
i

E[eλ(w
2
i )]

= min
λ>0

e−λ(ϵ+1)(
d

d− 2λ
)d/2

≤ ed(log(1+ϵ)−ϵ)/2 ≤ e−dϵ2/8 (A2)

for any positive λ and E[·] be the expectation. The second line in above equation uses the fact that

E[x] =
∫ ∞

0

xp(x) ≥
∫ ∞

a

ap(x) = aP (x ≥ a). (A3)

Similarly to Eq. (A2), we have Pr(1− ||w||2 ≥ ϵ) ≤ e−dϵ2/8, too. And therefore,

Pr(⟨u|v⟩ ≥ ϵ) ≤ Pr(||w||2 − 1 ≥ ϵ) + Pr(1− ||w||2 ≥ ϵ)
≤ 2e−dϵ2/8, (A4)

in the same way,

Pr(−⟨u|v⟩ ≥ ϵ) ≤ 2e−dϵ2/8, (A5)

too. So Pr(||⟨u|v⟩|| ≥ ϵ) ≤ 4e−dϵ2/8 is proved. ■

Then we start our proof for Result 1.

Proof. In our case, we focus on

∇θf =
∂z

∂θ
· ∇zf, where

∂z

∂θ
=


∂z1
∂θ1

. . . ∂zd
∂θ1

...
. . .

...
∂z1
∂θm

. . . ∂zd
∂θm

 . (A6)

We want to study how large the norm of ∇θf can be. Statistically, the gradient ∇zf can be obtained as a vector
randomly chosen from d dimension complex space. We also denote the i-th row of the matrix ∂z/∂θ as a d dimension
vector vi.

First, let us consider ⟨vi|∇zf⟩. We represent the complex variables vi and ∇zf in real and imaginary parts as
vi = ∂z/∂θi = αi + iβi, and ∇zf = γ + iδ, where α, β, γ, δ can be treated as independent d-dimension random real
vectors.

Given assumptions that the norm of ∇zf and vi are bounded. We have that ||α||, ||β||, ||γ||, ||δ|| is nearly inde-
pendent to the Hilbert space dimension d. If their elements are sampled from independent identically distribution
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N (0,K), the independence of ||α|| =
√∑d

i=1 α
2
i to d indicates that αi ∝ 1/

√
d and therefore K ∼ C/d for some

constant C. That is α, β, γ, δ’s elements are chosen randomly from N (0, C/d) with C being some bounded positive

value so that the norm is bounded. Therefore α/
√
C, β/

√
C, γ/

√
C, δ/

√
C are random vectors whose elements are

sampling from N (0, 1/d). Then we have

⟨vi|∇f⟩ = ⟨α|γ⟩+ ⟨β|δ⟩ − i(⟨α|δ⟩ − ⟨β|γ⟩) (A7)

and the probability

Pr(||⟨vi|∇f⟩|| ≥ ϵC)

≤ 1− Pr(||⟨α|γ⟩+ ⟨β|δ⟩|| ≤ ϵ√
2
C)

×Pr(||⟨α|δ⟩ − ⟨β|γ⟩|| ≤ ϵ√
2
C)

= 1− Pr(|⟨(α, β)|(γ, δ)⟩| ≤ ϵ√
2
C)

×Pr(||⟨(α, β)|(δ,−γ)⟩|| ≤ ϵ√
2
C)

∼ 1− Pr(||⟨( α

2
√
C
,

β

2
√
C
)|( γ

2
√
C
,

δ

2
√
C
)⟩|| ≤ ϵ

4
√
2
)

×Pr(||⟨( α

2
√
C
,

β

2
√
C
)|( δ

2
√
C
,− γ

2
√
C
)⟩|| ≤ ϵ

4
√
2
)

≤ 1− (1− 4e−
dϵ2

128 )(1− 4e−
dϵ2

128 )

≤ 8e−
dϵ2

128 (A8)

where we have the notation (α, β) means a 2d-dimension vector whose first d-dimension half part is α and the last half
is β, similarly the notation (γ, δ) and (δ,−γ). In the last two lines in Eq. (A8) we use the fact that ||(α, β)|| = ||vi||
and ||(γ, δ)|| = ||(δ,−γ)|| = ||∇zf ||, as well as the result of Lemma.1. The result of Eq. (A8) means in high dimension
d, the vector vi and ∇zf will orthogonal to each other with probability near to 1.

We estimate the probability that ||∇θf || =
√∑poly(log(d))

i=1 ||⟨ ∂z∂θi
|∇zf⟩||2 is larger than ϵC

√
poly(log(d)). Thus,

Pr(||∇θf || ≥ ϵC
√
poly(log(d)))

≤ 1−
poly(log(d))∏

i=1

Pr(||⟨vi|∇zf⟩|| ≤ ϵC))

≤ 1−
poly(log(d))∏

i=1

(1− Pr(||⟨vi|∇zf⟩|| ≥ ϵC))

= 1− (1− 8e−
dϵ2

128 )poly(log(d))

≤ 8poly(log(d)) · e− dϵ2

128 (A9)

Remarkably, we make a variable substitution to transfer C and log(d) to the right side formula. ■

Supplementary Information B: the Pseudo-code of NOM

In this section, the pseudo-code of NOM is presented in Table 1, corresponding to the theory and Figure 1 of the
manuscript.
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Table 1 The NOM.
Input: an initial ansatz U(θz0) with its structure and therein parameters to be optimized, m, the maximum iteration

number, ϵ, the terminate threshold, and ξ, the learning rate.

1: Set ∆f ← 1
2: while t− 1 ∈ [m] ∩∆f ≥ ϵ do
3: function quantum algorithm part(U(θzt−1))
4: return |z′

t⟩ ← U(θzt−1) |0⟩ − ξDU(θzt−1) |0⟩ ▷ |zt−1⟩ = U(θzt−1) |0⟩
5: end function
6: Calculate ∆f ← 1− ∥ ⟨z′

t|U(θzt−1) |0⟩ ∥2
7: function classic learning part(|z′

t⟩, U(θzt−1))
8: return U(θzt)
9: end function

10: end while
11: return: U(θzt)

Steps of sub-function of quantum loop (depicted in Hamiltonian Simulation method)

Require: The principal register is initialized with U(θzt−1), and the three other ancillary systems, |0⟩lcu |0⟩d |0⟩e
12: Driving the entire system through the circuit of quantum gradient algorithm in Figure 1.
13: Post-select on |0⟩lcu |0⟩d and the principal register is output, i.e., |z′

t⟩

Steps of sub-function of classic loop

Require: U(θzt−1), and |z′
t⟩ is repeatedly produced

14: function 1st step(U(θzt−1), |z′
t⟩)

15: Transport |z′
t⟩ to the inverse circuit of U(θzt−1)

16: Measure the possibility on |0⟩ ⟨0|
17: return: θ, which is tuned to max the aforementioned possibility
18: end function
19: If the cost function satisfies the specified criteria, we terminate the process; otherwise, we proceed to the next function
20: function 2nd step(U(θzt−1), |x′⟩) ▷ This step can be realize with various method, we refer to reinforcement learning

and depict it later
21: Transport |z′

t⟩ to a initialized a slice of circuit T (α) and the inverse circuit of U(θzt−1)
22: Measure the possibility on |0⟩ ⟨0|
23: return: T (α), which is tuned to max the aforementioned possibility
24: end function
25: U(θ̃)← U(θ) or T (α)U(θ) is returned

Supplementary Information C: Quantum gradient algorithm in complex domain

First, we review Result 2. Given that f(z) is defined as a polynomial, mapping from Cd+1 → R, the effective
gradient operator at z can be expressed as

D(z) = Trp−1

[
I⊗ ρ⊗p−1

z MD
]
, (C1)

where ρz = |z⟩ ⟨z|, andMD =
∑p

k=1 PkFPk, with Pk denoting the permutation of the first and k-th subsystems in

the p-fold tensor product |z⟩⊗p
.

Proof. As f(z, z̄) is real valued at every moment, it can be regarded as a real function f(x, y) with two real variables,

z = x+ iy, z̄ = x− iy, (C2)

where x, y ∈ R. By definition of the gradient descent algorithm in the real domain, the iterative formula can be

(x′, y′) =

(
x− ∂f

∂x
∆x, y − ∂f

∂y
∆y

)
(C3)
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where x′, y′ are updated variables. This implies that an updated z′ can be expressed as,

z′ = x+ iy −
[
∂f

∂x
∆x+ i

∂f

∂y
∆y

]
. (C4)

Meanwhile,

∂f

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (C5)

When the learning rate is set to ∆x = ∆y = ξ/2, we obtain,

z′ = z − ξ ∂f
∂z̄
, (C6)

which is the gradient descent formula used in our case.

On the other side, we substitute f(z) = z†⊗pFz⊗p = f(z, z̄) = z̄T⊗pFz⊗p into partial derivative, then

∂f

∂z̄
=

k∑
α=1

p∑
i=1

cα,i(z)Fα,iz
.
= D(z)z, (C7)

This holds on the fact that

F =

k∑
α=1

⊗p
j=1aα,jFα,j (C8)

such that cα,i(z) = [
∏p

j=1(aα,jz
†Fα,jz)]/z

†Fα,iz. Therefore,

D(z) = (I⊗ z†⊗p−1)

p∑
k=1

PkAPk(I⊗ z⊗p−1), (C9)

where Pk permutes the first and the k-th subsystems. Up to this point, the problem formulates as a problem
encountered in [1–3].

After encoding z into a quantum state, we can get

D(z) = Trp−1

[
I⊗ ρ⊗p−1

z MD
]
, (C10)

which can be realized by LCU or Hamiltonian simulation-based methods with the time complexity ofO(poly(p,F , log d)).
■

Supplementary Information D: Implementation of Quantum Gradient

This section provides detailed instructions to implement the following iterative steps,

|z⟩ ← |z⟩ ± ξD |z⟩ , (D1)

where D is the parameter-dependent operator D(z), and |z⟩ is assumed to encode the variable.

1. Implement Quantum Gradient with Oracles to Query Coefficient Matrix

In this method, the algorithm is achieved through the quantum matrix inversion method via Hamiltonian simula-
tion [1, 4, 5]. Specifically, D is defined as,

D = Trp−1

[
I⊗ ρ⊗p−1

z MD
]
. (D2)
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The relevant notations are as follows,

ρz = |z⟩ ⟨z| ,

MD =

p∑
k=1

PkFPk, (D3)

whereMD and F have relations by Pk, which swaps the first and the k-th subsystems of the entire space |z⟩⊗p
, as

S |z1⟩ ⊗ . . . |zk−1⟩ ⊗ |zk⟩ ⊗ |zk+1⟩ · · · = |zk⟩ ⊗ · · · |zk−1⟩ ⊗ |z1⟩ ⊗ |zk+1⟩ · · · .

Algorithm 2 The quantum gradient algorithm

1: Initialization:

|0⟩lcu |0⟩d |0⟩e |0⟩ → |0⟩lcu |0⟩d |0⟩e |z⟩ − ξ |1⟩lcu |0⟩d |0⟩e |z⟩ (D4)

where |0⟩lcu is applied by

Ry(ξ) =

(
1/
√

1 + ξ2 ξ/
√

1 + ξ2

−ξ/
√

1 + ξ2 1/
√

1 + ξ2

)
. (D5)

2: Matrix Inversion on |1⟩lcu:

• First, Phase estimation of e−iDt,

|1⟩lcu |0⟩d |0⟩e |z⟩ → |1⟩lcu |0⟩d
∑
n

|λ̃n⟩e βn |n⟩ , (D6)

where λ̃n is the binary approximation of λn, the eigenvalue of applied D.

• Then, controlled rotation is applied and only |0⟩d part is kept,

|1⟩lcu |0⟩d
∑
n

|λ̃n⟩e βn |n⟩
CR−−→ |1⟩lcu

∑
n

λ̃n |0⟩d |λ̃n⟩e βn |n⟩ (D7)

• Finally, phase estimation is inversed,

|1⟩lcu |0⟩d
∑
n

λ̃n |λ̃n⟩e βn |n⟩ → |1⟩lcu |0⟩d |0⟩e
∑
n

λ̃nβn |n⟩ → |1⟩lcu |0⟩d |0⟩eD |z⟩ , (D8)

which accurately established if λ̃n = λn.

3: With post-selection, output |z⟩ ± ξD |z⟩, which is based on |0⟩d |0⟩e, which is either result or input of next iteration.

The procedure for conducting the quantum gradient algorithm is outlined in Table 2, where the implementation of
the effective gradient D = Trp−1

[
I⊗ ρ⊗p−1

x MD
]
is the central component. In this section, we will provide further

details on its implementation.

First, we present all temporary states in Table 2. Usually, D is hermitian but not unitary, therefore can not be
directly applied in circuit models. But if the evolution e−iDt can be efficiently realized, we can effectively implement
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D |ψ⟩ with the help of an ancillary quantum register in a ‘HHL-like’ process as

|0⟩ ⊗ |0⟩ ⊗ |ψ⟩ H−→ |0⟩ ⊗
N−1∑
j=0

|j⟩ ⊗ |ψ⟩

C−e−iDt

−−−−−−→ |0⟩ ⊗
N−1∑
j=0

|j⟩ ⊗ e−i 2π
N Dj |ψ⟩ = |0⟩ ⊗

∑
k

N−1∑
j=0

βk |j⟩ ⊗ e−i 2π
N λkj |k⟩

QPE−−−→ |0⟩ ⊗
∑
k

βk |λk⟩ ⊗ |k⟩

C−rotation−−−−−−−→
∑
k

βk(
λk
C
|0⟩+

√
1− |λk

C
|2 |1⟩)⊗ |λk⟩ ⊗ |k⟩

QPE−1

−−−−−→
∑
k

N−1∑
j=0

βk(
λk
C
|0⟩+

√
1− |λk

C
|2 |1⟩)⊗ e−i 2π

N λkj |j⟩ ⊗ |k⟩

=
∑
k

N−1∑
j=0

βk(
λk
C
|0⟩+

√
1− |λk

C
|2 |1⟩)⊗ |j⟩ ⊗ e−i 2π

N Dj |k⟩

C−eiDt

−−−−−→
∑
k

N−1∑
j=0

βk(
λk
C
|0⟩+

√
1− |λk

C
|2 |1⟩)⊗ |j⟩ ⊗ |k⟩

H−→
∑
k

βk(
λk
C
|0⟩+

√
1− |λk

C
|2 |1⟩)⊗ |0⟩ ⊗ |k⟩

P=|0⟩⟨0|−−−−−−→
∑
k

βk
λk
C
|0⟩ ⊗ |0⟩ ⊗ |k⟩ ∝ |0⟩ ⊗ |0⟩ ⊗ D |ψ⟩ . (D9)

In a further step, the evolution e−iDt can be approximately constructed with another evolution e−iMDt and the

help of m(p − 1) copies of state ρx = |x⟩ ⟨x|, within accuracy O( t
2p2||F||2max

m ), in a ‘quantum principal component
analysis(QPCA)’ way as

Trp−1[e
−iMD

t
mTrp−1[e

−iMD
t
m · · ·Trp−1[︸ ︷︷ ︸

m−trace

e−iMD
t
m ρ⊗peiMD

t
m ] · · · ρ⊗p−1eiMD

t
m ]ρ⊗p−1eiM

t
m ]

= (e−iD t
m )mρ(eiD

t
m )m +O(m||D||2max

t2

m2
)

= e−iDtρeiDt +O( t
2p2||F||2max

m
), (D10)

since we have D = Trp−1[I⊗ ρ⊗p−1
x MD] and the evolution e−iMD

t
m can be approximated by Trotter expansion

e−iMD
t
m =

p∏
k=1

Pke
−iF t

mPk +O( t
2p2||F||2max

m2
), (D11)

which is shown in Figure 2.

Lastly, as known in general quantum singling processing(QSP) Hamiltonian simulation[6], e−iF t
m can be simulated

within accuracy ϵh at the cost of O(sp||F||max
t
m+ log 1/ϵh

log log 1/ϵh
) queries of U1, U2 and O

(
(sp||F||max

t
m+ log 1/ϵh

log log 1/ϵh
)(dp+

qpoly(log q))
)
extra basic quantum gates, where s denotes the sparsity of F , q is the bit-accuracy of elements of F ,

and the two Oracles,

U1 |j, k⟩ |0⟩ = |j, k⟩ |Fj,k⟩ ,
U2 |j, l⟩ = |j, kF (j, l)⟩ . (D12)

To sum up, we implement the effective gradient D in the following logical flow,
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U1, U2
QSP−−−→ e−iF t

m
Trotter−−−−−→ e−iMD

t
m

QPCA−−−−→ e−iDt HHL−like−−−−−−−→ D. (D13)

To visualize the algorithm, we present a circuit diagram in Figure 1 and Figure 2. More details have been described
in related work in [1, 5].

|z⟩

|z⟩

|z⟩

|0⟩e

|0⟩d

|0⟩lcu

|z⟩

|z⟩

updated |z⟩

/

/

/

/

/

/

Ry(ξ) Ry(ξ)

H

e−iMt/m

UF

Ry(λ)

U−1
F

e+iMt/m

H

QMI

×m ×m

e−iDt e+iDt

FIG. 1. Circuit diagram to process Eq. (D1). Component in blue bracket is for Quantum Matrix Inverse and Components in
red bracket is for simulating e−iDt.

|z⟩

|z⟩

|z⟩

/

/

/

e−iMt/m ⇐

|z⟩

|z⟩

|z⟩

/

/

/

e−iFt/m e−iFt/m e−iFt/m

×

×

×

×

×

×

×

×

FIG. 2. Schematic of implementation of e−iM t
m . The right hand side shows the series performance of {Pk} with k from 1 to

p. The ”/” means multi qubits and ”|” means dropped of registers in the last of the circuits.

2. Quantum Gradient algorithm with F Efficiently Decomposed

If F , the coefficient matrix can be decomposed efficiently, there is alternative method. Consider that F can be
represented by a tensor product of unitaries, which is geometry k-local, we have,

F =

p∑
α=1

⊗m
j=1Pα,j ,

D =

p∑
α=1

∏
β ̸=α

⟨z| ⊗m
j=1 Pβ,j |z⟩ ⊗m

j=1 Pα,j , (D14)

where d =
∏m

j=1 d(Pα,j) and d(Pα,j) is the dimension of Pα,j which should ≤ 2k. Under the condition that ξ is small,

we can interpret I − ξD, which is equivalent to realize Eq. (D1), as,

e−ξD ∼
p∏

α=1

⊗m
j e

−ξ
∏

β ̸=α⟨z|⊗m
j=1Pβ,j |z⟩⊗m

j=1Pα,j . (D15)

Here, we introduce two method to simulate this e−ξD.
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The first method is based on the LCU. If Pα,j in Eq. (D14) can be presented by Pauli matrix, then the LCU method
can be employed to implement the target process with a specified probability. The gradient operator can be rewritten
as

D =

p∑
α=1

m∑
i=1

∏
j ⟨z|Pα,j |z⟩
⟨z|Fα,i |z⟩

Fα,i =

p∑
α=1

m∑
i=1

cα,iFα,i, (D16)

where cα,i are parameters to be pre-determined. In additional experiments, O(kp) measurements on Pα,j are required
to obtain cα,i. Each decomposition of F must be measured to evaluate the cost function. To implement I − ξD, two
ancillary registers are needed. The first is a single qubit to apply I − ξD, and the second is a log(kp)-qubit register
for implementing D. The circuit shown in Fig. 3 illustrates this method, where the principal register outputs |z⟩ if
post-selections are applied. This setup has a success probability of O(1/(kp)2) for observing the |0⟩e |0⟩d subsystem.
Further details are provided in related work [3].

|z⟩

|0⟩e

|0⟩d

updated |z⟩/

/

Ry(ξ)

Ry(c)

P †
1,1 P1,1

0

P1,2

1

Pp,m

kp− 1
Ry(c)

†

Ry(ξ)
†

FIG. 3. Circuit to process Eq. (D1) with method of linear combination of unitaries.

The second method is from Ref.[7]. If |z⟩ is chosen as a tensor product state,
∏

β ̸=α ⟨z| ⊗m
j=1 Pβ,j |z⟩ ≡ bβ can be

efficiently evaluated with O(2L) times calculations, where L ≥ k is a correlation length. We set e−iξD =
∏

α e
−iξDα

and Dα =
∑

k aα,kσα,k. By approximating e−iξDα |z⟩ = 1
c ⊗

m
j e−ξbβPα,j |z⟩, a system of linear equation formulates as

∑
k

aα,k ⟨z|σ†
α,k′σα,k |z⟩ =

−ibβ
c
⟨z|σ†

α,k′ ⊗m
j Pα,j |z⟩ , (D17)

where c =
√
⟨z| e−2ξD |z⟩ is the re-normalization factor. In the initial step e−iξD1 , a tensor product state can be

chosen, allowing the coefficients in Eq. (D17) to be efficiently computed. Solving this system provides an efficient

determination of e−iξD1 . For e−iξDα with α > 1, since
∏α−1

β=1 e
−iξDβ has already been applied, |ψ⟩ becomes non-local,

and the correlation length increases with each subsequent α. This growth in correlation length accelerates with α,
necessitating iterative updates with gradient adjustments. Therefore, an approximate approach is recommended, as
referred in related work [7].

Supplementary Information E: Details on Numerical simulation

The first demonstration problem is the Max-Cut problem. Suppose there are n vortex in the graph, the observable
that we aim to maximize is

Hc =
∑
⟨i,j⟩

1− σziσzj
2

,

where σzi and σzj represent the Pauli-Z operators acting on qubits i and j, ⟨i, j⟩ exists only there is an edge. We are
noticed of the results in [8]. The mixer Hamiltonian can be chosen as

Hb =

n−1∑
i=0

σxi , (E1)

and can be used as QAOA method, where σxi
is the Pauli-X operators acting on qubits i. The results indicate that

if the graph is a ring(that is, regular-2 graph), the maximum value of the objective function ⟨Hc⟩, which is estimated
under state output by a QAOA circuit is lower bounded as n(2p+1)/(2p+2), where p is the depth of QAOA circuits.
Similarly, increasing p will produce a better approximate ratio for more general graphs.
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Specifically, we consider a random graph with 4 vortex. The corresponding Hamiltonian is depicted above and ⟨i, j⟩
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FIG. 4. (a) is a random graph with 4 vortex. (b) is the contour plot of the polynomial in the second example with z3 = 0.

exists only there is an edge in Figure 4(a).
For initial ansatz construction, we set 4 quantum circuit. The first one formulates as a single layer QAOA ansatz,

e−iHbβe−iHcγ ,

where Hb =
∑3

i=0 σxi . The second one is a modified single layer QAOA ansatz,

e−iHbβRx(α)e
−iHcγ ,

where Rx(α) is a global rotation about x-axis with angle α. The third one is inspired by hardware efficient ansatz,
which is

e−iσz0
σz3

αe−iσz1
σz2

βe−iσx2
σx3

γe−iσx0
σx1

η.

The fourth one is

e−iσz0
σz3

αe−iσz1
σz2

βRy(α)e
−iσx2

σx3
γe−iσx0

σx1
η,

where Ry(α) is a global rotation about y-axis with angle α. Then using typical gradient-based method we can find
4 corresponding sub-optimal parameter configurations which is not the optimal answer but with vanished gradients.
Then we use these circuit and their parameter configurations as our initialization and learn our NOM. Based on this,
we can get the results 2 in the main text.

The second simulation is to optimize a polynomial. Polynomials are a kind of function that has many applications.
For example, nonlinear equations and linear regression. Here we show a case that is optimizing of a polynomial

f = z21z1
2 + z22z2

2 + z23z3
2 + 2(z1

2z22 + z21z2
2)

+6z1z2z1z2 − 2z1z3z1z3 − 2z2z3z2z3

−2z1z1 − 2z2z2 + 6z3z3

+2(z23 + z3
2) + 1 (E2)

which can be expressed as

f(Z) = Z⊗2AZ†⊗2, (E3)

where Z = (1, z1, z2, z3) and the coefficient matrix

A = X⊗4 + Y ⊗4 + Z⊗4. (E4)

It is observed that the cost function features isolated local minima within the region (z1, z2, z3) ∈ [−2, 2]⊗3, and our
simulation focuses on optimizing within this region. In Figure 4(b), we present a case where z3 = 0. We start with 12
initial points, each positioned on a circle with a radius of 1.3. To generate these initial points, we use a parameterized
circuit to approximate them via a state-to-state method. These circuit with their parameter configurations serve as
our initialization for the method. Then we conduct the NOM as depicted in pseudo-codes. Based on this, we can get
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the results of demonstration in the main text.

Influence by PQC Approximation Method — We additionally investigate how inaccuracy of PQC approximation
method affects the protocol, which is RL method work for. In this simulation, we consider the same demonstration
problems and the settings are the same as previous ones.

Figures 5 and 6 illustrate the deviation between the ideal scenario—where every updated state from the quantum
gradient algorithm is assumed to be perfectly captured by a PQC—and the scenario where the state is approximated
by a PQC with added random noise, weighted by the magnitude of disturbance. In these cases, we chose 0.2 as
learning rate in simulation of quantum algorithm.

We examine the influence of disturbance magnitude on each iteration, as shown in sub-figures (a) of both scenar-
ios. Snapshots at three disturbance magnitudes—0.02(0.02), 0.06(0.04), and 0.10(0.06)—are presented in sub-figures
(b)–(d) of Figure 5 (Figure 6). The magnitude of disturbance reflects the accuracy of the classical training process
in approximating the quantum gradient state with a PQC. The results in Figures 5 and 6 indicate that the proto-
col remains robust under a certain level of disturbance, but if the approximation quality deteriorates significantly,
convergence is disrupted.
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FIG. 5. Influence of disturbance magnitude on the Max-Cut problem: 4 initial ansatze are tested. Sub-figure (a) shows the
overall effect of varying disturbance magnitudes across all iterations. Sub-figures (b), (c), and (d) provide detailed snapshots at
specific disturbance magnitudes of 0.02, 0.06, and 0.10, respectively. The results are averaged over 50 runs to ensure statistical
reliability.

Additional evidence on BP-Exhibiting Circuits — TensorFlow tutorials have provided examples of circuits that
exhibit barren plateaus (BPs). In an additional set of simulations, we demonstrate that our indicator remains effective
even when BPs emerge.

To make this more evident, we conduct sequential numerical simulations on a more general Max-Cut problem, with
system sizes ranging from 4 to 10 qubits:

H =

K∑
i=0

ZiZi+1

2
, (E5)

with periodic boundary condition, where Zi is the Pauli-Z matrix acting on the i-th qubit.

For each system size, we simulate 200 random circuits with 50 layers following the structure outlined in the Ten-
sorFlow documentation. We evaluate the parameter gradients and record their variance, reproducing their analysis.
In addition, for each output state of these random circuits, we apply our quantum gradient algorithm with a learning
rate of 0.2 to produce a corresponding gradient state. We then compute the average value of our indicator, as defined
in Eq.(11) in the main text, across the 200 circuits.
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FIG. 6. Influence of disturbance magnitude on polynomial optimization: 12 initial points are tested. (a) depicts the overall
effect of varying disturbance magnitudes across all iterations. (b), (c), and (d) present detailed snapshots at specific disturbance
magnitudes of 0.02, 0.04, and 0.06, respectively. The results are averaged over 50 runs to ensure robustness.
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FIG. 7. Indicators helps to avoid Barren Plateau

The results are shown in Figure 7. As seen in the plot, while the gradient variance decreases rapidly with increasing
problem size (i.e., number of qubits), the value of the indicator remains nearly constant. This suggests that although
BPs may occur in standard PQCs, our indicator remains stable and serves as a reliable signal for learning progress.

Supplementary Information F: Quantum circuit synthesis with reinforcement learning

For a given initial state |z⟩ and target state |z′⟩ , the RL algorithm learns a policy that generates a PQC (by adding
gates sequentially), which transform |z⟩ to approximate |z′⟩. The policy is learned by Proximal Policy optimization
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(PPO) algorithm [9] with the built-in MLP functional approximator. The reward is set to

r =


10 if f ≥ ft
−5.0 if f < ft and circuit len >= max circuit len

max(
f−fprev
ft−fprev

,−1.0)− p elsewise
(F1)

where f = ⟨z′|U(θ) |z⟩ is the fidelity of current step (circuit), fprev is the fidelity from last step of the episode and
ft is a pre-defined fidelity threshold. p is a penalty of adding a gate to encourage shallow circuit which makes the
agent always trying to find the shortest possible protocol to prepare the target state. The fidelity f is obtained by
optimizing all parameters {θ} of the quantum circuit for current step. The optimization is done using the COBYLA
algorithm in scipy optim package. The episode terminates if fidelity value is great than ft or the circuit depth(number
of gates) exceeds the maximum allowed circuit depth. This is to prevent episodes, especially at the beginning of
training, become exceedingly long leading to unfeasible training times. All the quantum circuit simulation is done
using the Qulacs python package [10].

The pseudo-code of reinforcement algorithm for PQC learning is concluded in Table 3.

Table 3 Reinforcement Learning Procedure for PQC

1: Input: Initial state |z⟩, target state |z⟩′, maximum circuit depth dmax, reward penalty p, fidelity threshold ft, convergence
threshold ϵ

2: Output: Learned policy for circuit synthesis and corresponding PQC
3: Initialize gym environment env(|z⟩, |z⟩′, dmax, p, ft)
4: θprev ← θ
5: Define actions (quantum gates set gi(θi)), reward function and termination condition.
6: repeat
7: Learn PPO(γ, nepochs, clip range, learning rate)
8: until maximum learning steps
9: Reset environment

10: repeat
11: Predict action for the current state: a = PPOopt(state)
12: Take a step: state, reward, done, info = env.step(a)
13: until done
14: Return: Learned policy PPOopt and parameterized quantum circuit

For both examples (Max-Cut problem and polynomial optimization), we choose from the gate set consisting of
single qubit Pauli rotation gates and two-bit Pauli rotation gates, namely RX(θ), RY (θ), RZ(θ), RXX(θ), RY Y (θ),
RZZ(θ) (by definition RX(θ) = exp(−i θ2X), RXX(θ) = exp(−i θ2X × X) etc.). In the learning process, we set the
maximum circuit depth to be 10. The parameter setting of PPO algorithm is γ = 0.99, nepochs = 4, clip range = 0.2,
learning rate = 0.0001.
We tested the algorithm on random 4-qubit state with different quantum gradient step size, resulting in different

target state. Figure 8 shows the influence of number of learning episodes on the fidelity of approximate state with
learned PQC and the target state. Result from two environments, corresponding to with different target states are
shown. We can see that, in general, the RL algorithm can approximate target state better with increased learning
episode, but reaching some plateau potentially restricted by the maximum episode length (e.g. circuit depth).

Supplementary Information G: Error Accumulation and Analysis

In this section, we depict the fact that the iterative method is insensitive to error of variables produced either in
preparation or readout.

Proposition 1. The iterative gradient algorithm is insensitive to errors from an inaccurate quantum state.

The inaccurate quantum state is caused by either inaccuracy of devices or optimization methods, which leads a
perturbation on output variable. As the quantum gradient algorithm faithfully performs calculation of gradients and
the iterative operations.

We directly analyze its classical behavior. The iterative equations are listed,

x′ ← x− ξ∇xf(x), (G1)
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FIG. 8. Effects of number of learning episodes on learned policies: two environments with different target states are tested.
Mean and standard deviation of fidelity values are calculated from five independent runs. The fidelity between the initial state
and target state is shown at x = 0.
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If x has a small perturbation x+∆, Eq. (G1) becomes,

x′ ← x+∆− ξ∇xf(x+∆)

= x+∆− ξ(∇xf(x) +∇2
xf(x)∆), (G2)

where ∆− ξ∇2
xf(x)∆ implies the perturbation on updated point. We are noticed that the Hessian matrix ∇2

xf(x) is
positive definite nearby local minimum, so ∆ is curved back by ξ∇2

xf(x)∆, denoted as ∆′ (shown in Fig.9). This is
due to small value of ξ, and we can adjust this mitigation by ξ. An ideal case is in the right-side of the figure with
proper ξ and strength of ∆,

x± ξ∇xf(x). (G3)

Supplementary Information H: Details on Feasibility

Analysis of barren plateaus in classical training part— Classical gradient-based methods for training T (α) may
encounter barren plateaus. In this section, we analyze this situation and clarify the mitigation for such barren
plateaus.

We focus on T (α) =
∏L

j=1 Tj(αj), where Tj(αj) defines a single-layer circuit, and L is finite due to the choice of
small ξ values that limits the norm of ξD.
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The partial derivative with respect to the k-th parameter for training T (α) is given by,

∂c2
∂αk

= i ⟨z|T †
−

[
Vk, T

†
+ |z′⟩ ⟨z′|T+

]
T− |z⟩ , (H1)

where Vk denotes the derivative of a single-layer circuit Tk(αk), [·] represents the commutator, and

T− =

k∏
j=1

Tj(αj), T+ =

L∏
j=k+1

Tj(αj).

Let us observe the behavior at the initial moment. We initialize T (α) = T+T− to the identity I. In this case,

∂c2
∂αk

= i ⟨z|
(
T †
−VkT

†
+ |z′⟩ ⟨z′| − |z′⟩ ⟨z′|T+VkT−

)
|z⟩

= i ⟨z| [|z′⟩ ⟨z′| , Vk] |z⟩ , (H2)

where the second line holds due to the initialization T+ = T †
− = I. Thereby, Eq. (H2) equals zero only when the

target state commutes with the observable, which is generally not the case [11].

When T+ and T− are not initialized from the identity, we have

∂c2
∂αk

= i ⟨z|
(
T †
−VkT

†
+ |z′⟩ ⟨z′| − |z′⟩ ⟨z′|T+VkT−

)
|z⟩ .

Given the precondition that the search region is centered around the identity, meaning d(T (α), I) = d(T+, T
†
−) is

bounded by ϵf , then |d(T+, I)− d(T−, I)| < df < d(T+, I) + d(T−, I). Thus, without normalization, we have

T (α) |z⟩ = |z⟩+ ϵU ′ |z⟩ ,
T− |z⟩ = |z⟩+ k−ϵU

′ |z⟩ ,
T+ |z⟩ = |z⟩+ k+ϵU

′ |z⟩ , (H3)

where k+ and k− are related to the searching region of T+ and T−, restricted by their depth. We can then transform
the partial derivative into

∂c2
∂αk

= i ⟨z| (Vk |z′⟩ ⟨z′| − |z′⟩ ⟨z′|Vk) |z⟩

+ ik+ϵ ⟨z|
(
VkU

†
+ |z′⟩ ⟨z′| − |z′⟩ ⟨z′|U+Vk

)
|z⟩

+ ik−ϵ ⟨z|
(
U†
−Vk |z′⟩ ⟨z′| − |z′⟩ ⟨z′|VkU−

)
|z⟩ .

(H4)

This shows that the major part of the partial derivative is Eq. (H2), can be preserved by maintaining a finite search
region for T (α), thereby mitigating the effects of barren plateaus.
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