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SUPPLEMENTARY METHODS
[bookmark: _Hlk166366455]Overall design of the Pustule Infection data set (scRNA-seq and SRT data) generated in this study.
To identify the cellular source and location of differentially expressed host transcripts during the pustular stage of H. ducreyi infection, six volunteers (four men, two women; four white, two Asian; mean age ± SD: 32.0 ± 8.2 years) were inoculated with estimated doses ranging from 41 to 85 CFU of strain 35000HP at three skin sites, along with a buffer control at one additional site on the deltoid. Biopsies were not performed if the infection resolved on its own. In cases where multiple pustules developed on a volunteer, the largest pustule and the corresponding wound were biopsied using a 6 mm punch. Four of the volunteers developed pustules, and biopsies were taken 7 to 8 days post-infection. At the bedside, the biopsies were halved with a razor blade, and each portion was processed for single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics. All five volunteers provided samples for the single-cell analysis. 

Sample and experimental information of the H. ducreyi Infection data set.
[bookmark: _Hlk166366551]Four healthy volunteers were recruited in this human challenge study using the H. ducreyi strain 35000HP. This is approved by the Institutional Review Board of Indiana University-Purdue University Indianapolis 1. The inoculum preparation followed a protocol authorized by the U.S. Food and Drug Administration under BB-IND #13064. Each volunteer was inoculated at three upper arm sites with live 35000HP and at one control site with PBS, using puncture wounds created by an allergy testing device. The inoculation sites were arranged 3 cm apart vertically. Clinical endpoints included the formation of a painful pustule, resolution of infection at all sites, or a maximum observation period of 14 days. The procedures for bacterial preparation, inoculation, biopsy collection, and clinical monitoring adhered to previously established protocols and are described in detail in the Supplementary Methods.

Single Cell RNA-sequencing and Analysis. 
The single-cell RNA sequencing workflow began with cell capture and library preparation using the 10X Genomics Next GEM single-cell reagent kit. Gel beads containing barcoded oligonucleotides and reverse transcription reagents were employed to generate cDNA libraries, which were subsequently assessed for quality using a Bioanalyzer. Sequencing was carried out on an Illumina NovaSeq 6000, producing paired end reads (100 bp) that included unique molecular identifiers (UMIs), cell barcodes, and transcript sequences. 
Data processing was performed with CellRanger 5.0.1 (10xgenomics.com/), aligning sequencing reads to the hg19 human reference genome using the STAR aligner. UMI-based quantification was used to derive gene expression levels, while quality control steps removed low-quality cells. Doublets were identified and excluded with scDblFinder2, and batch effects were addressed using Harmony3. Subsequent data analysis, including dimensionality reduction, visualization, clustering, and cell-type identification, was carried out using Seurat v5. Cell-type annotations were assigned by comparing cluster-specific marker genes with known canonical signatures, resulting in the identification of 13 distinct cell populations across 82,972 cells.

Spatial transcriptomics sequencing and Analysis. 
The spatial transcriptomics was conducted using the 10X Genomics Visium platform with the fresh-frozen tissue protocol. Visium spatial 3' gene expression libraries were constructed following the guidelines provided in the Visium Spatial Gene Expression Reagent Kits User Guide. Sequencing libraries were prepared and sequenced on an Illumina NovaSeq 6000 system. The raw sequencing data underwent preprocessing and quality control using SpaceRanger v1.1. Spot-level normalization was performed using the log-normalization method implemented in Seurat. The relative abundance of specific cell types, such as T cells, cytotoxic cells, and antigen-presenting cells (APCs), was estimated by calculating the average expression of cell type-specific marker genes.

Details of the public data used in this study
Public CITE-seq data processing and analysis.
We collected three CITE-seq datasets from public domain. Basic QC for SC using the Seurat (version 3) to filter out cells with high expressions of MT-coding genes. After the pre-processing, we applied PSAA to gene expression matrix in each CITE-seq dataset, and then computed the Pearson correlation coefficients between the cell-wise antigen presentation level we predicted and the cell surface protein level. In details, we used the mean antigen presentation level of crucial modules in MHC class I antigen presentation pathway: “Biosynthesis of MHC I” (Module 4), “Peptide loading complex” (Module 5) and “Transit from the endoplasmic reticulum (ER) to the Golgi” (Module 6) to be the cell-wise antigen presentation level. And used “HLA-A” ADT counts as cell surface protein level.

GSE249542: This dataset involves treating peripheral blood mononuclear cell (PBMC) samples from two different donors with ABBV-319, CD19 monoclonal antibody (mAb), or DMSO (as a control). Genomic materials were collected 24 hours post-treatment and profiled using CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing) to analyze changes in gene expression and cell lineage composition following treatment with ABBV-319.
GSE200417: This dataset explored the utility, pros and cons of DOGMA-seq compared to the bimodal cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) assay in activated and stimulated human peripheral blood T cells.
SCP1064: This dataset developed a new approach, Perturb-CITE-seq, for pooled CRISPR perturbation screens with multi-modal RNA and protein single-cell profiling readout and applied it to screen patient-derived autologous melanoma and tumor infiltrating lymphocyte (TIL) co-cultures. They profiled RNA and 20 surface proteins in over 218,000 cells under ~750 perturbations, chosen by their membership in an immune evasion program that is associated with immunotherapy resistance in patients. This dataset was downloaded from https://singlecell.broadinstitute.org/single_cell/study/SCP1064/multi-modal-pooled-perturb-cite-seq-screens-in-patient-models-define-novel-mechanisms-of-cancer-immune-evasion#study-summary

Public bulk RNA-seq and proteomics data processing and analysis.
We collected two bulk RNA-seq and proteomics data from public domain. na.omit() function in R was used to remove all NAs in the original data matrix. Then each sample was normalized using basic normalization function. We applied PSAA to gene expression matrix and protein expression matrix separately and got sample-wise antigen presentation level for each input. To test the consistency of our predictions, we computed the Pearson correlation coefficients between the two results.
CCLE: Cancer Cell Line Encyclopedia from the Broad Institute and Novartis, updated 2019. Data downloaded from https://www.cbioportal.org/study/summary?id=ccle_broad_2019
TCGA: TCGA Ovarian Serous Cystadenocarcinoma. Data downloaded from https://www.cbioportal.org/study/summary?id=ov_tcga


Public spatial transcriptomics data and analysis.
We collected five spatial transcriptomics datasets from public domain. Three of them comes from 10x spatial official website and two of them comes from GSE206552. Basic QC and normalization were performed using the Seurat (version 3). We applied PSAA to the gene expression matrix of spatial transcriptomics dataset and got the sample-wise antigen presentation level. In this experiment, we used mean antigen presentation level we predicted of all the modules in the whole MHC class I pathway to be the sample-wise antigen presentation level. And we used mean gene expression level of CD8+ cytotoxic T-cell markers as t cell expression level. Finally, spatial segmentation method (Spatial segmentation and analysis in Methods) was applied to identify spatial regions of high-/low- MHC-I level and high-/low- CTL cell level.

Spatial skin melanoma data: This dataset was downloaded from 10x spatial official website.
(https://www.10xgenomics.com/datasets/human-melanoma-if-stained-ffpe-2-standard)
Spatial breast cancer data: This dataset was downloaded from 10x spatial official website. Block A section 1 was used in this paper. (https://support.10xgenomics.com/spatial-gene-expression/datasets) 
Spatial prostate cancer data: This dataset was downloaded from 10x spatial official website. Adjacent normal section with IF Staining (FFPE) was used in this paper.
(https://www.10xgenomics.com/datasets/human-prostate-cancer-adjacent-normal-section-with-if-staining-ffpe-1-standard-1-3-0)
GSE206552: Heterogeneity of senescent cancer cells have been dissected by Spatial Transcriptomic in human colorectal liver metastasis (CRLM) in this dataset. It collected comparative spatial gene expression profiling of senescent cancer cells subpopulations.


Public immune response data.
GSE91061: This dataset investigates the effects of immune checkpoint blockade (ICB) therapy on tumor characteristics in humans. It includes 109 RNA-Seq samples from 65 patients, with 58 taken during treatment and 51 before treatment. The dataset investigates the promise of ICB therapy in treating advanced cancers like melanoma and non-small cell lung cancer by activating the immune system.
GSE115821: This dataset investigates the effects of immune checkpoint blockade (ICB) therapy on metastatic melanoma in humans. There are 37 RNA-Seq samples, with 3 responses after treatment and 34 non-responses after treatment.
GSE126043: This dataset investigates the effects of immune checkpoint blockade (ICB) therapy on Non-Small Cell Lung Cancer (NSCLC) in humans. There are 18 RNA-Seq samples, with 12 responses after treatment and 6 non-responses after treatment.
GSE162137: This dataset examines the response to pembrolizumab therapy in cutaneous T cell lymphoma (CTCL). It includes data from 14 patients enrolled in a clinical trial, with a total of 70 tumor regions analyzed. It includes 64 RNA-Seq samples, with 37 having response and 27 without response.


Public Alzheimer’s disease single cell RNA-seq data.
We collected Alzheimer’s disease single cell RNA-seq data from The Religious Orders Study and Memory and Aging Project (ROSMAP) Study (https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage/StudyDetails?Study=syn3219045) and chose Single Nucleus RNAseq - DLPFC, Experiment 1 (N = 24). It includes 172,659 single cells from 24 individuals with seven cell types: microglia (Mic), astrocytes (Ast), endothelial cells (End), excitatory neurons (Exc), inhibitory neurons (Inh), oligodendrocytes (Oli) and oligodendrocyte precursor cells (OPC). Basic QC and normalization were performed using the Seurat (version 5). For better visualization, we randomly sampled 500 samples from each cell type and preformed PSAA to compare MHC class II antigen presentation level among cell types.

Gene markers
We used CD8+ cytotoxic T-cell markers and CD4+ T-cell markers to identify the T cell expression level in downstream functions on the Pustule infected skin tissue data and Spatial dissection. Gene markers we used in this paper were given in Table 1.
Table 1 in Supplementary Methods. Gene markers used in this paper 
	Cell type
	Markers

	CD4+ T cell
	AIM2, ANKRD44, ARHGAP25, ARHGAP9, ARHGEF6, BTLA, CD28, CD40LG, CD48, CD5, DOCK10, GIMAP1, GIMAP5, GPR171, GPR174, IKZF1, IRF8, ITK, LTA, LY9, PARP15, PTPRC, RASSF5, RHOH, SAMD3, SCML4, SLAMF1, TAGAP, TESPA1, THEMIS, TMC8, TRAF3IP3, TRAT1, ZC3H12D, ZNF831

	CD8+ T cell
	CCL5, CD3D, CD7, CD8A, CST7, CTSW, GZMA, GZMB, GZMH, GZMM, NKG7, PRF1



Collection and reconstruction of MHC Class I and MHC Class II antigen presentation pathway
Antigen processing is a fundamental mechanism within the immune system, wherein intact antigens undergo degradation, and resulting peptide fragments are loaded onto major histocompatibility complex (MHC) molecules and then presented on the cell surface, facilitating recognition by T cells. Due to the different molecule structures, there are two kinds of MHC-MHC class I (recognized by CD8+) and MHC class II (recognized by CD4+). They can carry antigens from different recourses (MHC I mainly bind exogenous antigens while MHC II mainly bind endogenous antigens) and present them on the cell surface in totally different pathways. Although databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome and GO provide well-constructed antigen presentation pathway, we optimize the MHC class I and MHC class II antigen presentation pathways for systems biology-based antigen presentation level analysis because of the following reasons: (1) some databases construct antigen presentation pathway only using genes encoding MHC molecules and genes regulating peptides binding to MHC, but neglect other important modules in antigen presentation pathways, like proteasomal degradation of cytosolic proteins, Peptides being further trimmed in ER, MHC-I-peptide complexes transferring through Golgi to cell surface and recycling. (2) Others construct networks in high complexity with repeated genes in different modules, which is unfeasible for flux computation. In SAA, we manually collected, curated, and reconstructed the biological processes that are involved in the MHC class I and II antigen presentation pathway via integrating pathway annotations in GO, KEGG and Reactome databases and an extensive literature set.
The MHC class I antigen presentation pathway encompasses a series of intricate biological processes. These include ubiquitination, proteasomal degradation, the action of the transporter associated with antigen processing (TAP), chaperone-assisted assembly of the MHC class I complex, transit from the endoplasmic reticulum (ER) to the Golgi apparatus, and subsequent exocytosis from the Golgi to the cell membrane. Additionally, auxiliary pathways such as de-ubiquitination, verification of MHC class I complex integrity, and salvage through endocytosis are also added as branches in this pathway. The final MHC class I antigen presentation pathway covers 284 genes of 8 modules.
The MHC class II antigen presentation pathway involves modules like uptake of extracellular proteins into cell, processing of internalized proteins in endosomal/lysosomal, biosynthesis of MHC2 in ER, transport of MHC2 from ER to Golgi, transport of MHC2 from Golgi to Endosomes, association of MHC2 with antigen, expression of Peptide MHC2 Complex to cell surface. The final MHC class II antigen presentation pathway covers 124 genes of 7 modules.
Complete list of genes and modules of the MHC class I and MHC class II antigen presentation pathways is given in Table 2 and Table 3.

Table 2 in Supplementary Methods. Statistics of MHC class I antigen presentation pathways
	ID
	Module Name
	#Genes

	1
	E1/E2/E3
	93

	2
	Deubiquitination
	20

	3
	26S Proteasome
	43

	4
	Biosynthesis of MHC I
	8

	5
	Peptide loading complex (PLC)
	13

	6
	Transit from the endoplasmic reticulum (ER) to the Golgi
	65

	7
	Exocytosis from the Golgi to the cell membrane
	41

	8
	Recycling
	4



Table 3 in Supplementary Methods. Statistics of MHC class II antigen presentation pathways
	ID
	Module Name
	#Genes

	1
	Uptake of extracellular proteins into cell
	8

	2
	Processing of internalized proteins in endosomal/lysosomal
	18

	3
	Biosynthesis of MHC2 in ER
	15

	4
	Transport of MHC2 from ER to Golgi
	53

	5
	Transport of MHC2 from Golgi to Endosomes
	17

	6
	Association of MHC2 with antigen 
	5

	7
	Expression of Peptide MHC2 Complex to cell surface
	17




Reconstruction of the antigen presentation pathway into a factor graph
We formulated the antigen presentation pathway into a directed factor graph-based representation by considering each biological process (or reaction step) as a variable and the product of each process as a factor. A directed factor graph was first reconstructed using the adjacency matrix of all biological processes in the antigen presentation pathway. In the factor graph, variables, factors, and directed edges correspond to biological processes, antigen presentation products, and whether a biological process generates the products or use the products as substrate, respectively. 

Prediction of MSS/MSI status and prediction of T cell and cytotoxicity level using bulk cancer RNA-seq data, and multi-variate logistic regression analysis to determine the top features in explaining patients’ responsiveness to PD-1 inhibitor.
Microsatellite instability (MSI) is a genomic property of the cancers with defective DNA mismatch repair and is a useful marker for cancer diagnosis and treatment in diverse cancer types[ref]. MSI has been associated with the active immune checkpoint blockade therapy response in cancer. In this paper, we use PreMSIm4: an R package which offers a computational approach for inferring MSI status from the expression profiling of a 15-gene panel in cancer. The package was applied to bulk RNA-seq data obtained from a melanoma dataset (GSE91061), consisting of patients under anti-PD1 therapy using Nivolumab.

Robust analysis of MPSL
We tested the robustness of MPSL on three real-world biological reaction networks and a complex synthetic directed factor graph (SDFG) using simulated data. The networks include (1) the MHC I antigen presentation pathway; (2) the glycolysis pathway of 6 metabolites and 10 reactions; (3) and the Central Metabolic Map Reaction Network of 66 metabolites, 159 reactions, and 3 cycles; and (4) a synthetic network of 204 factors, 453 variables, and 18 cycles. 
The synthetic observation data were generated by simulating non-time course data associated with the factor nodes in the networks. A matrix  representing the flux of M reactions in N samples was generated, where each row  was balanced using the Message Passing algorithm (the MPO step), ensuring equal input and output fluxes for each factor node. From this, the non-linear relationships between observed data  and fluxes  were modeled using two non-linear functions (NLFs). These functions enabled backward simulations to generate plausible observations under different scenarios. Random values in the resulting  were set to zero to introduce data sparsity, after which the directed factor graph and simulated data were used to evaluate the methods’ accuracy in recovering the true flux values.
To assess the robustness and effectiveness of MPSL, experiments were conducted on synthetic data with varying levels of error, mimicking real-world data imperfections. We observed that MPSL consistently produced results with high cosine similarity to the target configurations, underscoring its reliability (see Figure 1SI of supplementary information a-1, b-1, c-1, d-1). The algorithm's ability to maintain high fidelity in outcomes, even with data noise, highlights its potential for broader application in graph-based optimization tasks. The performance of MPSL was further analyzed across different learning rates and directed factor graphs, ranging from simple to complex. The results showed a consistent decrease in imbalance loss and an increase in cosine similarity (Figure 1SI a-2, a-3, a-4, b-2, b-3, b-4, c-2, c-3, c-4, d-2, d-3, d-4), confirming MPSL’s robustness and adaptability.
[image: ]
Figure 1SI of Supplementary Information. Experiments of the Effectiveness, Robustness, Running Time of MPSL on four Directed Factor Graphs.
Statistical consideration of the necessary sample size for MPSL
	Our previous studies demonstrated that scFEA could be robustly applied to data sets of small or moderate sample sizes. The empirical experience is that the required sample size should be above 5-8 times the number of modules of the analyzed network. For a rough estimation, each module involves six intermediate neurons (in the supervised neural network), where n is the number of genes in each module, and each intermediate metabolite adds a one-dimensional linear constraint to the solution space. The new MPSL is more robust to overfit than scFEA. Thus, input data with a sample size of 5-8 times the number of modules should ensure a good statistical power to fit the MPSL model. In this study, the MHC I and II module sizes are eight and seven, respectively. Thus, PSAA could be applied to a data set with at least 40 samples.

Determination of hyperparameter  
The hyperparameter  in the PSAA model regularizes the balance between the influx and outflux of intermediate substrate . Adjusting  enables certain imbalance of intermediate substrates. This assumption is necessary for large molecule processing pathways because some reaction steps are not substrate-specific, like the processing of MHC complex in ER. Our empirical run on multiple data sets suggests that the PSAA algorithm is robust to varied  when all the reactions in the system are substrate specific and the variation of  is within a certain range (the fold-change between the minimal  and maximal  is within 10 times).
When there are non-substrate-specific reactions, to identify the optimal , different  should be evaluated under the same sum of , i.e. fixed . Then the  corresponds to the minimal flux balance loss (weighted by ) derived under cross validation will be selected as the optimal .
In the ROSMAP analysis, we shifted  to demonstrate the inconsistency between the pre-assumed network and the observed data. The underlying idea of this analysis is that if the data could be fit to the pre-assumed network, there must exists a , by which a balanced approximation of the network flux could be computed.

Systems Biology Considerations of PSAA and Constrained Learning
To illustrate the underlying idea of constrained learning (a new type of physics informed neural network), we utilize a general representation of a biological system, denoted as , in which  represents the molecules (concentration), changing rates of the molecules (reaction rate), dependency among the changing rates (like flux balance or other physical laws), and model parameters, respectively. Noted, here  represents a set of functions, each approximate the changing rate of one molecule in . The goal of constrained learning is to identify proper functional forms  and parameters  that take molecular features observed in an omics data  as the input, such that  form a good approximation to , i.e., the dependency  should also be held by . Hence, the solution of  is achieved by minimizing 

, where the first term represents  should capture the dependency (physical laws) of ,  represents additional regularization term of  and . 
Classic systems biology model views biological processes as dynamic systems over biological networks. In contrast, based on the constrained learning framework, PSAA approximates reaction rate by properly designed deep neural networks, which take transcriptomics changes as the input. We have summarized two necessary computational principles for constrained learning, namely: (i) principle of coherency: an intelligent system-based approximation of a system biology model seeks for maximizing the coherency to the laws of the biological system on the observed data, (ii) principle of parsimony: an intelligent system-based needs to be simple and structured when approximately a dynamic system. The principle of coherency describes that an approximation of a systems biology model should maximally represent its biological properties, including (1) the physical laws (such as the law of thermodynamics or conservation of mass), (2) well-confirmed prior knowledge (such as topological structure of metabolic network), and (3) context specific dependency derived from experiments or other information sources. The principle of parsimony describes that a good approximation of systems biology model should have a relatively simple form. Otherwise, it is undistinguishable if  captures the true systems biology model or is just an overly fitted result.



Supplementary Figure Legends
Supplementary Figure S1. (a) Consistency of the PSAA predicted MHC-II level using the RNA-seq data (x-axis) and proteomics data (y-axis) in CCLE data. (b) Consistency of the activity level of different steps in MHC-I pathway predicted using TCGA data by including (x-axis) and excluding (y-axis) the T-cell recognition step in the input pathway. (c) Robustness of PSAA to dropout samples and missing genes in scRNA-seq Data. X-axis shows the percentage of dropout size. Y-axis shows the Pearson correlation coefficients (PCC) between the predicted antigen presentation level and the cell surface protein of MHC I molecules. 

Supplementary Figure S2. (a) Varied dependency between T cell level and MHC-II antigen presentation level in the SRT data of pustule infected skin (blue colored) vs wound skin (yellow colored) in patient sample 2 (slide 2) and 3 (slide 2). (b) Distribution of T cell and MHC-II antigen presentation level of patient sample 3 on the spatial slide 1.

Supplementary Figure S3. (a) Comparison of PSAA predicted CTL level + recycle of MHC-I between cancer and normal samples across nine cancer types. (b) Spatial dissection conducted by using PSAA predicted MHC-I level and T cell level.

Supplementary Table Legends
Supplemental Tables S1. Curated MHC class I antigen presentation pathway and its factor graph representation.

Supplemental Tables S2. Curated MHC class II antigen presentation pathway and its factor graph representation.

Supplemental Tables S3. Top genes that contribute to the MHC class II antigen representation in different cell clusters.

Supplemental Tables S4. The number of spatial spots fall into different regions with respect to the MHC class I antigen presentation and T cell infiltration level.

Supplemental Tables S5. Predicted MHC class I antigen presentation level and clinical information of melanoma data.

Supplemental tables S6. Predicted genes that have positive impact to the salvage step in the MHC class I antigen presentation pathway.





Supplementary Figures
[image: ]
Supplementary Figure S1. (a) Consistency of the PSAA predicted MHC-II level using the RNA-seq data (x-axis) and proteomics data (y-axis) in CCLE data. (b) Consistency of the activity level of different steps in MHC-I pathway predicted using TCGA data by including (x-axis) and excluding (y-axis) the T-cell recognition step in the input pathway. (c) Robustness of PSAA to dropout samples and missing genes in scRNA-seq Data. X-axis shows the percentage of dropout size. Y-axis shows the Pearson correlation coefficients (PCC) between the predicted antigen presentation level and the cell surface protein of MHC I molecules. 
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Supplementary Figure S2. Varied dependency between T cell level and MHC-II antigen presentation level in the SRT data of pustule infected skin (blue colored) vs wound skin (yellow colored) in patient 1 and 4.
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Supplementary Figure S3. (a) Comparison of PSAA predicted CTL level + recycle of MHC-I between cancer and normal samples across nine cancer types. (b) Spatial dissection conducted by using PSAA predicted MHC-I level and T cell level.
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