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I. MODEL AND METHODS

The models studied are generic glass-forming liquids in three dimensions (3D). One is a Kob-Andersen binary
mixture whose amount of bi-dispersity was chosen to avoid crystallization as well as phase separation. In this article
we refer it as 3dKA model. A particle of type α and a particle of type β (αβ = AA,AB,BB), separated by a
distance r from each other, interact via a Lenard-Jones potential given by

Φαβ(r) =

{
4εαβ

[(σαβ
r

)12 − (σαβr )6] , if r ≤ rcσαβ
0, if r ≥ rcσαβ ,

(1)

where rc is the cut-off length above which the potential vanishes. In this work, energies and lengths are given in units
of εAA and σAA, respectively. The parameters of the potential are εAB = 1.5εAA, εBB = 0.5εAA, σAB = 0.8σAA, and
σBB = 0.88σAA. The Boltzmann constant as well as mass of the particles are set to unity, kB = 1.0 and m = 1.0,
respectively. Moreover, we set rc = 2.5. The number density is chosen to be ρ = N/V = 1.2 (with N the particle
number and V the volume of the system). The number of particles N is 50000 and the bi-dispersity ratio was 80 : 20
(A : B).

To test the generic nature of our results, we chose another model, with Harmonic interaction between a pair of
particles, that interpolates between finite-temperature glasses and hard-sphere glasses. This model has been studied
extensively in the context of jamming physics. In this article we refer it as 3dHP model. This is a 50 : 50 binary
mixture with diameter ratio of 1.4. The interaction potential is given by

Φ

(
rij
σij

)
= ε

[
1−

(
rij
σij

)2
]
, (2)

for rij < σij and 0 otherwise. Considering the diameters of ith and jth particles as σi and σj , we define σij =
(σi + σj)/2. We simulated this model at a constant density ρ = 0.82 and temperature, T , as a control parameter.
The value of ε is chosen to be 4.0.

We have done NV T simulations and the equations of motion are integrated with velocity-Verlet integration scheme
using an integration time step of δt = 0.005 τ with τ =

√
mσ2

AA/εAA. For all the simulations we have first equilibrated
our systems at least for 50τα and stored data for similar simulation time. To keep the temperature constant we
used Gaussian operator-splitting thermostat throughout our simulation [1]. We have also performed 20 statistically
independent simulations for each T and system size studied for better averaging. Note that usual Berendsen thermostat
does not do a good job of maintaining the T in this non-equilibrium simulations in presence of active forcing, but the
Gaussian operator splitting thermostat is found to maintain the system at the desired T without any deviation.

We introduced activity for a fraction ρa of the total number of particles in the system. These active particles are

chosen randomly and assigned a self-propulsion forces of the form ~f = f0(kxx̂+ ky ŷ + kz ẑ) where kx, ky, kz are ±1,
chosen randomly to maintain the momentum conservation up to a persistence time τp. After the persistence time τp
the set of values of kx, ky, kz are changed maintaining the momentum conservation. In this work, we keep ρa = 0.1
and τp = 1.0 fixed and study the effect of activity as a function of f0 only.

II. COMPUTING DYNAMIC HETEROGENEITY LENGTH SCALE

We have used three different techniques to compute the dynamic heterogeneity length scale ξD for all studied
activities.

A. Block analysis of χP4

As the time scale is gradually decreasing with increasing activity at a constant T we chose a temperature window
for each f0 such that we can have a similar τα range for all activity. We performed the MD simulations at those
temperatures for each f0. To extract the dynamic length scale, ξD, of the system at all studied activity values,
we used a newly proposed method “block analysis”, an efficient method to perform finite-size scaling for obtaining
the length scale of dynamic heterogeneity [2]. This method involves considering a small sub-system (referred here
as blocks) of varying sizes embedded in a system of a fixed (large) size. The length scale associated with dynamic
heterogeneity is obtained from a finite-size scaling analysis of the dependence of the four-point dynamic susceptibility,
χ4(t) (see definition later) on the block size. All the simulations are carried out for a single, moderately large system
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size, N = 50000. We then construct blocks of size LB = L/n, where n ∈ {3, 4, 5, ...} and calculate various dynamic
quantities using the particles which are present inside one such box at a chosen time origin. Then we compute the
self overlap correlation function, Q(LB , t), for a particular block size,

Q(LB , t) =
1

NB

NB∑
i=1

1

ni

ni∑
j=1

〈w(| rj(t)− rj(0) |)〉 , (3)

where NB is the number of blocks with size LB , ni is the number of particles in the ith block at time t = 0, and the
window function w(x) = Θ(a− x) where Θ is the Heaviside step function and the value of the parameter a is chosen
to remove the de-correlation arising from vibrations of particles inside the cages formed by their neighbours. The
dynamical susceptibility associated with blocks of size LB is then defined as follows

χ4(LB , t) =
NL3

B

L3
0

〈
[Q(LB , t)− 〈Q(LB , t)〉]2

〉
(4)
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FIG. 1. Block size dependence of χP4 and finite size scaling for activity f0 = 0.5 (a & b), f0 = 1.0 (c & (d), f0 = 1.5 (e & f),
f0 = 2.0 (g & h)

For each f0, we consider the dependence of χP4 (LB , T ), the peak value of χ4(LB , t) at temperature T , on the block
size LB for a fixed value of N = ρL3. This dependence is shown in Fig.1 The left panel of each sub figure shows the
data for χP4 (LB , T ) as a function of the block length LB for different T . The peak value of the dynamical susceptibility
at a given T grows with LB and saturates at a T -dependent value χP4 (∞, T ). The dependence of χP4 (LB , T ) on LB
is expected to exhibit the following Finite Size Scaling (FSS) form:

χP4 (LB , T ) = χ0(T )F
(
LB
ξ

)
(5)

where,

χ0(T ) = lim
LB→∞

χP4 (LB , T ) (6)

and ξ is a characteristic scaling length scale. The data for all temperatures can be collapsed to a master curve using
the two parameters, χP4 (∞, T ) and ξ, for each temperature, as shown in Fig. 1 for different activities. This length
scale is found to be same as the the dynamic heterogeneity length scale, ξD as shown in [2] for the equilibrium system.
The excellent data collapse confirms that the extracted length scales will be very reliable with small error bars (smaller
than the point sizes in our plots).
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B. Block analysis of van Hove function

The distribution of particle-displacements, known as the van Hove function, shows non-Gaussian behavior with
exponential tail in the supercooled regime in glass-forming liquids. The non-Gaussian nature can be understood
in terms of spatial and temporal heterogeneous dynamics and the exponential tail is a manifestation of dynamic
heterogeneity. The van Hove correlation function is formally defined as

Gs(x, τ) = 〈δ[x− (xi(τ)− xi(0))]〉, (7)
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FIG. 2. The van Hove correlation function of different block lengths at lowest temperature for f0 = 0.0 (a), f0 = 2.5 (b), and
corresponding Binder Cumulants (c).
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FIG. 3. Block size dependence of Binder Cumulant of Van-Hove function and finite size scaling for activity f0 = 0.5 (a) and
(b), f0 = 1.0 (c) and (d), f0 = 1.5 (e) and (f), f0 = 2.0 (g) and (h).

where the 〈· · · 〉 implies the averaging over different statistically independent samples as well as the time origin
averaging. We have performed systematic spatial coarse-graining of the dynamics to extract ξD of the system as
demonstrated in [3]. To do that we have used the method of block analysis where the whole simulation box is divided
into smaller blocks of length, LB . Thus for a block size of LB , the number of particles in that block will be NB = ρL3

B .
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Now we have defined a coarse-grained displacement of the particles in the jth block as

∆xBj (τ) =
1

nj

nj∑
i=1

[xi(τ)− xi(0)], (8)

where nj is the number of particles in the jth block. Note that this number can be different for different blocks. Then
we have defined the van Hove function for block as

GBs (x, τα) =

〈
1

NB

NB∑
j=1

δ[x−∆xBj (τα)]

〉
. (9)

By increasing the block length LB , we have then studied the non-Gaussianity for different block lengths. One can
observe that the non-Gaussianity increases with decreasing block size in Fig. 2a (for f0 = 0.0) and Fig. 2b (for
f0 = 2.5). To measure the non-Gaussianity, we have calculated the Binder Cumulant of the distribution, which is
defined as

B(LB , T ) = 1−
〈
x4
〉

3 〈x2〉2
. (10)

To extract the temperature dependence of the coarse-graining length scale, we performed the finite-size scaling analysis
of the Binder Cumulant with the following scaling function

B(LB , T ) = K
[
LB
ξV (T )

]
. (11)

Note that this procedure removes the need to define any adhoc cut-off parameters to obtain the length scale. The
scaling collapse looks quite good with the use of dynamic length scale (ξV = ξD) obtained in the block analysis method
in the previous section. Hence we believe that the extracted length scale of the system ξD for all activities will be
very reliable. The results are shown in Fig. 3. We also compared the Binder Cumulant of all block sizes in Fig. 2c for
f0 = 0.0 and f0 = 2.5 where the τα of the both system is similar. This clearly show that the value of Binder Cumulant
of van-Hove function and hence the associated length scale is bigger for active system than its passive counter part
at similar structural relaxation timescale.

C. Displacement-displacement correlation function Γ(r,∆t)

To understand the physical mechanism behind the enhanced dynamic heterogeneity in the active glass-forming
liquids, we have measured the spatial correlation in the displacement field of particles at ∆t = τα. This was already
shown in previous studies to correctly capture the temperature dependence of the dynamic heterogeneity length
scale. In this work, we have also implemented the procedure given in [4, 5]. The spatial correlation of the particle
displacements guu(r,∆t) is defined as

guu(r,∆t) =

〈∑N
i,j=1,j 6=i ui(t,∆t)uj(t,∆t)δ(r− | rij(t) |)

〉
4πr2∆rNρ 〈u(∆t)〉2

, (12)

where ui(t,∆t) =| ri(t+ ∆t)− ri(t) | is the scalar displacement of the particle between time t and t+ ∆t.
To extract the associated length scale we calculated the quantity called excess displacement-displacement correlation

Γ(r,∆t) defined as

Γ(r,∆t) =
guu(r,∆t)

g(r)
− 1, (13)

where g(r) is the radial pair correlation function given by

g(r) =
1

ρN

〈
N∑

i,j=1,j 6=i

δ(r + ri(0)− rj(0))

〉
. (14)
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FIG. 4. excess displacement-displacement correlation Γ(r,∆t) for all activities f0 = 0.0 (a), 0.5 (b), 1.0 (c), 1.5 (d), 2.0 (e), 2.5
(f)
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FIG. 5. (a) Comparison of ξD with two different methods for f0 = 0.0 and f0 = 2.5. (b) Excessive displacement-displacement
correlation for full system and considering only active particles

With this definition the excess displacement-displacement correlation function goes to zero at large distance,
limr→∞ Γ(r,∆t) = 0. We used ∆t = τα and calculated the excess displacement-displacement correlation Γ(r,∆t)
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for all activities in Fig. 4. The integrated area gives the associated length scale. We also compared the length
scale extracted from this method with the other two methods for f0 = 0.0 and f0 = 0.0 in Fig. 5. The extracted
length scales from these different methods agree with each other very well. This also reconfirms the robustness of
the methods used to compute the dynamic heterogeneity length scale in this study along with the reliability of the
extracted length scale. Computation of length scale via different methods became necessity in this study as the
results suggest a very dramatic rise in dynamic heterogeneity length scale with changing activity and we wanted to
be completely sure that our observations are supported via all possible existing methods of measuring the dynamic
heterogeneity length in the literature.

We have shown Γ(r,∆t) for the highest activity f0 = 2.5 at two different temperatures T = 0.340 (τα = 1566.28)
and T = 0.570 (τα = 11.195) for N = 50000 in the right panel of Fig.5. We considered the full system as well as
considering only the active particles. It is clear that the value of Γ(r,∆t) is much higher if one considers only the
active particles while computing the displacement-displacement correlation function rather than considering all the
particles. This observation clearly tells that the active particles are probably setting up a longer range correlation in
the system resulting in an enhanced dynamic heterogeneity. Understanding the origin of such longer range correlation
with non-equilibrium active forcing will be an interesting future work and will be addressed elsewhere.

III. TEMPERATURE DEPENDENCE OF ξD

We present ξD as a function of |T−TKTK
| for all activity in Fig. 6a where TK is the ’Kauzmann temperature’, the

temperature at which the configuration entropy extrapolates to zero. We obtain TK by fitting the τα(T ) data at
different f0 with the Vogel-Fulcher-Tammann equation: ln τα ∼ 1/(T − TK). There is a power law behaviour and we

calculate the exponent νD for each f0 using the relation ξD(T ) ∝
∣∣∣T−TKTK

∣∣∣−νD . Fig. 6b shows νD as a function of f0.

The exponent almost linearly increases with f0.
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FIG. 6. (a) Dynamic heterogeneity length scale ξD as a function of (T − TK)/TK ; lines are fits with the function ξD ∼
|(T − TK)/TK |νD . (b) The exponent νD almost linearly increases with f0.

Dependence of ξD with Tg/T

We have also presented the dynamic heterogeneity length scale, ξD, as a function of Tg/T in Fig. 7(b), where Tg is
the calorimetric glass transition temperature, defined as τα(T = Tg) = 106. It clearly shows the dramatic increase of
ξD with increasing f0.

Figure 7(b) shows Tg as a function of f0. From Eq. (1) in the main text, we find that MCT predicts Tg = a− bf20
with a and b being two constants. Figure 7(b) shows that the simulation result agrees well with the MCT prediction.



8

0.2 0.4 0.6 0.8
T

g
/T

5

10

15

20

25

ξ
D

f
0

= 0.0

f
0

= 0.5

f
0

= 1.0

f
0

= 1.5

f
0

= 2.0

f
0

= 2.5

0 0.5 1 1.5 2 2.5
f
0

0.3

0.35

0.4

T
g

(a) (b)

FIG. 7. (a) Dynamic heterogeneity length scale ξD as function of Tg/T to demonstrate the dramatic growth of length scale even
when the relaxation nature of the system crosses over to strong liquid. This behaviour is strikingly different from equilibrium
in which it is observed that dynamic heterogeneity gets suppressed for strong liquids. See text for details. (b) Tg as a function
of f0. Symbols are simulation data and the line is a fit with the MCT prediction Tg = a− bf2

0 with a ≈ 0.40 and b ≈ 0.02.

IV. CORRELATION BETWEEN τα AND τpeak
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FIG. 8. The cross plot of τα and τpeak for all the studied activity and temperature range. The nice data collapse confirms that
the time at which the peak appears in χ4(t) is proportional to the α-relaxation time of the system similar to the passive case.

The time, τpeak, at which χ4(t) attains its maximum gives a measure of relaxation time. Figure 8 shows τpeak
against τα, relaxation time obtained from Q(t), of the system for all studied T and f0. Near collapse of the data
confirms that τpeak is proportional to τα even in the presence of active forces. This observation, along with the analysis
of τα presented in the main text, suggest that the relaxation dynamics, characterized via either χ4(t) or Q(t), can be
understood by an effective-equilibrium-like description at an appropriate effective temperature.
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V. COOPERATIVELY REARRANGING REGION (CRR)

(a) (b)

FIG. 9. clustering of faster particles at same τα for (a) f0 = 0.0 and (b) f0 = 2.5.

The dynamic heterogeneity scenario of glassy dynamics refers to the coexistence of dynamically slow and fast
relaxing regions in the system. A region consisting of neighboring particles with comparable relaxation time relaxes
collectively and known as cooperatively rearranging region (CRR). Thus, CRR provides a qualitative measure of
dynamic heterogeneity in the system. To observe this region in three dimension, both for the passive and the active
systems, we calculate the net displacement of each particles over a time-scale τα (∼ 103). We then consider only the
faster particles whose displacements are greater than our chosen cut off value which is 9% of the whole simulation box.
We plot the positions of these particles in the VMD software using the function “surf”: each particle is represented
by a small sphere of certain radius and if the distance between two particles are less than their diameter, they are
collectively represented by a surface. Figure 9(a) shows a typical plot of the faster paricles for equilibrium glass while
Fig. 9(b) shows the same for f0 = 2.5; the parameters of the two systems are chosen such their τα are same. It is
clear from the plot that unlike the equilibrium system, the CRR in case of active system is system spanning. This
visualization gives a qualitative idea of enhanced dynamic heterogeneity in active glass compared to its equilibrium
counterpart.

VI. RESULTS OF 3DHP

In this section, we present some of the main results obtained from 3dHP model system which confirm that the
results presented in the main manuscript are generic and applicable to a wide class of model systems. Note that
this model is very different from the 3dKA model which is a good model for molecular glass-forming liquids, whereas
3dHP is a paradigmatic model for soft sphere systems relevant for colloidal systems and has been widely studied in
the context of jamming physics. The dynamic heterogeneity length scale ξD in this model is also computed in the
same way as discussed before for 3dKA model. For a better comparison, we have used the same τp = 1.0 in the
simulations of the 3dHP model. The results are very similar as 3dKA model, presented in the main text. In Fig. 10
(a) we have shown the dynamic heterogeneity length scale ξD as a function of τα where the length scale at a particular
τα is increasing with increasing f0. In Fig. 10 (b) and (c) we have shown the overlap correlation function, Q(t),
and the four point susceptibility, χ4(t). The parameters in these systems are chosen such that they all have similar
τα, as confirmed from the plot fo Q(t) [Fig. 10(b)]. It is clear that the peat height, χP4 , of χ4(t) is monotonically
increasing with increasing activity which has similar trend as 3dKA model. In Fig. 10 (d) and (e) we have shown
ξD as function of T/TK and (T − TC)/TC respectively. There is a power law behaviour observed between ξD and the

rescaled temperature as ξD(T ) ∝
∣∣∣T−TCTC

∣∣∣−γD with an exponent γD. The variation of this exponent γD is shown in

the panel (f). γD seems to linearly increase with f0, similar to the result in simulations of 3dKA model (Fig. 6).
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FIG. 10. Simulation results for the 3dHP model: (a) ξD as a function of τα for different f0. (b) Overlap correlation function,
Q(t), for different activities where the systems have similar τα. (c) χ4(t) for the same systems as in (b). (d) ξD as a function of
T/TK . (e) ξD as a function of (T − TC)/TC , lines are fits to the form ξD ∼ [(T − TC)/TC ]−γD . (f) The exponent γD increases
almost linearly with f0.
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