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Supplementary Table 4. Summary of statistics for behavioral phenotypes.
Mouse line: Ptchdl-as™3" (KO-1)

Day: F (4,52) = 7.880, p < 0.0001

Number
Behavior test Measurement of Statistical test & p-value Post-hoc test & p-value
animals
Tukey
Sociability (Time TWO-Way repeated measures ANOVA WT-1 [M1 vs O]: p <0.05
spent in M1 vs O Interaction: F (2,36) =2.161, p=0.1299 KO-1 [M1 vs O]: p=0.4855
chamber) Genotype: F (1,18) =0.1500, p = 0.7031 Sidak
Chamber: F (1.479, 26.63) =29.92, p < 0.0001 MI [WT- vs KO-1]: p = 0.3415
O [WT- vs KO-1]: p=0.9652
Close interactiqn Two-way repeated rjleasures AE\TOVA W1 [MI jsldél;( p <0.0001
(Time spent for direct Interaction: F (1,18) =7.392, p=0.0141 T
interaction with M1 vs Genotype: F (1,18)=2.311, p=0.1458 KO-1 [M1 vs OI: p.* 0.1504
Social three 0) Subject: F (1,18) = 27.29, p < 0.0001 MI [WT-vs KO-1]: p < 0.05
WT-1=9, ) ’ ‘7 ) O [WT- vs KO-1]: p = 0.8846
chambered
interaction Ko-1=11 Tukey
Preference for novelty Two-way repeated measures ANOVA WT-1 [M2 vs M1]: p <0.05
(Time spent in M2 vs Interaction: F (2,36) = 6.829, p=0.0031 KO-1 [M2 vs ‘Ml]: p=10.9752
M1 chamber) Genotype: F (1,18)=0.8127,p=0.3792 Sidak
Chamber: F (1.814, 32.64) =21.52, p < 0.0001 M2 [WT-vs KO-1]: p < 0.01
MI [WT-vs KO-1]: p=0.6713
Close interactiqn Two-V\‘/ay repeated measures ANOVA WT- [M2 V?l(\j/? lk]: p<0.001
(Time spent for direct Interaction: F (1,18) = 9.766, p = 0.0058 T
interaction with M2 vs Genotype: F (1,18)=1.049,p =0.3192 KO-1 [MT vs M2]: p =0.3606
M1) Subject: F (1,18) =24.09, p = 0.0001 M2 [WT- vs KO-1]: p < 0.05
) i o ) MI [WT- vs KO-1]: p = 0.8007
Two-way repeated measures ANOVA Sidak
Reactivity to social Time spent sniffing WT-1=8, Interaction: F (6,78) = 3.288, p = 0.0062 1 F odor: p < 0.01
odor cues odors (%) KO-1=7 Genotype: F (1,13)=12.12, p = 0.0041 1M odor: .p <0 6001
Session: F (6,78) = 14.35, p < 0.0001 ) )
Repetitive grooming Time spe(r;))groommg “I?(-i 17:13 ’ Unpaired t-test, p = 0.0006 -
Number of syllables Unpaired t-test, p = 0.0055 -
Mean frequency (kHz) Unpaired t-test, p = 0.0436 -
Total syllable energy | yp g _ g Unpaired t-test, p = 0.0031 -
usv (dB) KO-1=11
Dunn
Repertoire comparison Kruskal-Wallis, p = 0.2071 [WT-1-WT-2] vs [WT--KO-1]: p =
0.5260
Two-way repeated measures ANOVA Sidak [WT- vs KO-1]
Pre-pulse inhibition Prepulse inhibition WT-1=8, Interaction: F (4,48) = 1.310, p=0.2797 77 dB: p<0.01
(%) KO-1=6 Genotype: F (1,12) =11.28, p=0.0057 81 dB: p<0.01
Session: F (4,48) =77.61, p <0.0001 85 dB: p <0.05
Two-way repeated measures ANOVA Sidak
Distance traveled Interaction: F (2,32) = 0.6939, p = 0.5070 10 mins: p = 0.9563
(timed) Genotype: F (1,16) =0.0007, p=0.9792 20 mins: p = 0.9959
W1 =9 Time: F (2,32) =45.31, p <0.0001 30 mins: p =0.9970
Open field test Total distance traveled KO-1 = 9’ Unpaired t-test, p=0.9792 -
Two-way repeated measures ANOVA Sidak [WT- vs KO-1]
Time spent in zones Interaction: F (2,32) =0.3013, p = 0.7419 Outer: p = 0.8946
(%) Genotype: F (1,16) =1.231, p = 0.2837 Middle: p=0.8636
Zone: F (2,32)=1014, p <0.0001 Inner: p =0.9998
Gait analysis Stride length WT-1=9, Unpaired t-test, p = 0.8702 -
Stride width KO-1=7 Unpaired t-test, p = 0.5926 -
Ladder walking test Number of foot faults \I)\(/g)-ll ; i’ Unpaired t-test, p = 0.8053 -
Sidak [WT- vs KO-1]
Two-way repeated measures ANOVA Day 1: p=0.9373
. WT-1=6, Interaction: F (4,52) = 0.0859, p = 0.9864 Day 2: p=0.9459
Rotarod Time on rotarod KO-1=9 Genotype: F (1,13)=0.8261,p=0.3799 Day 3: p=0.9749

Day 4: p=0.8295
Day 5: p=0.9766




Mouse line: Ptchdl-as=3"" (KO-2)

Number
Behavior test Measurement of Statistical test & p-value Post-hoc test & p-value
animals
Tukey [M1 vs O]
Two-way repeated measures ANOVA WT-:p <0.01
L . Interaction: F (2,34) =4.426, p=0.0196 KO-2: p=10.9355
S;ﬁ?‘g?éiﬁ;iﬁ;’t Genotype: F (1,17) = 0.3441, p = 0.5652
Chamber: F (1.904, 32.36) =34.15,p < Sidak [WT- vs KO-2]
0.0001 Ml: p <0.05
0:p=0.2517
Close interaction (Time Two-way repeated measures ANOVA Sldak_
spent for direct Interaction: F (1,17) = 5.034, p = 0.0385 WT- [MI vs O]_' p7<0A001
. . . ) _ _ KO-2 [M1 vs O]: p=10.1266
Social three interaction with M1 vs Genqtype. F(1,17)=2.492,p=0.1328 MI [WT- vs KO-2]: p = 0.0238
0) WT-2=9, Subject: F (1,17) = 24.54, p = 0.0001 T
§hambe‘red KO-2 =10 O [WT- vs KO-2]: p=0.9619
interaction Two-way repeated measures ANOVA Tukey .
L7 - _ WT- [M2 vs M1]: p<0.01
Preference for novelty Interaction: F (2,34) =7.981, p=0.0014 KO-2 [M2 vs M1]: p = 0.9505
(Time spent in M2 vs Genotype: F (1,17) =0.5752, p = 0.4586 Sidak. ’
MI chamber) Chamber: F (1.767, 30.04) =24.30,p < M2 [WT- vs KO-2]: p < 0.01
0.0001 MI [WT- vs KO-2]: p = 0.1328
. . . Sidak
Close interaction (Time Two-way repeated measures ANOVA
spent for diregt Interactioz: Fp(l,l7) =21.33,p=0.0002 WI- [M2 vs MI]: p iO‘OOOI
. . . ) _ _ KO-2 [M1 vs M2]: p=0.1550
interaction with M2 vs Genqtype. F (1,17)=12.65,p = 0.0024 M2 [WT- vs KO-2]: p < 0.0001
Ml) Subject: F (1,17) =51.46, p < 0.0001 MI [WT- vs KO-2]: p = 0.9902
Two-way repeated measures ANOVA Sidak [WT- vs KO-2]
Reactivity to social Time spent sniffing WT-2 =8, Interaction: F (6,78) = 8.476, p < 0.0001 1t F odor: p < 0.0001
odor cues odors (%) KO-2=7 Genotype: F (1,13)=15.56,p =0.0017 2" F odor: p < 0.05
Session: F (6,78) =21.06, p < 0.0001 15t M odor: p <0.0001
Repetitive grooming Time spent grooming WI-2=10, Unpaired t-test, p = 0.0446 -
(%) KO-2=10 ’
Number of syllables Unpaired t-test, p =0.0153 -
Mean frequency (kHz) Unpaired t-test, p = 0.0004 -
Total syllable energy Unpaired t-test, p = 0.0363 -
(dB) WT-2=9 : .
Usv KO-2 = 10 Dunn
[WT-1 vs WT-2] vs [WT- vs KO-2]: p =
Repertoire comparison Kruskal-Wallis, p = 0.2071 0.2848
[WT- vs KO-1] vs [WT- vs KO-2]: p >
0.9999
Cs;l;?i)i(ttiliiiirflzlr Time spent freezing (%) I\()\g- 22 ; 17 3’ Unpaired t-test, p = 0.2357 -
Two-way repeated measures ANOVA Sidak [WT- vs KO-2]
Pre-pulse inhibition Prepulse inhibition (%) \I)\(/g)-_zz ; % Iéf;giyng :15 ((14 ’15 46)); 12 456421 ’;) ;(;) (;)g 19 97 7871 %%.I;iodoo(?
Session: F (4,56) =48.12, p <0.0001 85 dB: p <0.01
Two-way repeated measures ANOVA Sidak
Interaction: F (2,30) = 0.7296,p = Lo
. . 10 mins: p = 0.9734
Distance traveled (timed) 0.4905 20 mins: p = 0.9622
Genotype: F (1,15)=0.0126, p=0.9122 30 mins: p= 0‘9335
_ Time: F (2,30) =45.36, p <0.0001 ) )
Open field test Total distance traveled \12/2—)122 ; %’ Unpaired t-test, p=0.9122 -
Two-way repeated measures ANOVA
Interaction: F (2,30) =0.0154,p = Sidak [WT- vs KO-2]
Time spent in zones (%) 0.9848 Outer: p = 0.9995 Middle: p = 0.9998
Genotype: F (1,15)=3.971,p =0.0648 Inner: p=0.9974
Zone: F (2,30) =792.8, p <0.0001
Gait analysis Stride length WTI-2=7, Unpaired t-test, p = 0.4032 -
Stride width KO-2=38 Unpaired t-test, p = 0.9354 -
Ladder walking test Number of foot faults I\(V(;li- 22 ; ? 1’ Unpaired t-test, p = 0.9047 -
Sidak [WT- vs KO-2]
Two-way repeated measures ANOVA Day 1: p=0.7580
. WT-2 =8, Interaction: F (4,52) = 1.936,p=10.1184 Day 2: p=10.9846
Rotarod Time on rotarod KO-2=7 | Genotype: F (1,13)=0.1227, p=0.7317 Day 3: p > 0.9999
Day: F (4,52) = 8.450, p < 0.0001 Day 4: p =0.9699
Day 5: p=0.9824
Touchscreen assay PD Acquisition \12/3)122 ; 114(1)’ Two-way repeated measures ANOVA 18-1;15(:1}(;15\?/2 150K5(;126]




Pairwise
discrimination task
& reversal

Interaction: F (11, 242) =0.9331,p =
0.5091
Genotype: F (1,22)=1.296,p=0.2671
Session: F (4.897,107.7) =25.54,p <
0.0001

Session 2: p=0.1173
Session 3: p <0.01
Session 4: p = 0.5024
Session 5: p=0.6574
Session 6: p=0.7932
Session 7: p = 0.6303
Session 8: p =0.8990
Session 9: p=0.5218
Session 10: p = 0.4755
Session 11: p=0.1362
Session 12: p = 0.2847

Sessions to criteria

WT-2 = 14,
KO-2=10

Two-way repeated measures ANOVA
Interaction: F (1,22)=3.234,p=
0.0859
Genotype: F (1,22)=3.109,p =0.0918
Trial: F (1,22)=10.35,p <0.01

Uncorrected Fisher’s LSD [WT- vs KO-2]

PD:p=0.7190
PD-Rev: p <0.05

Puzzle box

Latency time to goal

WT-2 =12,
KO-2=13

Two-way repeated measures ANOVA
Interaction: F (8, 184) = 0.692,p =
0.6983
Genotype: F (1,23) =0.6232, p=0.4379
Trial: F (5.420, 124.7)=30.7,p <
0.0001

Sidak [WT- vs KO-2]

T1 Baseline: p=0.9806
T2 Underpass: p = 0.9992
T3 (STM) Underpass: p = 0.9998
T4 (LTM) Underpass:
p>0.9999
T5 Burrow: p=0.9781
T6 (STM) Burrow: p =0.8991
T7(LTM) Burrow: p > 0.9999
T8 Plug: p = 0.8660
T9 Plug (STM): p = 0.9990




Supplementary Table 6. Nuclei counts per cell type in Ptchdl-as KO, KO-1 and KO-2 snRNA-seq

experiments.
Experiment |Cell Type WT littermate group |Ptchdl-as mutation | Down-sampled Sampling
Group (nuclei initial) group (nuclei nuclei Repetitions
initial)
D1 MSN 1625 680 680 3
D2 MSN 1591 604 604 3
Ecc MSN 457 190 190 3
Oligo 2001 341 341 6
KO-1 Astrocyte 198 112 112 2
Poly 329 97 97 4
Microglia 215 42 42 6
IN 1079 331 331 4
Glia_Union 2743 592 592 5
Pseudo-bulk | 7495 2397 2397 4
D1 MSN 374 596 374 2
D2 MSN 381 530 381 2
Ecc MSN 105 88 88 2
Oligo 656 198 198 4
KO-2 Astrocyte 61 94 61 2
Poly 148 93 93 2
Microglia &5 18 18 5
IN 263 239 239 2
Glia_Union 950 403 403 3
Pseudo-bulk (2073 1856 1856 2
D1 MSN 1999 748 748 5
D2 MSN 1972 762 762 5
Ecc MSN 562 176 176 6
Oligo 2657 396 396 11
KO Astrocyte 259 122 122 4
Poly 477 186 186 4
Microglia 300 36 36 12
IN 1342 478 478 5
Glia_Union 3693 806 806 7
Pseudo-bulk [ 9568 3712 3712 5
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Supplementary Figure 1. Complete western blot images showing well lane order (left table), total
protein stain normalization signals across the whole blot (middle membrane), and primary antibody
targets (right-side cut membranes) presented in Figure 4 (c-¢) and Extended Data Figure 12 (d-k). Red
square, region containing representative pairs of bands from each genotype selected for insertion into
the respective figures described above. SM, size marker lane and IC, internal control.



Supplementary information methods

Supplementary Methods Table 1. Particpant selection and cohort descriptions for analysis of phenotype-
genotype analysis at the PTCHD1-PTCHD1-AS risk locus.

Cohort Subjects (M:F) Primary Inclusion Criteria
MSSNG ! 5,289 (4.5:1) ASD diagnosis

Simons Simplex Collection (SSC?; 1,124 (6.2:1) ASD diagnosis

Sanders et al., 2011°)

Chaudhry et al., 2015* 18 (17:1) Presence of developmental disorder
DECIPHER?® 35,541 (N/A) Presence of developmental disorder
Gambin et al., 2018° 63,127 (N/A) Presence of developmental disorder
Lineagen, Inc. 19,591 (2.4:1) Presence of developmental disorder
Cont2r01 individuals (MSSNG! and 11,909 (0.9:1) Non-psychiatric (adult)

SSC?)

Supplementary Methods Table 2. Tagman probes used in droplet digital PCR.

Gene Forward Tagman Reverse primer (5' to
name Supplier | Catalogue# primer (5' to 3') | probe 3"

ptchdl-as Thermo Gm15155 Ex2-3 TTGGTTTT

(Gm15155 Fisher (15155-23 GGAGCTGACAG | GATTCCAG | GGGAGGACGCTGGTT
exon2-3) (Custom) CD9HJCX, Fam) GAAAGGAAGTG | AAAT GGT

Ptchdl-as Thermo

(Gml15155 Fisher Gm15155 Ex1-2.2 CACTTCCCCTCG | ACGCACA | CGAACTCAGCAGACA
exonl-2) (Custom) CDXGRER GGAGATTT GTGATCCT | GTCCTATTG

Ptchdl-as Thermo CCTTAGCT

(Gml15155 Fisher 15155- TCCTCCCCTGAG | GTCTTGG TCAACACCAGTTTCGT
exon5-6) (Custom) 65 CDAAAPN GTTTCTTTG AAC CTACAGAGT

Ptchdl-as Thermo TGACATTAGTTG | TCACAGA

(XR.1- Fisher XR.1-1- AAGAAGAAGCA | CACTTGAT | CATCTGTTCCACCTGT

exonl-2) (Custom) 2 CDAAARG TCTAAC GTGC CACTCTCT




Ptchd1-as Thermo CAATAGGACTGT | CTGACAG
(XR.3 - Fisher XR.3-2- CTGCTGAGTTCG | GAAAGGA | ACAAGTAGATCTGGAA
exon2-3) (Custom) 3 _CD7DPUH T AG TCAAAACCAA
Ptchd1-as Thermo AAGGAATACTCT | TAAGTGG
(XR.3 -exon | Fisher XR.3-3- GGTATATGAATT | AAAATGG | GGAGGACGCTGGTTG
3-4) (Custom) 4 CDYHIJEF GATGAA AAGAAA | GTTT
Ptchd1-as Thermo TCCTAAG
(XR.1 - Fisher XR.1-2- GGGATGAATCGA | ATCGCGTG | GGTCACCTTGGGCACG
exon2-3) (Custom) 3 CDCE4C3 AAATATGTCACA | GAGA AA
Thermo
Ptchd1 Fisher Ptchd1 1 3 ACGGCCGGGTC | CTCCTACC | GTCCCGTATAATCCATG
(exonl-3) (Custom) CD47WPK(Fam) | ATTGTC AGAAAGC | ACCTTT
Ptchd1-as
(Gml15155 Thermo
exon3-4) Fisher Mm1164232 ml
Ptchd1-as
(Gml15155 Thermo
exon4-5) Fisher MmO01164233 ml
Ptchd1 Mm.PT.58.4266356
(exonl-2) IDT 6
Ptchd1 Thermo
(exon2-3) Fisher MmO01138948 ml
Tfrc IDT Mm.PT.58.9333140
Supplementary Methods Table 3. Antibodies used for western blotting.
Antibody Target Ab Catalogue Company Species
Dilution | Number
GFAP 1:1000 | 75-240 Neuromab Ms
FMRP 1:1000 | 4317 Cell Signaling Rb
Technology
GluN2A 1:500 MAS5-27692 | Invitrogen Ms
pGIluN2A Y1426 1:500 4206 Cell Signaling Rb
Technology




GIluN2B 1:1000 | 66565-1 Cell Signaling Ms
Technology
pGIuN2B Y1472 1:1000 | 4208 Cell Signaling Rb
Technology
PKC alpha 1:1000 5578-MSM2- | Thermo Fisher Ms
PO Scientific
Src 1:500 2110 Cell Signaling Ms
Technology
pSrc Y416 1:500 6943 Cell Signaling Rb
Technology
pGSK-3a/B S21/9 1:1000 | 9331 Cell Signaling Rb
Technology
GSK-3a/B 1:2000 | 44-610 Invitrogen Ms
StarBright Blue 700 Anti-Rb 1:3000 | 12004161 BioRad Goat
StarBright Blue 520 Anti-Ms | 1:3000 | 12005866 BioRad Goat
StarBright Blue 700 Anti-Ms | 1:3000 | 12004158 BioRad Goat
StarBright Blue 520 Anti-Rb 1:3000 | 12005869 BioRad Goat
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