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1 Introduction

In this simulation study we aim to show that the piece-wise exponential additive
mixed-effects models (PAMMs) when assuming proportional hazards, give the same
estimates as the Cox proportional hazards (CPH) frailty models. We do this for both
gap and calendar timescales and stratified and unstratified models. Stratified models
refer to event-specific baseline hazards being modelled for the different event numbers
and unstratified models refer to a common baseline hazard assumed for all events.
Note: The additive value of PAMMs in case of, for instance, non-proportionality is
given in the main text. The simulation set-up to generate recurrent event data is mo-
tivated by the approaches outlined by [1] and [2]. R and RStudio are used for the
constructing the simulations and the analysis [3, 4]. The coxme package [5] is used to
analyze the simulated data using the CPH frailty model framework, and the mgcv [6–
11] and pammtools [12–14] packages are used to analyze the simulated data using the
PAMM framework. In this supplement, we will first describe the simulation setup and
results in the gap timescale in section 3 followed by the calendar timescale in section 4.

For the R code for this simulation study see https://github.com/jordache-ramjith/
PAMM/ and for access to the simulation data files, figures and results files see [15].

2 Model comparison statistics

In this section we will define the measures used to summarize the simulation results
and thus the measures used for comparing the estimations between the CPH frailty
model and the PAMM. The simulations over the different sections are each summa-
rized into a table and two figures. The first figure shows smoothed histograms of
the estimated β coefficients from both the CPH frailty model and the PAMM, with a
dashed black line indicating the true β. In the second figure this is done for the esti-
mated frailty variance. In the table, the mean and standard error (SE) of the estimated
β’s across the different simulations from the CPH frailty model and the PAMM are
shown for each scenario. Moreover, the coverage (cov.) of the true β in the 95% confi-
dence intervals for the estimated β are given for both models. Since the distribution of
the estimated frailty variances is skewed when the true frailty variances are small, the
sample medians are presented. In the last two columns of the table the mean of the
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pair-wise differences between the β estimates in the CPH frailty model and the PAMM
are presented as well as the SE for these difference.

3 Gap timescale

In the gap timescale we will make comparisons between the unstratified CPH frailty
model and the unstratified PAMM followed by a comparison between the stratified
CPH frailty model and the stratified PAMM.

3.1 Simulating data

3.1.1 Generating gap times

We simulate survival times such that the baseline hazard is increasing non-linearly
over time, i.e. λ0(t) = αj t2 where

αj =


1 if unstratified baseline hazards
j if j ≤ 4 & stratified baseline hazards
4 if j > 4 & stratified baseline hazards

where j is the event number. The hazard over time for the jth event conditional on
covariate x and frailty z is thus

λj(t|x,z) = αj t
2 exp(βx+ z).

We place the restriction on αj = min(j,4) to avoid issues of extremely small (and many)
simulated gap times that may rise in the data analysis. For the hazard for the jth

event given in the previous display, the cumulative distribution for the event time
conditional the covariate x and the frailty z, equals

Fj(t|x,z) = 1− exp
(
−
∫ t

0
λj(u|x,z)du

)
= 1− exp

(
−1

3αjt
3 exp(βx+ z)

)
.

Let C be the maximum individual follow-up time (see subsections 3.1.2 and 3.1.3)
and Tij ∼ Fj be the jth gap time for an individual i. Using the fact that Fj(Tij) follows a
uniform distribution at the interval [0,1], the gap times for individual i are simulated
using the following algorithm:

1. Simulate the frailty variable zi ∼N(0,σ2).

2. Simulate a binary covariate xi ∼ Bernoulli(p).

3. Set ti0 = 0 and j = 1.

4. Simulate uij ∼Uniform(0,1).

5. Set the gap time as tij = F−1
j (uij) =

(
−3ln(1−uij )
αj exp(βxi+zi )

) 1
3

where αj is as defined before.

6. if
∑j
k=1 tik < C, set j := j + 1 and go to step 4, to simulate the next event time.

Otherwise, the jth event time is censored by the maximum follow-up time C and
tij = C −

∑j−1
k=1 tik.
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3.1.2 Scenarios: Unstratified baseline hazards

We consider in total eight different scenarios. For each of these scenarios we simulate
500 datasets consisting of recurrent event data of 100 individuals. Across the scenar-
ios, we take β = −1 and p = 0.5 for simulating the binary covariate, we vary the level of
the frailty variance, σ2, as well as the maximum follow-up time (maxtime) and we set
the baseline hazard equal to αj ≡ 1, ∀ j. The eight scenarios are given in Table 1.

scenario 1 2 3 4 5 6 7 8
σ2 0.0 0.2 0.5 1.0 0.0 0.2 0.5 1.0
maxtime 5 5 5 5 20 20 20 20

Table 1: Overview of the eight scenarios in the unstratified baseline setting.

3.1.3 Scenarios: Stratified baseline hazards

The eight scenarios are as described in 3.1.2, except that we simulate stratified baseline
hazards where αj for stratified baseline hazards is defined in section 3.1.1, and we used
10 as our maximum follow-up time criteria for scenarios 5-8 instead of 20 to limit
the number of events when using stratified baselines (remember that the hazards are
higher in the stratified setting). The eight scenarios are described in Table 2.

scenario 1 2 3 4 5 6 7 8
σ2 0.0 0.2 0.5 1.0 0.0 0.2 0.5 1.0
maxtime 5 5 5 5 10 10 10 10

Table 2: Overview of the eight scenarios in the stratified baseline setting.

3.2 Results

For the simulated gap timescale data from the unstratified baseline hazards model, we
estimate the unstratified CPH frailty model and the unstratified PAMM, and compare
the results. Thereafter, we do the same for the stratified models. We present the results
separately in the sections 3.2.1 and 3.2.2 respectively. Remind that we aim to show that
the unstratified models yield similar results, and the same for the stratified models.

3.2.1 Model comparisons: Unstratified models

A summary of the results is shown in Table 3 and figures 1 and 2. From the difference
column in Table 3 we see that across all scenarios, the mean difference between the
CPH frailty model estimated β and the PAMM estimated β are less than 0.01, with
low standard errors. For scenarios 1-4, in Table 3 we see that the coverage of the true
effect in the 95% CIs for the CPH frailty model and the PAMM are just below 95%.
When the maximum follow-up time is increased to 20, i.e. scenarios 5-8, we notice an
improvement in both models in terms of reduced bias in the estimated effect β, and for
the PAMM in particular, we see that the coverage of the true effects in the 95% CIs are
closer to 95% than the CPH frailty model.
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Scenario CPH frailty model PAMM Difference
β̂ SE cov. σ̂2 β̂ SE cov. σ̂2 mean SE

1 -1.02 0.14 93.6 0.00 -1.02 0.14 93.4 0.00 −9.1× 10−4 1.1× 10−2

2 -0.99 0.17 90.4 0.18 -0.99 0.17 90.6 0.19 2.8× 10−3 1.0× 10−2

3 -0.97 0.20 91.8 0.45 -0.97 0.20 92.8 0.46 9.1× 10−5 1.0× 10−2

4 -0.95 0.24 93.2 0.91 -0.94 0.24 93.8 0.89 −5.9× 10−3 1.1× 10−2

5 -1.00 0.06 94.4 0.00 -1.00 0.06 94.6 0.00 −3.0× 10−3 4.3× 10−3

6 -0.99 0.11 93.2 0.19 -0.99 0.11 95.4 0.19 −1.2× 10−4 2.1× 10−3

7 -0.98 0.15 92.0 0.47 -0.98 0.15 95.8 0.48 −7.5× 10−4 2.3× 10−3

8 -0.97 0.20 92.4 0.90 -0.97 0.20 95.0 0.95 2.0× 10−3 6.8× 10−3

Table 3: Summary of the estimated effects, from the CPH frailty model and the PAMM,
and their differences for the eight different scenarios. Here we used the unstratified
baseline hazards approach in a gap timescale. The summary measures are described
in section 2.

In the figures 1 and 2 smoothed histograms of the estimated regression coefficient
and frailty variance in both unstratified models for the 8 scenarios are shown. For all
scenarios presented, we see that the results of the CPH frailty model and the PAMM
are very similar. Looking specifically at the scenarios 1-4 where the data are simulated
with a maximum follow-up time of 5, we see that estimated effects and frailty variances
from the unstratified CPH frailty model and unstratified PAMM are very similar but
somewhat underestimate the true frailty variance (Figure 2).
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Figure 1: Smoothed histograms of the estimated beta coefficients from the unstratified
CPH frailty model and the unstratified PAMM across the simulated data for the eight
different scenarios. The overlap of the histograms from both models is shown in purple
(there is a perfect overlap).
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Figure 2: Smoothed histograms of the estimated frailty variances from the unstratified
CPH frailty model and the unstratified PAMM for the eight different scenarios. The
overlap of the histograms from both models is shown in purple. In scenario 5 there is
a high spike at zero.

3.2.2 Model comparisons: Stratified models

A summary of the results for the stratified models is shown in Table 4, and smoothed
histograms of the estimated regression coefficient and frailty variance for both strat-
ified models for the 8 scenarios are given in Figures 3 and 4. From the difference
column in Table 4 we see that across all scenarios, the mean difference between the
CPH frailty model estimated β and the PAMM estimated β are slightly higher than for
the differences in the unstratified models (Table 3), but are still relatively small (mean
difference is < 0.05 with low standard errors). For the shorter follow-up time, i.e. sce-
narios 1-4, we see that the PAMM estimates the regression parameter β and the frailty
variance more accurately than the CPH frailty model when the true frailty variances
are larger (scenarios 3 & 4). However, when the true frailty variance is very small (sce-
nario 1), the CPH frailty model estimates the regression parameter β and the frailty
variance more accurately than the PAMM. For true frailty variances σ2 > 0, we see that
the coverage of the true effect (β = −1) in the PAMM 95% CIs are slightly higher than
that of the CPH frailty model. When the maximum follow-up time is increased to 10,
i.e. scenarios 5-8, we notice an improvement in both models in terms a higher accuracy
of the estimated effect β, and for the PAMM in particular, we see that the coverage of
the true effects in the 95% CIs are closer to 95% than the CPH frailty model except
for scenario 5 where the true frailty variance is 0. The estimated frailty variances from
the PAMM also become closer to the true frailty variances than the CPH frailty model
- again, except for scenario 5. Overall we also see that the smoothed histograms of
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the estimated beta coefficients and the frailty variances become narrower when the
follow-up time is longer.

CPH frailty model PAMM Difference
Scenario β̂ SE cov. σ̂2 β̂ SE cov. σ̂2 mean SE

1 -1.03 0.13 94.6 0.00 -1.06 0.13 91.6 0.02 3.6× 10−2 1.9× 10−2

2 -0.98 0.16 92.2 0.18 -1.02 0.17 93.0 0.22 4.3× 10−2 1.7× 10−2

3 -0.95 0.19 92.2 0.45 -0.99 0.19 93.6 0.50 3.6× 10−2 1.8× 10−2

4 -0.94 0.23 92.6 0.89 -0.96 0.24 93.8 0.95 2.7× 10−2 1.9× 10−2

5 -1.01 0.09 93.6 0.00 -1.04 0.09 91.6 0.01 3.3× 10−2 1.2× 10−2

6 -0.98 0.12 92.6 0.18 -1.01 0.12 94.8 0.21 3.7× 10−2 1.1× 10−2

7 -0.97 0.16 92.8 0.46 -1.00 0.16 95.4 0.51 3.5× 10−2 1.2× 10−2

8 -0.95 0.20 93.4 0.88 -0.99 0.21 95.2 1.00 3.7× 10−2 1.6× 10−2

Table 4: Summary of the estimated effects, from the CPH frailty model and the PAMM,
and their differences for the eight different scenarios. Here we used the stratified base-
line hazards approach in a gap timescale. The summary measures are described in
section 2.
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Figure 3: Smoothed histograms of the estimated beta coefficients from the stratified
CPH frailty model and the stratified PAMM for the eight different scenarios. The over-
lap of the histograms from both models is shown in purple.
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Figure 4: Smoothed histograms of the estimated frailty variances from the stratified
CPH frailty model and the stratified PAMM for the eight different scenarios. The over-
lap of the histograms from both models is shown in purple.

4 Calendar timescale

In the calendar timescale, we will make comparisons between the unstratified CPH
frailty model and PAMMs.

4.1 Simulating data

4.1.1 Generating calendar times

For the simulation of calendar times, we used Weibull distributed baseline hazards
with parameters λ = 1 and γ = 0.5, a baseline hazards that is high early on in calendar
time and then decreases over calendar time. This is an unstratified baseline hazard
pattern that is seen in recurrent childhood infectious diseases, i.e. as children grow
older, their event rate for childhood infectious diseases decrease. The hazard over time
conditional on a covariate x and frailty z is thus

λ(t|x,z) =
exp(βx+ z)
√
t

.

[2] shows that the cumulative incidence function for the time between the (j −1)th and
the jth event, w = tj − tj−1 is

F(w|tj−1,x,z) = 1− exp

−∫ tj−1+w

tj−1

λ(u|x,z) du
 .
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For the baseline hazard we chose, the calendar time for the jth event is thus

tj =
(− ln(1−F(w|tj−1,x,z))

2exp(βx+ z)
+

√
tj−1

)2

.

For C the maximum individual follow-up time (see subsection 4.1.2), the recurrent
event times in calendar timescale for individual i are simulated according to the fol-
lowing algorithm:

1. Simulate the frailty variable zi ∼N(0,σ2).

2. Simulate a binary covariate xi ∼ Bernoulli(0.5).

3. Set ti0 = 0 and set j = 1.

4. For the jth event, simulate uij ∼Uniform(0,1).

5. Set tij =
(
− ln(1−uij )

2exp(βxi+zi )
+

√
ti(j−1)

)2
.

6. if tij < C, set j := j + 1 and go to step 4, to simulate the next event. Otherwise, the
jth event time is censored by the maximum follow-up time C and tj = C.

For more information on the simulation details for simulating recurrent events in cal-
endar time, see [2, 16].

4.1.2 Scenarios

Again, we consider eight different settings. For each setting, we simulate 500 datasets
each consisting of recurrent event data of 100 individuals. Across all scenarios, we take
β = −1 and p = 0.5 for the simulation of the binary covariate, we vary the level of frailty
variance, σ2, and the maximum follow-up time. The eight scenarios are described in
Table 5.

scenario 1 2 3 4 5 6 7 8
σ2 0.0 0.2 0.5 1.0 0.0 0.2 0.5 1.0
maxtime 25 25 25 25 100 100 100 100

Table 5: Overview of the eight scenarios in the calendar timescale setting.

4.2 Results

For the calendar timescale simulated data, we analyze each simulated dataset with
the unstratified CPH frailty model and the unstratified PAMM, both using a calendar
time approach. A summary of the analysis is shown in Table 6, and the smoothed
histograms of the estimated regression coefficient and frailty variance for both the CPH
frailty model and PAMMs for the eight scenarios are shown in Figures 5 and 6. For
all scenarios presented, we see that the estimates in the CPH frailty model and the
PAMM are very similar (difference column, Table 6). Both models tend to estimate the
regression parameter and frailty variance better when there is a longer follow-up time -
due to a larger number of events. When the true frailty variance is more than zero, both
models slightly underestimate the frailty variance; and this slight underestimation is
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larger when the true frailty variance is large and the maximum follow-up time is low.
Overall, the bias in estimates are relatively low for all scenarios with the highest (7%)
for scenario 4, from both models, where there is more censoring because individuals
with very low frailties will more likely exceed the maximum time.

CPH frailty model PAMM Difference
Scenario β̂ SE cov. σ̂2 β̂ SE cov. σ̂2 mean SE

1 -1.00 0.08 96.2 0.00 -1.00 0.08 96.2 0.00 1.7× 10−3 1.8× 10−3

2 -0.97 0.12 94.4 0.18 -0.97 0.12 94.8 0.18 9.1× 10−4 1.1× 10−3

3 -0.95 0.15 93.8 0.46 -0.95 0.15 93.6 0.44 −1.0× 10−3 1.5× 10−3

4 -0.93 0.20 94.8 0.92 -0.93 0.20 93.6 0.85 −3.1× 10−3 4.6× 10−3

5 -1.00 0.06 96.2 0.00 -1.00 0.06 96.4 0.00 8.6× 10−4 9.1× 10−4

6 -0.97 0.11 93.8 0.19 -0.97 0.11 93.8 0.19 3.3× 10−4 5.9× 10−4

7 -0.96 0.15 94.4 0.47 -0.96 0.15 93.8 0.46 −7.9× 10−4 7.1× 10−4

8 -0.95 0.20 94.6 0.94 -0.94 0.20 93.6 0.90 −1.4× 10−3 4.4× 10−3

Table 6: Summary of the estimated effects, from the CPH frailty model and the PAMM,
and their differences for the eight different scenarios. Here we used the unstratified
baseline hazards approach in a calendar timescale. The summary measures are de-
scribed in section 2.
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Figure 5: Smoothed histograms of the estimated beta coefficients from the unstratified
CPH frailty model and the unstratified PAMM, both in the calendar timescale, for the
eight different scenarios. The overlap of the histograms from both models is shown in
purple.
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Figure 6: Smoothed histograms of the estimated frailty variances from the unstratified
CPH frailty model and the unstratified PAMM, both in the calendar timescale, for the
eight different scenarios. The overlap of the histograms from both models is shown in
purple.

4.2.1 Additional simulations: N=200

We run 200 additional simulations for each of the scenarios described in section 4.1.2,
but we increase the sample size to 200. We see similar results but with smaller stan-
dard errors, as expected (Table 7, Figures 7 & 8).
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CPH frailty model PAMM Difference
Scenario β̂ SE cov. σ̂2 β̂ SE cov. σ̂2 mean SE

1 -0.99 0.06 94.0 0.00 -0.99 0.06 94.5 0.00 8.9× 10−4 8.0× 10−4

2 -0.97 0.09 91.0 0.19 -0.97 0.09 91.0 0.18 4.2× 10−4 5.9× 10−4

3 -0.95 0.12 89.5 0.47 -0.95 0.12 89.5 0.44 −1.6× 10−3 1.1× 10−3

4 -0.94 0.16 92.5 0.93 -0.94 0.16 91.5 0.86 −3.9× 10−3 2.5× 10−3

5 -0.99 0.05 95.0 0.00 -0.99 0.05 96.0 0.00 3.7× 10−4 3.5× 10−4

6 -0.98 0.08 91.0 0.19 -0.98 0.08 91.0 0.19 −7.2× 10−5 2.8× 10−4

7 -0.97 0.11 92.0 0.48 -0.97 0.11 92.0 0.46 −1.3× 10−3 6.0× 10−4

8 -0.96 0.15 94.0 0.95 -0.96 0.15 93.5 0.90 −2.0× 10−3 2.4× 10−3

Table 7: Summary of the estimated effects, from the CPH frailty model and the PAMM,
and their differences for the eight different scenarios. Here we used the unstratified
baseline hazards approach in a calendar timescale and a larger sample size (N = 200).
The summary measures are described in section 2.
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Figure 7: Smoothed histograms of the estimated beta coefficients from the unstratified
CPH frailty model and the unstratified PAMM, both in the calendar timescale, for the
eight different scenarios with sample size N=200. The overlap of the histograms from
both models is shown in purple.
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Figure 8: Smoothed histograms of the estimated frailty variances from the unstratified
CPH frailty model and the unstratified PAMM, both in the calendar timescale, for the
eight different scenarios with sample size N=200
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