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Supplementary Information A: Details on Result 1

Proof for Result 1 — First, we introduce Lemma 1, which give a probability bound that two random vectors have
overlap.

Lemma 1. Suppose u, v be two d-dimension random vectors whose elements are chosen from N(0,1/d), for some
€ € (0,1) there is

de?

Pr(|[(ulv)]| > €) <de™s (A1)

where (-|-) denotes the inner product and || - || denotes the absolute value.

Proof. Since u and v are both chosen randomly from N (0,1/d), so w = [wy, -+ ,wy] = “—\E’ ~ N(0,1/d), too.
We have the probability
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for any positive A and E[-] be the expectation. The second line in above equation uses the fact that
Elz] = / ap(x) > / ap(x) = aP(z > a). (A3)
0 a

Similarly to Eq. (A2), we have Pr(1 — ||w]||? > €) < e=9°/8 too. And therefore,

Pr((ulo) > 6) < Pr(|fuwl” ~ 1> ¢) + Pr(L — [[w|* > ¢)

< 2e74/8, (A4)
in the same way,
Pr(—(ulv) > ¢€) < 2e74°/8, (A5)
t0o. So Pr(||(u|v)|| > €) < 4e=9<"/8 is proved. [ |
Then we start our proof for Result 1.
Proof. In our case, we focus on
0z1 0z4
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Vof = £ V.f, where 8—2 - : (A6)
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We want to study how large the norm of Vg f can be. Statistically, the gradient V. f can be obtained as a vector
randomly chosen from d dimension complex space. We also denote the i-th row of the matrix 0z/90 as a d dimension
vector v;.

First, let us consider (v;|V.f). We represent the complex variables v; and V,f in real and imaginary parts as
v; = 0z/00; = a; +iB;, and V,f = v+ id, where a, 8,7, d can be treated as independent d-dimension random real
vectors.

Given assumptions that the norm of V. f and v; are bounded. We have that ||«||,||5]],]7]],]/9]| is nearly inde-
pendent to the Hilbert space dimension d. If their elements are sampled from independent identically distribution
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N(0, K), the independence of ||a|| = \/Zle a? to d indicates that a; o< 1/v/d and therefore K ~ C/d for some
constant C. That is «, 3,7, d’s elements are chosen randomly from N (0,C/d) with C being some bounded positive

value so that the norm is bounded. Therefore a/v/C, 3/v/C,~v/v/C,6/v/C are random vectors whose elements are
sampling from A(0,1/d). Then we have

(V) = (aly) + (BI8) — i((al8) — (B7)) (A7)
and the probability
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where we have the notation («, ) means a 2d-dimension vector whose first d-dimension half part is o and the last half
is B, similarly the notation (,d) and (4, —). In the last two lines in Eq. (A8) we use the fact that ||(c, 8)|| = ||vil]
and |[(y,0)|| = 116, =)|| = IV f||, as well as the result of Lemma.1. The result of Eq. (A8) means in high dimension
d, the vector v; and V f will orthogonal to each other with probability near to 1.

We estimate the probability that ||V f|| = \/Zpozy(log 9) (25 |V =£)||? is larger than eC'/poly(log(d)). Thus,

Pr(||Vef|| > eC'\/poly(log(d)))
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Remarkably, we make a variable substitution to transfer C' and log(d) to the right side formula. |

Supplementary Information B: the Pseudo-code of NOM

In this section, the pseudo-code of NOM is presented in Table 1, corresponding to the theory and Figure 1 of the
manuscript.



Table 1 The NOM.

Input: an initial ansatz U(6.,) with its structure and therein parameters to be optimized, m, the maximum iteration
number, €, the terminate threshold, and &, the learning rate.

1: Set Af + 1

2: whilet—1€ [m|NAf>¢ do

3: function QUANTUM_ALGORITHM_PART(U (0, ,))

4: return |z;) < U(0,_,)|0) — £DU(H;,_,)|0) > |ze—1) =U(0:,_,) |0)
5: end function

6: Calculate Af < 1 — || (2| U(0.,_,) |0} |1

7: function CLASSIC_LEARNING_PART(|z;), U(6, ,))

8: return U(6:,)

9: end function
10: end while
11: return: U(6.,)

Steps of sub-function of quantum loop (depicted in Hamiltonian Simulation method)

Require: The principal register is initialized with U(8.,_,), and the three other ancillary systems, |0),.,[0),0),
12: Driving the entire system through the circuit of quantum gradient algorithm in Figure 1.
13: Post-select on |0}, |0}, and the principal register is output, i.e., |z;)

Steps of sub-function of classic loop

Require: U(02:_1), and |z{) is repeatedly produced
14: function 1ST STEP(U(0z:—1), |21))

15: Transport |z;) to the inverse circuit of U(8., ;)
16: Measure the possibility on |0) (0|
17: return: 6, which is tuned to max the aforementioned possibility

18: end function
19: If the cost function satisfies the specified criteria, we terminate the process; otherwise, we proceed to the next function

20: function 2ND STEP(U(02:—1), |2’)) > This step can be realize with various method, we refer to reinforcement learning
and depict it later

21: Transport |z;) to a initialized a slice of circuit T'(c) and the inverse circuit of U(0z:—1)

22: Measure the possibility on |0) (0]

23: return: T (o), which is tuned to max the aforementioned possibility

24: end function

25: U(0) <~ U(0) or T(ax)U(0) is returned

Supplementary Information C: Quantum gradient algorithm in complex domain

First, we review Result 2. Given that f(z) is defined as a polynomial, mapping from C%*! — R, the effective
gradient operator at z can be expressed as

D(z) = Trp—1 [I® pZP~ ' Mop] (C1)

where p, = |2) (z|, and Mp = > ¥_, PpF Py, with Py, denoting the permutation of the first and k-th subsystems in
the p-fold tensor product |z)?.

Proof. As f(z,Z) is real valued at every moment, it can be regarded as a real function f(z,y) with two real variables,
z=x+iy, Z=2x—1y, (C2)
where x,y € R. By definition of the gradient descent algorithm in the real domain, the iterative formula can be

@f) = (2= oy T ay) (3)



where z’, 9" are updated variables. This implies that an updated z’ can be expressed as,

) of Of
r_ _ |9 et
Z=x+1y [&sAx—l—zayAy]. (C4)
Meanwhile,
of 1 /of  .of
0z 2 <8x+18y ' (C5)
When the learning rate is set to Ax = Ay = £/2, we obtain,
Z/ =z - 6%7 (CG)

which is the gradient descent formula used in our case.
On the other side, we substitute f(z) = 21®PF2%P = f(z, z) = 279 F2z®P into partial derivative, then

k. p
% = Z Z Ca,i(2)Fyoiz =D(2)z, (Cn

a=1i=1

This holds on the fact that
k
F = Z ®§:1aa7]‘Fa,j (08)
a=1
such that ¢, 4(2) = [H?Zl(aa’joFayjz)]/zTFayiz. Therefore,
P
D(z) = (I@ 21" P AP (I® 21, (C9)
k=1

where Py permutes the first and the k-th subsystems. Up to this point, the problem formulates as a problem
encountered in [1-3].

After encoding z into a quantum state, we can get

D(z) = Trp1 [1@ pZ"~ ' Mp], (C10)
which can be realized by LCU or Hamiltonian simulation-based methods with the time complexity of O(poly(p, F,logd)).
]
Supplementary Information D: Implementation of Quantum Gradient
This section provides detailed instructions to implement the following iterative steps,
z) < |z) £¢D|z), (D1)

where D is the parameter-dependent operator D(z), and |z) is assumed to encode the variable.

1. Implement Quantum Gradient with Oracles to Query Coefficient Matrix

In this method, the algorithm is achieved through the quantum matrix inversion method via Hamiltonian simula-
tion [1, 4, 5]. Specifically, D is defined as,

D="Trp [[®pSP 'Mp]. (D2)



The relevant notations are as follows,

p= = |2) (2],
p
Mp =Y PpFPy, (D3)

k=1
where Mp and F have relations by Py, which swaps the first and the k-th subsystems of the entire space \z)®p , as

S|z ® el e M) =1 e e ) @ M)

Algorithm 2 The quantum gradient algorithm

1: Initialization:

10) 160, 1004 10) [0) = 10),,, 10)4 [0) [2) = € (1)1, 10)4 100 [2) (D4)
where |0),.,, is applied by
_ [ UVI+E g1+ e
Ry(§) = (_5/\/1+£2 1/\/1+€2>. (D5)

2: Matrix Inversion on 1), _.:

e First, Phase estimation of e™*T¢,

1), 10,410}, |2) — [1),.., | ZIA o B |n) (D6)

where \,, is the binary approximation of A,, the eigenvalue of applied D.

o Then, controlled rotation is applied and only |0), part is kept,

lcu Z |>\ ﬁ” |n _> |1 leu Z)\n IO |)\ > /6'” "I’L) (D7)

e Finally, phase estimation is inversed,

Dicu | Z/\n Ao B [n) = 1110, 104 10). D~ XaBB In) = (1), 10),10), D 2), (D8)

which accurately established if Xn = An.
3: With post-selection, output |z) £ (D |z), which is based on |0),|0)_, which is either result or input of next iteration.

The procedure for conducting the quantum gradient algorithm is outlined in Table 2, where the implementation of
the effective gradient D = Tr,_; [H ® pf”’l./\/lp] is the central component. In this section, we will provide further
details on its implementation.

First, we present all temporary states in Table 2. Usually, D is hermitian but not unitary, therefore can not be
directly applied in circuit models. But if the evolution e *P* can be efficiently realized, we can effectively implement



D |v) with the help of an ancillary quantum register in a ‘H H L-like’ process as
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In a further step, the evolution e *P* can be approximately constructed with another evolution e ~*?* and the
2, 2 ]:H
(t Pl

help of m(p — 1) copies of state p, = |x) (x|, within accuracy O maz ) in a ‘quantum principal component

analysis(QPCA)’ way as

—i t —i t —i t i . — i i — i .
Trp_l[e zMDmT,rp_l[e iMp - -~~Trp_1[e ZMDmp®p6’MDm}...p®p 161M73m]p®p 1esz

m—trace
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since we have D = Tr,_1[1 @ p©P~1 Mp] and the evolution e —iMD T can be approximated by Trotter expansion

p 2,.2
. . o t F
e_ZMDR — | I rP’ce—z}‘E'pk + O( p || 2||ma:v)’ (Dll)

k=1

which is shown in Figure 2.

Lastly, as known in general quantum singling processing(QSP) Hamiltonian simulation[6], e
within accuracy e, at the cost of O(sp||F||maz = + %) queries of Uy, Uz and O((sp||F||maz L + %)(dp+
gpoly(log q))) extra basic quantum gates, where s denotes the sparsity of F, ¢ is the bit-accuracy of elements of F,

and the two Oracles,

_ )
—iF % can be simulated

Ur |.77 k> |0> = |J7 k> |‘Fj,k> )
Uz15,1) =15, kx(5,0)) - (D12)

To sum up, we implement the effective gradient D in the following logical flow,



SP _4sFt Trotte —i t PCA _ HHL—like
Uy, Uy 228, e-iF s Trotter, —iMpsy QPCA, —iDt HHL like, 1, (D13)

To visualize the algorithm, we present a circuit diagram in Figure 1 and Figure 2. More details have been described
in related work in [1, 5].

|2) ———— — |2) —— —
. xm Xm
efth/m e+th/m

|z) ——— — |z) ——— —
|z) » updated |z)
0 (i F——Ur] Ur! (7]
0 0 g
10) 10— By (€) Ry(€)

FIG. 1. Circuit diagram to process Eq. (D1). Component in blue bracket is for Quantum Matrix Inverse and Components in
red bracket is for simulating e~ *P*.

|z) ——— — |z) |
e—iMt/m = ° e—iFt/m e—iFt/m e e—iFt/m
|z) ——— — |z) i
2) — 12)

FIG. 2. Schematic of implementation of e "M The right hand side shows the series performance of {P} with k from 1 to

p. The 7 /7 means multi qubits and ”|” means dropped of registers in the last of the circuits.

2. Quantum Gradient algorithm with F Efficiently Decomposed

If F, the coefficient matrix can be decomposed efficiently, there is alternative method. Consider that F can be
represented by a tensor product of unitaries, which is geometry k-local, we have,

P
F =Y @ Py,
a=1

M~

D =

[e3

H (2] ®?:1 Pg ) ®?1:1 Faj, (D14)
1 8+#«

where d = T, d(P,,;) and d(P,,;) is the dimension of P, ; which should < 2*. Under the condition that £ is small,
we can interpret I — D, which is equivalent to realize Eq. (D1), as,

r
e~ [ e omalel@ia Poslzl el Py, (D15)

a=1

Here, we introduce two method to simulate this e—¢7.



The first method is based on the LCU. If P, ; in Eq. (D14) can be presented by Pauli matrix, then the LCU method
can be employed to implement the target process with a specified probability. The gradient operator can be rewritten
as

m

—ZZCM i (D16)

a=1i=1

where ¢,,; are parameters to be pre-determined. In additional experiments, O(kp) measurements on P, ; are required
to obtain ¢, ;. Each decomposition of F must be measured to evaluate the cost function. To implement I — (D, two
ancillary registers are needed. The first is a single qubit to apply I — D, and the second is a log(kp)-qubit register
for implementing D. The circuit shown in Fig. 3 illustrates this method, where the principal register outputs |z) if
post-selections are applied. This setup has a success probability of O(1/(kp)?) for observing the |0)_|0), subsystem.
Further details are provided in related work [3].

|z) Py » updated |z)
0, e —O—— RO &

kp—1
10) Ry (&)!

FIG. 3. Circuit to process Eq. (D1) with method of linear combination of unitaries.

The second method is from Ref.[7]. If [2) is chosen as a tensor product state, [, (2| ®]; Ps; [2) = bs can be

efficiently evaluated with O(2%) times calculations, where L > k is a correlation length. We set e =P =[]  e=%Pe
and Dy = )} G k0aq,k- By approximating e~ %Pa |2) = % Q7 e~ttsPai|2) | a system of linear equation formulates as

> o (2| ol ek |2) = 5 (2] ol 1 ®F Pojlz), (D17)
k

where ¢ = \/(z|e=2¢P |z) is the re-normalization factor. In the initial step e~%P1, a tensor product state can be
chosen, allowing the coefficients in Eq. (D17) to be efficiently computed. Solving this system provides an efficient
determination of e~%P1, For e~%P« with a > 1, since Hg;i e~ %P5 has already been applied, |1)) becomes non-local,
and the correlation length increases with each subsequent . This growth in correlation length accelerates with «,
necessitating iterative updates with gradient adjustments. Therefore, an approximate approach is recommended, as
referred in related work [7].

Supplementary Information E: Details on Numerical simulation

The first demonstration problem is the Max-Cut problem. Suppose there are n vortex in the graph, the observable
that we aim to maximize is

e

where o, and o, represent the Pauli-Z operators acting on qubits 4 and j, (i, j) exists only there is an edge. We are
noticed of the results in [8]. The mixer Hamiltonian can be chosen as

n—1
Hy = ZUIN (El)
=0

and can be used as QAOA method, where o, is the Pauli-X operators acting on qubits ¢. The results indicate that
if the graph is a ring(that is, regular-2 graph), the maximum value of the objective function (H.), which is estimated
under state output by a QAOA circuit is lower bounded as n(2p+1)/(2p+2), where p is the depth of QAOA circuits.
Similarly, increasing p will produce a better approximate ratio for more general graphs.
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Specifically, we consider a random graph with 4 vortex. The corresponding Hamiltonian is depicted above and (3, j)

(a) (b) **
o 1.0

o
o Z20.0

® local mini
initial point

2.0

FIG. 4. (a) is a random graph with 4 vortex. (b) is the contour plot of the polynomial in the second example with z3 = 0.
exists only there is an edge in Figure 4(a).
For initial ansatz construction, we set 4 quantum circuit. The first one formulates as a single layer QAOA ansatz,

e—iHbﬁe—iHc’Y7
where Hy, = Z?:o 04,. The second one is a modified single layer QAOA ansatz,
e*iH"ﬁRx(a)eqHC”’,

where R, («) is a global rotation about x-axis with angle a. The third one is inspired by hardware efficient ansatz,
which is

1020023 X102 Oz 56*109% Ty o020 0211

The fourth one is
e—ion Uz3ae—ia'zl UZZ’BRy (a)e_ialzaza.'ye_iowo Oy 777

where R, (a) is a global rotation about y-axis with angle a.. Then using typical gradient-based method we can find
4 corresponding sub-optimal parameter configurations which is not the optimal answer but with vanished gradients.
Then we use these circuit and their parameter configurations as our initialization and learn our NOM. Based on this,
we can get the results 2 in the main text.

The second simulation is to optimize a polynomial. Polynomials are a kind of function that has many applications.
For example, nonlinear equations and linear regression. Here we show a case that is optimizing of a polynomial

f= 27+ 857+ 8552 + 272 + 50)
+621202122 — 221232123 — 2292372223
—22171 — 2297 + 62373
+2(z5 +73°) + 1 (E2)

which can be expressed as
f(2)=2z®%2AzT%?, (E3)
where Z = (1, 21, 22, 23) and the coefficient matrix
A= X4 yet zo4 (E4)

It is observed that the cost function features isolated local minima within the region (21, 22, 23) € [~2,2]®3, and our
simulation focuses on optimizing within this region. In Figure 4(b), we present a case where z3 = 0. We start with 12
initial points, each positioned on a circle with a radius of 1.3. To generate these initial points, we use a parameterized
circuit to approximate them via a state-to-state method. These circuit with their parameter configurations serve as
our initialization for the method. Then we conduct the NOM as depicted in pseudo-codes. Based on this, we can get
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the results of demonstration in the main text.

Influence by PQC Approximation Method — We additionally investigate how inaccuracy of PQC approximation
method affects the protocol, which is RL method work for. In this simulation, we consider the same demonstration
problems and the settings are the same as previous ones.

Figures 5 and 6 illustrate the deviation between the ideal scenario—where every updated state from the quantum
gradient algorithm is assumed to be perfectly captured by a PQC—and the scenario where the state is approximated
by a PQC with added random noise, weighted by the magnitude of disturbance. In these cases, we chose 0.2 as
learning rate in simulation of quantum algorithm.

We examine the influence of disturbance magnitude on each iteration, as shown in sub-figures (a) of both scenar-
ios. Snapshots at three disturbance magnitudes—0.02(0.02), 0.06(0.04), and 0.10(0.06)—are presented in sub-figures
(b)—(d) of Figure 5 (Figure 6). The magnitude of disturbance reflects the accuracy of the classical training process
in approximating the quantum gradient state with a PQC. The results in Figures 5 and 6 indicate that the proto-
col remains robust under a certain level of disturbance, but if the approximation quality deteriorates significantly,
convergence is disrupted.

100 20
0.9
80
5]
£ . 5"
S 60 06 2
z Toe
'E 40 §1 .0
2 o [ -o- ca disturbance(Averaged)
= 0.3 i -8- ca disturbance(Averaged)
20 h [ -~ cas disturbance(Averaged)
05 " - case 4 - with disturbance(Averaged)
! I
0.0
0.02 0.04 0.06 0.08 0.10 0 20 40 60 80 100
Disturbance Magnitude Iteration Number
() (d)
2.0 - 2.0
1.5 15
c c
2 S
S k3]
c c
2 ! o caso 1-idea 2
‘g 1.0 i = case 2- ideal §1‘0
[&] —@— case 3 - ideal (&)
—4— case - ideal
-©- case 1 - with disturbance(Averaged)
-8- 2 - with disturb: (Averaged)
0.5 75 e ditrbancelpverage 05
H -4~ case 4 - with disturbance(Averaged)
0 20 40 60 80 100 0 20 40 60 80 100

Iteration Number Iteration Number

FIG. 5. Influence of disturbance magnitude on the Max-Cut problem: 4 initial ansatze are tested. Sub-figure (a) shows the
overall effect of varying disturbance magnitudes across all iterations. Sub-figures (b), (c), and (d) provide detailed snapshots at
specific disturbance magnitudes of 0.02, 0.06, and 0.10, respectively. The results are averaged over 50 runs to ensure statistical
reliability.

Additional evidence on BP-Exhibiting Clircuits — TensorFlow tutorials have provided examples of circuits that
exhibit barren plateaus (BPs). In an additional set of simulations, we demonstrate that our indicator remains effective
even when BPs emerge.

To make this more evident, we conduct sequential numerical simulations on a more general Max-Cut problem, with
system sizes ranging from 4 to 10 qubits:

K
ZiZi1
i=0

with periodic boundary condition, where Z; is the Pauli-Z matrix acting on the i-th qubit.

For each system size, we simulate 200 random circuits with 50 layers following the structure outlined in the Ten-
sorFlow documentation. We evaluate the parameter gradients and record their variance, reproducing their analysis.
In addition, for each output state of these random circuits, we apply our quantum gradient algorithm with a learning
rate of 0.2 to produce a corresponding gradient state. We then compute the average value of our indicator, as defined
in Eq.(11) in the main text, across the 200 circuits.



12

a b
(a),, (b)
0.36
caso7-icen
15
= Pt
é * 0.24 - e -
2 S10 ik
= E - e
2 32 case
® o
510 0.12 §0.5
_ 0.0
0 0.00
0.00 001 002 003 004 005 0.06 0 10 20 30
(C) Disturbance Magnitude (d) Iteration Number
o case 1-iden
15 - ez 15
e
case 4 -iont
S bt 5
310 5 1.0
c case 6 - ideal c
2 2
B B
Q Q
Q0.5 Q05
0.0 0.0
0 20 30 0 10 20 30

10
Iteration Number

Iteration Number

FIG. 6. Influence of disturbance magnitude on polynomial optimization: 12 initial points are tested. (a) depicts the overall
effect of varying disturbance magnitudes across all iterations. (b), (¢), and (d) present detailed snapshots at specific disturbance
magnitudes of 0.02, 0.04, and 0.06, respectively. The results are averaged over 50 runs to ensure robustness.

Gradient Variance

6x1072

Gradient Variance and Average ind vs. n_qubits

0.020

[ 0.019

0.018

Average ind

F0.017

[ 0.016

0.015

n_qubits

FIG. 7. Indicators helps to avoid Barren Plateau

10

The results are shown in Figure 7. As seen in the plot, while the gradient variance decreases rapidly with increasing
problem size (i.e., number of qubits), the value of the indicator remains nearly constant. This suggests that although
BPs may occur in standard PQCs, our indicator remains stable and serves as a reliable signal for learning progress.

Supplementary Information F: Quantum circuit synthesis with reinforcement learning

For a given initial state |z) and target state |2’) , the RL algorithm learns a policy that generates a PQC (by adding
gates sequentially), which transform |z) to approximate |z’). The policy is learned by Proximal Policy optimization
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(PPO) algorithm [9] with the built-in MLP functional approximator. The reward is set to

10 if =
r=1{ —5.0 if f<fi and circuitlen >= max_circuit_len (F1)
max (<= _1.0) = p elsewise

ftipr‘e'U ’

where f = (2/|U(0)|z) is the fidelity of current step (circuit), fpreo is the fidelity from last step of the episode and
ft is a pre-defined fidelity threshold. p is a penalty of adding a gate to encourage shallow circuit which makes the
agent always trying to find the shortest possible protocol to prepare the target state. The fidelity f is obtained by
optimizing all parameters {0} of the quantum circuit for current step. The optimization is done using the COBYLA
algorithm in scipy optim package. The episode terminates if fidelity value is great than f; or the circuit depth(number
of gates) exceeds the maximum allowed circuit depth. This is to prevent episodes, especially at the beginning of
training, become exceedingly long leading to unfeasible training times. All the quantum circuit simulation is done
using the Qulacs python package [10].
The pseudo-code of reinforcement algorithm for PQC learning is concluded in Table 3.

Table 3 Reinforcement Learning Procedure for PQC

1: Input: Initial state |2), target state |z)’, maximum circuit depth dy,qz, reward penalty p, fidelity threshold f;, convergence
threshold e

2: Output: Learned policy for circuit synthesis and corresponding PQC
3: Initialize gym environment env(|z), |2)’, dmaz, p, ft)

4: 9prev «— 0

5: Define actions (quantum gates set g;(6;)), reward function and termination condition.
6: repeat

7 Learn PPO(7, nepochs, clip_range, learning_rate)

8: until maximum learning steps

9: Reset environment

10: repeat

11: Predict action for the current state: a = PPOop:(state)

12: Take a step: state, reward, done, info = env.step(a)

13: until done
14: Return: Learned policy PPO,,: and parameterized quantum circuit

For both examples (Max-Cut problem and polynomial optimization), we choose from the gate set consisting of
single qubit Pauli rotation gates and two-bit Pauli rotation gates, namely Rx (), Ry (6), Rz(0), Rxx(0), Ryy(0),
Rzz(0) (by definition Ry () = exp(—i4X), Rxx(0) = exp(—i4X x X) etc.). In the learning process, we set the
maximum circuit depth to be 10. The parameter setting of PPO algorithm is v = 0.99, nepochs = 4, clip-range = 0.2,
learning_rate = 0.0001.

We tested the algorithm on random 4-qubit state with different quantum gradient step size, resulting in different
target state. Figure 8 shows the influence of number of learning episodes on the fidelity of approximate state with
learned PQC and the target state. Result from two environments, corresponding to with different target states are
shown. We can see that, in general, the RL algorithm can approximate target state better with increased learning
episode, but reaching some plateau potentially restricted by the maximum episode length (e.g. circuit depth).

Supplementary Information G: Error Accumulation and Analysis

In this section, we depict the fact that the iterative method is insensitive to error of variables produced either in
preparation or readout.

Proposition 1. The iterative gradient algorithm is insensitive to errors from an inaccurate quantum state.

The inaccurate quantum state is caused by either inaccuracy of devices or optimization methods, which leads a
perturbation on output variable. As the quantum gradient algorithm faithfully performs calculation of gradients and
the iterative operations.

We directly analyze its classical behavior. The iterative equations are listed,

' <_:E_gvcr:f(a:)v (Gl)
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FIG. 8. Effects of number of learning episodes on learned policies: two environments with different target states are tested.
Mean and standard deviation of fidelity values are calculated from five independent runs. The fidelity between the initial state
and target state is shown at = 0.
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FIG. 9. Gradient calculation with errors.

If « has a small perturbation « + A, Eq. (G1) becomes,

'+ T+ A—-EVLf(x+A)
= =+ A—{(Vaf(x)+ Vif(2)A), (G2)

where A — ¢V2 f(x)A implies the perturbation on updated point. We are noticed that the Hessian matrix V2 f(x) is
positive definite nearby local minimum, so A is curved back by V2 f(z)A, denoted as A’ (shown in Fig.9). This is
due to small value of £, and we can adjust this mitigation by £. An ideal case is in the right-side of the figure with
proper £ and strength of A,

x &V, f(x). (G3)

Supplementary Information H: Details on Feasibility

Analysis of barren plateaus in classical training part— Classical gradient-based methods for training T'(cr) may
encounter barren plateaus. In this section, we analyze this situation and clarify the mitigation for such barren
plateaus.

We focus on T(a) = Hle T;(c;), where T;(c;) defines a single-layer circuit, and L is finite due to the choice of
small £ values that limits the norm of {D.
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The partial derivative with respect to the k-th parameter for training T'(«) is given by,

802

ocx . Il I /
s =il T (Vi T2 (2 T4 T2 |2), (H1)

where Vj, denotes the derivative of a single-layer circuit Ty (ay), [-] represents the commutator, and

k

L
- =[[Ti(e), To= T Ti(ay).

j=1 j=k+1
Let us observe the behavior at the initial moment. We initialize T'(ar) = T T— to the identity I. In this case,

% = i(z| (TinTI— |z’> <z’| _ \z/> (z’| T+VkT_> |2)
= i(z|[|z') ('], Vill=), (H2)

where the second line holds due to the initialization T} = T = I. Thereby, Eq. (H2) equals zero only when the
target state commutes with the observable, which is generally not the case [11].

When Ty and T_ are not initialized from the identity, we have

302

af% — <z| (TinTj_ ‘Z/> <Z/| o ‘ZI> <z/|T+VkT—) |Z> .

Given the precondition that the search region is centered around the identity, meaning d(T(c),I) = d(Ty,T") is
bounded by €y, then |d(T4,I) —d(T-,I)| < dy < d(Ty,I)+ d(T-,I). Thus, without normalization, we have

T(a)|z) = |z) +U' |z)
T_|z) =|2) + k_eU’ |2),
Ty 12) = |2) + hacll|2), (3)

where k and k_ are related to the searching region of 7, and T_, restricted by their depth. We can then transform
the partial derivative into

802

Y i(z| (Vi |2') (2'| = [2") (2'| Vi) |2)
g

+

ikye (2l (WUL12) (2] = |2) (/| Uy VR ) |2)
+ ik e(z| (Uivk 12 (2] — |2') (/] VkU,) By
(H4)

This shows that the major part of the partial derivative is Eq. (H2), can be preserved by maintaining a finite search
region for T'(a), thereby mitigating the effects of barren plateaus.
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