Supplement

Additional performance Analysis

Baseline EMR model - Figure 1 present the ROC curve for the baseline EMR model which achieved 0.86 AUROC value.
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Figure 1. Receiver operating characteristic curve of the baseline EMR model - using demographics and co-morbidity data

Model selection using 10-fold cross-validation - Figures 2 show visual comparison of different classifier architectures for
late fusion. The box plots shows the accuracy of different classifiers at different time-internals along with error bar for 10-fold
cross-validation.

Confusion matrix for late fusion model - Figures 3 shows late fusion confusion matrices (2x2) for each time point where each
cell represents the patient counts. The confusion matrices show the true positive and true positive values along the diagonals.

Comparison with analog in-memory computation macros using SRAM

Aside from using switched-capacitor MAC circuits for analog IMC, several works re-use static random access memory (SRAM)
array that holds ANN weights for analog IMC'~S. Figure 4 compares the two analog IMC techniques. Compared to SRAM
array (see the Supplement), the switched-capacitor IMC adopted in this work has two advantages - 1) higher linearity, 2)
better matching. Multiplication is performed in SRAM cell by applying analog input to the wordline (WL) which draws a
proportional current, I;; from the differential readlines (BL and BLB). The current I, discharges voltage on BL/BLB lines, and
accumulation is performed in charge-domain on the BL/BLB lines. The in-memory vector matrix multiplication (VMM) is
linear as long as I is linearly proportional to the voltage applied on the WL line, and is independent of the accumulated voltage
on the BL/BLB lines. However, for large values of VMM output, the transistor drawing I is pushed into triode region, and I,
becomes a nonlinear function of the voltage on BL/BLB lines, thus making the VMM result nonlinear. This is a fundamental
limitation of SRAM based IMC techniques. In contrast, the switched capacitor IMC performs VMM through passive charge
redistribution between the capacitors in the array which makes the VMM computation highly linear. Random mismatches
during chip fabrication process introduces random variations into each circuit component, and hence, ANN weights which
makes VMM results inaccurate. However, it is easier to match passive components, like capacitors, with high accuracy than
transistors. Since switched-capacitor IMCs compute VMM results based on ratios of capacitors, it is more accurate than SRAM
IMC.

1/5



95.0 ' ' "
g 90.0
=
— 87.5
g
g 85.0
<825
80.0
Random Linear Logistic Neural
Forest svC Regression ~ Network
(a)
96
o "
=
(=4 — e t—
S 92
g 90 ¢
o
< 88
86 . .
Random Linear Logistic Neural
Forest SVC Regression Network
(c)
96
94
s
§ 92
§' 90
§ 88
<
86
84
Random Linear Logistic Neural
Forest SvC Regression Network
(e)

100

98

96

94

92

Accuracy (100%)

90

88

98

96

Accuracy (100%)
=}
(5]

[~ = B = B =]
o O N A

Accuracy (100%)
oo o
PSS

o0 00
(=2 )

s

Random Linear Logistic Neural
Forest SvC Regression Network
(b)
4+ L
Random Linear Logistic Neural
Forest SvVC Regression Network
(d)
Random Linear Logistic Neural
Forest svC Regression Network
®

Figure 2. Box plots for late fusion performance analysis of different classifiers using demographic, co-morbidity and ECG
data; (a) 1 hr. data; (b) 2 hrs. data ; (c) 3 hrs. data; (d) 4 hrs. data; (e) 5 hrs. data; (f) 6 hrs. datas
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Figure 3. Confusion matrix for late fusion using demographic, co-morbidity, and ECG data for different sepsis on-set
prediction tasks; (a) 1 hr; (b) 2 hrs; (c) 3 hrs; (d) 4 hrs; (e) 5 hrs; (f) 6 hrs. Only optimal prediction results are shown.
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6T SRAM for in-memory computation

Switched-capacitor for in-memory computation
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1. lgs is non-linear function of bitline voltage
2. Random mismatch in lgg in each bitcell
3. ANN weights can be reprogrammed easily

1. Switched-cap MAC computation is highly linear
2. Capacitors have better matching than transistors
3. ANN weights cannot be reprogrammed

Figure 4. Comparison with analog in-memory computation using SRAM cells
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