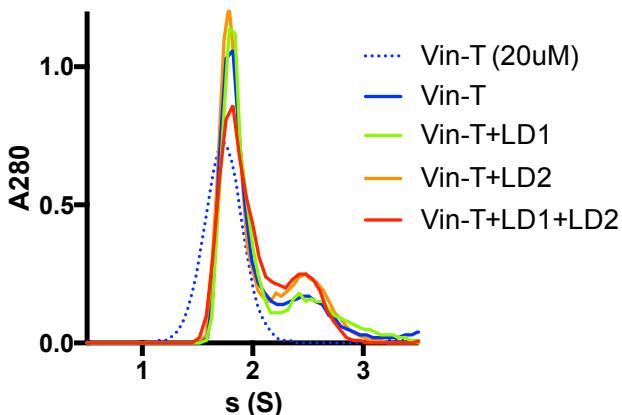


Supplemental information

Supplementary Table S1: Paxillin peptides used in the study.

LD1	MDDLDALLADLES
LD2	SNLSELDRLLELNAVQHN
LD3	SVESLLDELES
LD4	SATRELDELMASLSD
LD5	SQLDSMLGSQLSD
LD2/4	SNLSELDRLLELNAVQHN GS GS GS GS GS GS GS GS GS ATRELDELMASLSD

For anisotropy experiments peptides were labelled N-terminally with FITC. The non-native linker region connecting LD2 and LD4 sequences in peptide LD2/4 is in italic.


Supplementary Table S2. Crystallographic data collection and refinement statistics

<i>Vinculin-T+LD1+LD2</i>	
Data collection	
X-ray source	ALBA, BL13-XALOC
Wavelength (Å)	0.97926
Space group	C2
Cell dimensions	
a, b, c (Å)	177.38, 70.56, 117.37
α, β, γ (°)	90, 131.25, 90
Resolution (Å)	44.83-2.55 (2.69-2.55)*
Total reflections	109790 (16149)
Multiplicity	3.1 (3.1)
Unique reflections	35621 (5168)
Completeness (%)	99.6 (99.9)
R _{merge} (%)	10.1 (85.6)
R _{meas} (%)	12.4 (103.5)
R _{free} (%)	6.9 (57.5)
CC(1/2)	99.5 (61.1)
I / σI	7.3 (1.4)
Refinement	
Resolution (Å)	44.87-2.54
Reflections (total/test set)	34219/1677
R _{work} / R _{free} (%)	22.5/25.9
No. atoms	5926
Protein	5745
Solvent	101
Other	80
R.m.s. deviations	
Bond lengths (Å)	0.005
Bond angles (°)	0.996
mean B value (Å ²)	70.1

*Values in parentheses are for highest-resolution shell.

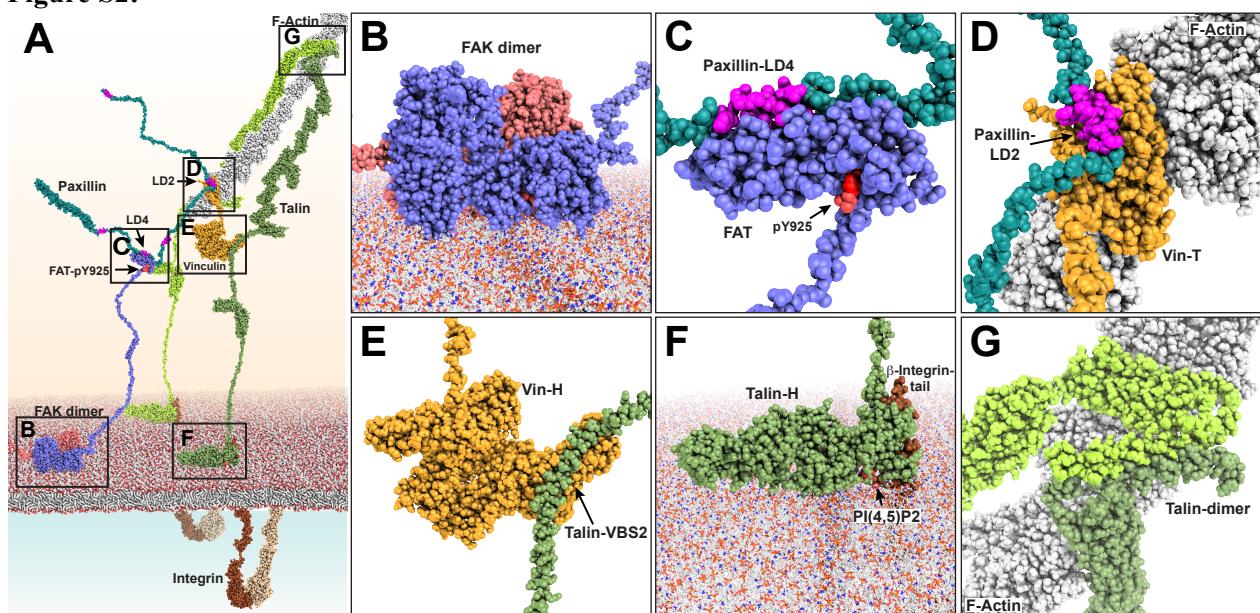

Supplementary Figures:

Figure S1:

Sedimentation velocity analytical ultracentrifugation (svAUC) analysis of vinculin tali (Vin-T) alone or bound to LD1 and/or LD2. Measurements are performed at 100 uM Vin-T and LD1/LD2 unless indicated. At 20 uM Vin-T appears as a homogenous monomer, while at 100 uM approximately 20% of Vin-T forms a dimer. Formation of Vin-T dimers or higher oligomers are not significantly affected by the presence of LD1 and/or LD2.

Figure S2:

Atomic model of FAK force activation. (A) Atomic model as in Fig.6A. Boxed are regions based on high-resolution structures, which are shown enlarged in panels B-G. Coloring as in Fig.6A. (B) Symmetric FAK dimer bound via FERM and kinase domains to the membrane with the kinase active site facing the membrane as in PDB 6TY4 (Acebrón *et al*, 2020). (C) Paxillin LD4 bound to the H23 site in FAT, as in 1OW7 (Hoellerer *et al*, 2003). Y925 (red) is modelled in a phosphorylated state resulting in an unbound H14 site. (D) Paxillin LD2 bound to Vin-T as reported in this study (Fig.5C right panel) and Vin-T bound to actin as in 3JBI (Kim *et al*, 2016). (E) Vin-H bound to talin VBS2 as in 1U6H (Fillingham *et al*, 2005). (F) The talin head (H) domain is bound to the membrane lipid PI(4,5)P2 as in 6MFS (Chinthalapudi *et al*, 2018) and to the β 3-integrin tail as in 1MIZ (Garcia-Alvarez *et al*, 2003) and 2H7E (Wegener *et al*, 2007). (G) Talin C-terminal helices are dimerized as in 2QDQ (Gingras *et al*, 2008) and the talin rod domain R13 modelled bound to actin, loosely based on the low resolution structure in (Gingras *et al*, 2008).

References

Acebrón I, Righetto RD, Schoenherr C, de Buhr S, Redondo P, Culley J, Rodriguez CF, Daday C, Biyani N, Llorca O *et al* (2020) Structural basis of Focal Adhesion Kinase activation on lipid membranes. *EMBO J* 39: e104743

Chinthalapudi K, Rangarajan ES, Izard T (2018) The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. *Proc Natl Acad Sci U S A* 115: 10339-10344

Fillingham I, Gingras AR, Papagrigoriou E, Patel B, Emsley J, Critchley DR, Roberts GC, Barsukov IL (2005) A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. *Structure* 13: 65-74

Garcia-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC (2003) Structural determinants of integrin recognition by talin. *Mol Cell* 11: 49-58

Gingras AR, Bate N, Goult BT, Hazelwood L, Canestrelli I, Grossmann JG, Liu H, Putz NS, Roberts GC, Volkmann N *et al* (2008) The structure of the C-terminal actin-binding domain of talin. *EMBO J* 27: 458-469

Hoellerer MK, Noble ME, Labesse G, Campbell ID, Werner JM, Arold ST (2003) Molecular recognition of paxillin LD motifs by the focal adhesion targeting domain. *Structure* 11: 1207-1217

Kim LY, Thompson PM, Lee HT, Pershad M, Campbell SL, Alushin GM (2016) The Structural Basis of Actin Organization by Vinculin and Metavinculin. *J Mol Biol* 428: 10-25

Wegener KL, Partridge AW, Han J, Pickford AR, Liddington RC, Ginsberg MH, Campbell ID (2007) Structural basis of integrin activation by talin. *Cell* 128: 171-182