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I. MODEL AND METHODS

The models studied are generic glass-forming liquids in three dimensions (3D). One is a Kob-Andersen binary
mixture whose amount of bi-dispersity was chosen to avoid crystallization as well as phase separation. In this article
we refer it as 3dKA model. A particle of type « and a particle of type 8 (o = AA, AB,BB), separated by a
distance r from each other, interact via a Lenard-Jones potential given by
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where 7. is the cut-off length above which the potential vanishes. In this work, energies and lengths are given in units
of eaa and oaa, respectively. The parameters of the potential are eag = 1.5ea4, e = 0.5ea4, 0a = 0.80a4, and
opg = 0.8804a. The Boltzmann constant as well as mass of the particles are set to unity, kg = 1.0 and m = 1.0,
respectively. Moreover, we set r. = 2.5. The number density is chosen to be p = N/V = 1.2 (with N the particle
number and V' the volume of the system). The number of particles N is 50000 and the bi-dispersity ratio was 80 : 20
(A: B).

To test the generic nature of our results, we chose another model, with Harmonic interaction between a pair of
particles, that interpolates between finite-temperature glasses and hard-sphere glasses. This model has been studied
extensively in the context of jamming physics. In this article we refer it as 3dHP model. This is a 50 : 50 binary
mixture with diameter ratio of 1.4. The interaction potential is given by
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for r;; < o0;; and 0 otherwise. Considering the diameters of ith and jth particles as o; and o, we define 0y; =
(0; + 0;)/2. We simulated this model at a constant density p = 0.82 and temperature, T, as a control parameter.
The value of € is chosen to be 4.0.

We have done NVT simulations and the equations of motion are integrated with velocity-Verlet integration scheme
using an integration time step of §t = 0.005 7 with 7 = y/mo% 5 /eaa. For all the simulations we have first equilibrated
our systems at least for 507, and stored data for similar simulation time. To keep the temperature constant we
used Gaussian operator-splitting thermostat throughout our simulation [1]. We have also performed 20 statistically
independent simulations for each T and system size studied for better averaging. Note that usual Berendsen thermostat
does not do a good job of maintaining the 7" in this non-equilibrium simulations in presence of active forcing, but the
Gaussian operator splitting thermostat is found to maintain the system at the desired T" without any deviation.

We introduced activity for a fraction p, of the total number of particles in the system. These active particles are
chosen randomly and assigned a self-propulsion forces of the form f = fo(kzZ + kyy + k.2) where kg, ky, k. are £1,
chosen randomly to maintain the momentum conservation up to a persistence time 7,. After the persistence time 7,
the set of values of kg, ky, k. are changed maintaining the momentum conservation. In this work, we keep p, = 0.1
and 7, = 1.0 fixed and study the effect of activity as a function of fj only.

II. COMPUTING DYNAMIC HETEROGENEITY LENGTH SCALE

We have used three different techniques to compute the dynamic heterogeneity length scale £p for all studied
activities.

A. Block analysis of x}

As the time scale is gradually decreasing with increasing activity at a constant 1" we chose a temperature window
for each fy such that we can have a similar 7, range for all activity. We performed the MD simulations at those
temperatures for each fy. To extract the dynamic length scale, {p, of the system at all studied activity values,
we used a newly proposed method “block analysis”, an efficient method to perform finite-size scaling for obtaining
the length scale of dynamic heterogeneity [2]. This method involves considering a small sub-system (referred here
as blocks) of varying sizes embedded in a system of a fixed (large) size. The length scale associated with dynamic
heterogeneity is obtained from a finite-size scaling analysis of the dependence of the four-point dynamic susceptibility,
X4(t) (see definition later) on the block size. All the simulations are carried out for a single, moderately large system



size, N = 50000. We then construct blocks of size Ly = L/n, where n € {3,4,5,...} and calculate various dynamic
quantities using the particles which are present inside one such box at a chosen time origin. Then we compute the
self overlap correlation function, Q(Lp,t), for a particular block size,
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where Np is the number of blocks with size Lg, n; is the number of particles in the ith block at time ¢ = 0, and the
window function w(z) = ©(a — z) where © is the Heaviside step function and the value of the parameter @ is chosen
to remove the de-correlation arising from vibrations of particles inside the cages formed by their neighbours. The
dynamical susceptibility associated with blocks of size Lp is then defined as follows
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FIG. 1. Block size dependence of x} and finite size scaling for activity fo = 0.5 (a & b), fo = 1.0 (c & (d), fo = 1.5 (e & 1),
fo = 2.0 (g & h)

For each fo, we consider the dependence of ' (Lg,T), the peak value of x4(Lp,t) at temperature 7', on the block
size L for a fixed value of N = pL3. This dependence is shown in Fig.1 The left panel of each sub figure shows the
data for x¥' (L, T) as a function of the block length Lp for different 7. The peak value of the dynamical susceptibility
at a given T grows with Lp and saturates at a T-dependent value x4 (oo, T). The dependence of X} (L, T) on Lp
is expected to exhibit the following Finite Size Scaling (FSS) form:

(L5, T) = xolT)F (Lj) (5)
where,
Xo(T) = lim x4 (L, T) (6)

and £ is a characteristic scaling length scale. The data for all temperatures can be collapsed to a master curve using
the two parameters, x1 (co,T) and €, for each temperature, as shown in Fig. 1 for different activities. This length
scale is found to be same as the the dynamic heterogeneity length scale, £p as shown in [2] for the equilibrium system.
The excellent data collapse confirms that the extracted length scales will be very reliable with small error bars (smaller
than the point sizes in our plots).



B. Block analysis of van Hove function

The distribution of particle-displacements, known as the van Hove function, shows non-Gaussian behavior with
exponential tail in the supercooled regime in glass-forming liquids. The non-Gaussian nature can be understood
in terms of spatial and temporal heterogeneous dynamics and the exponential tail is a manifestation of dynamic
heterogeneity. The van Hove correlation function is formally defined as

Gs(z,7) = (0 — (i(r) — 2:(0))]), (7)
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FIG. 2. The van Hove correlation function of different block lengths at lowest temperature for fo = 0.0 (a), fo = 2.5 (b), and
corresponding Binder Cumulants (c).
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FIG. 3. Block size dependence of Binder Cumulant of Van-Hove function and finite size scaling for activity fo = 0.5 (a) and
(b), fo = 1.0 (c) and (d), fo = 1.5 (e) and (f), fo = 2.0 (g) and (h).

where the (---) implies the averaging over different statistically independent samples as well as the time origin
averaging. We have performed systematic spatial coarse-graining of the dynamics to extract {p of the system as
demonstrated in [3]. To do that we have used the method of block analysis where the whole simulation box is divided
into smaller blocks of length, Lg. Thus for a block size of L g, the number of particles in that block will be Ng = pL?jB.



Now we have defined a coarse-grained displacement of the particles in the 5 block as

Azj (1) = - > lwi(r) — z:(0)], (8)
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where n; is the number of particles in the j** block. Note that this number can be different for different blocks. Then
we have defined the van Hove function for block as

B 1 & B
G3 (x,70) = o Z(S[x — Az (1a)] ) - (9)

By increasing the block length Lp, we have then studied the non-Gaussianity for different block lengths. One can
observe that the non-Gaussianity increases with decreasing block size in Fig. 2a (for fo = 0.0) and Fig. 2b (for
fo = 2.5). To measure the non-Gaussianity, we have calculated the Binder Cumulant of the distribution, which is
defined as

B(Lp,T)=1— =) (10)

To extract the temperature dependence of the coarse-graining length scale, we performed the finite-size scaling analysis
of the Binder Cumulant with the following scaling function

(11)
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Note that this procedure removes the need to define any adhoc cut-off parameters to obtain the length scale. The
scaling collapse looks quite good with the use of dynamic length scale (£, = £p) obtained in the block analysis method
in the previous section. Hence we believe that the extracted length scale of the system &p for all activities will be
very reliable. The results are shown in Fig. 3. We also compared the Binder Cumulant of all block sizes in Fig. 2c for
fo = 0.0 and fy = 2.5 where the 7, of the both system is similar. This clearly show that the value of Binder Cumulant
of van-Hove function and hence the associated length scale is bigger for active system than its passive counter part
at similar structural relaxation timescale.

C. Displacement-displacement correlation function I'(r, At)

To understand the physical mechanism behind the enhanced dynamic heterogeneity in the active glass-forming
liquids, we have measured the spatial correlation in the displacement field of particles at At = 7,. This was already
shown in previous studies to correctly capture the temperature dependence of the dynamic heterogeneity length
scale. In this work, we have also implemented the procedure given in [4, 5]. The spatial correlation of the particle
displacements gy, (1, At) is defined as

(S0 s Ay (8, A3 w35 (1) 1))

AL At) =
G ) 47r2 ArNp (u(At))?
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where u;(t, At) =| r;(t + At) — r;(t) | is the scalar displacement of the particle between time ¢ and ¢t + At.

To extract the associated length scale we calculated the quantity called excess displacement-displacement correlation
I'(r, At) defined as

T(r, At) = Guu(r, At) 1, (13)

g(r)

where ¢(r) is the radial pair correlation function given by

g(r) = pLN < Y d(r+ri(0) - rj(O))> : (14)

i.j=1,j#i
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FIG. 4. excess displacement-displacement correlation I'(r, At) for all activities fo = 0.0 (a), 0.5 (b), 1.0 (¢), 1.5 (d), 2.0 (e), 2.5
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FIG. 5. (a) Comparison of {p with two different methods for fo = 0.0 and fo = 2.5. (b) Excessive displacement-displacement
correlation for full system and considering only active particles

With this definition the excess displacement-displacement correlation function goes to zero at large distance,
lim, 0o I'(r, At) = 0. We used At = 7, and calculated the excess displacement-displacement correlation T'(r, At)



for all activities in Fig. 4. The integrated area gives the associated length scale. We also compared the length
scale extracted from this method with the other two methods for fo = 0.0 and fy = 0.0 in Fig. 5. The extracted
length scales from these different methods agree with each other very well. This also reconfirms the robustness of
the methods used to compute the dynamic heterogeneity length scale in this study along with the reliability of the
extracted length scale. Computation of length scale via different methods became necessity in this study as the
results suggest a very dramatic rise in dynamic heterogeneity length scale with changing activity and we wanted to
be completely sure that our observations are supported via all possible existing methods of measuring the dynamic
heterogeneity length in the literature.

We have shown I'(r, At) for the highest activity fo = 2.5 at two different temperatures 7' = 0.340 (7, = 1566.28)
and 7' = 0.570 (7, = 11.195) for N = 50000 in the right panel of Fig.5. We considered the full system as well as
considering only the active particles. It is clear that the value of I'(r, At) is much higher if one considers only the
active particles while computing the displacement-displacement correlation function rather than considering all the
particles. This observation clearly tells that the active particles are probably setting up a longer range correlation in
the system resulting in an enhanced dynamic heterogeneity. Understanding the origin of such longer range correlation
with non-equilibrium active forcing will be an interesting future work and will be addressed elsewhere.

III. TEMPERATURE DEPENDENCE OF ¢p

We present £p as a function of |T;ZK| for all activity in Fig. 6a where Tk is the 'Kauzmann temperature’, the

temperature at which the configuration entropy extrapolates to zero. We obtain Tk by fitting the 7,(7T) data at
different fp with the Vogel-Fulcher-Tammann equation: In7, ~ 1/(T — Tk ). There is a power law behaviour and we

n
calculate the exponent vp for each fy using the relation £p(T) ’%‘ . Fig. 6b shows vp as a function of fj.

The exponent almost linearly increases with fj.
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FIG. 6. (a) Dynamic heterogeneity length scale £p as a function of (T' — Tk)/Tk; lines are fits with the function &p ~
(T —Tk)/Tk|"P. (b) The exponent vp almost linearly increases with fo.

Dependence of ¢p with T,/T

We have also presented the dynamic heterogeneity length scale, {p, as a function of T, /T in Fig. 7(b), where T} is
the calorimetric glass transition temperature, defined as 7,(T = T,) = 108. Tt clearly shows the dramatic increase of
&p with increasing fo.

Figure 7(b) shows T, as a function of fy. From Eq. (1) in the main text, we find that MCT predicts T, = a — bfg
with a and b being two constants. Figure 7(b) shows that the simulation result agrees well with the MCT prediction.
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FIG. 7. (a) Dynamic heterogeneity length scale £p as function of T /T to demonstrate the dramatic growth of length scale even
when the relaxation nature of the system crosses over to strong liquid. This behaviour is strikingly different from equilibrium
in which it is observed that dynamic heterogeneity gets suppressed for strong liquids. See text for details. (b) T, as a function
of fo. Symbols are simulation data and the line is a fit with the MCT prediction T, = a — bf& with a ~ 0.40 and b ~ 0.02.

IV. CORRELATION BETWEEN 7, AND T7,cak
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FIG. 8. The cross plot of 7, and 7peqr for all the studied activity and temperature range. The nice data collapse confirms that
the time at which the peak appears in x4(t) is proportional to the a-relaxation time of the system similar to the passive case.

The time, Tpeqr, at which x4(f) attains its maximum gives a measure of relaxation time. Figure 8 shows Tpeqk
against 7, relaxation time obtained from Q(t), of the system for all studied T and fy. Near collapse of the data
confirms that 7,cqk is proportional to 7, even in the presence of active forces. This observation, along with the analysis
of 7, presented in the main text, suggest that the relaxation dynamics, characterized via either x4(t) or Q(t), can be
understood by an effective-equilibrium-like description at an appropriate effective temperature.



V. COOPERATIVELY REARRANGING REGION (CRR)
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FIG. 9. clustering of faster particles at same 7, for (a) fo = 0.0 and (b) fo = 2.5.

The dynamic heterogeneity scenario of glassy dynamics refers to the coexistence of dynamically slow and fast
relaxing regions in the system. A region consisting of neighboring particles with comparable relaxation time relaxes
collectively and known as cooperatively rearranging region (CRR). Thus, CRR provides a qualitative measure of
dynamic heterogeneity in the system. To observe this region in three dimension, both for the passive and the active
systems, we calculate the net displacement of each particles over a time-scale 7, (~ 10%). We then consider only the
faster particles whose displacements are greater than our chosen cut off value which is 9% of the whole simulation box.
We plot the positions of these particles in the VMD software using the function “surf”: each particle is represented
by a small sphere of certain radius and if the distance between two particles are less than their diameter, they are
collectively represented by a surface. Figure 9(a) shows a typical plot of the faster paricles for equilibrium glass while
Fig. 9(b) shows the same for fy = 2.5; the parameters of the two systems are chosen such their 7, are same. It is
clear from the plot that unlike the equilibrium system, the CRR in case of active system is system spanning. This
visualization gives a qualitative idea of enhanced dynamic heterogeneity in active glass compared to its equilibrium
counterpart.

VI. RESULTS OF 3DHP

In this section, we present some of the main results obtained from 3dHP model system which confirm that the
results presented in the main manuscript are generic and applicable to a wide class of model systems. Note that
this model is very different from the 3dKA model which is a good model for molecular glass-forming liquids, whereas
3dHP is a paradigmatic model for soft sphere systems relevant for colloidal systems and has been widely studied in
the context of jamming physics. The dynamic heterogeneity length scale £p in this model is also computed in the
same way as discussed before for 3dKA model. For a better comparison, we have used the same 7, = 1.0 in the
simulations of the 3dHP model. The results are very similar as 3dKA model, presented in the main text. In Fig. 10
(a) we have shown the dynamic heterogeneity length scale {p as a function of 7, where the length scale at a particular
To Is increasing with increasing fy. In Fig. 10 (b) and (c) we have shown the overlap correlation function, Q(t),
and the four point susceptibility, x4(¢). The parameters in these systems are chosen such that they all have similar
Ta, as confirmed from the plot fo Q(t) [Fig. 10(b)]. It is clear that the peat height, x, of x4(t) is monotonically
increasing with increasing activity which has similar trend as 3dKA model. In Fig. 10 (d) and (e) we have shown
¢p as function of T/Tk and (T — T¢)/Tc respectively. There is a power law behaviour observed between {p and the

T—Tc
Tc

the panel (f). vp seems to linearly increase with fy, similar to the result in simulations of 3dKA model (Fig. 6).

D
rescaled temperature as £p(7T) o ‘ with an exponent vyp. The variation of this exponent vp is shown in
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FIG. 10. Simulation results for the 3dHP model: (a) £p as a function of 7, for different fy. (b) Overlap correlation function,
Q(t), for different activities where the systems have similar 7. (¢) x4(t) for the same systems as in (b). (d) {p as a function of
T/Tk. (e) £p as a function of (T — T¢)/Tc, lines are fits to the form &p ~ [(T — T¢)/Tc] P

. (f) The exponent vp increases
almost linearly with fo.
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