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Supplementary Figs and Supplementary Texts 

Introduction 

 

Supplementary Fig. 1 (a) Schematic diagram of the continuous CO2 capture and methanation system; captured 

gas (100 mL/min, 10%CO2+10%O2/He for 30 min) and hydrogenation gas (100 mL/min, pure H2 for 30 min) were 

alternately fed into each reactor containing 10 g of Ni-Ca/Al2O3 (b) Typical time course of the CH4, CO2, and CO 

concentration in effluent 1 and 2, respectively. (c) Variation in CH4 yield with DFM amount in continuous CO2 

capture and methanation. 

 

Supplementary Text 1 

Previously, various DFMs for selective CH4 production were reported. Especially, Ni-Ca based DFMs were well-

known as high performance one (Supplementary Table 1 and 2). Recently, our group developed Ni-Ca/Al2O3 DFM, 

which optimized Ni and Ca loading. Detail characterization revealed that 500 ºC is the best condition for CO2 

capture and methanation. For continuous CH4 production from high concentration of CO2, we carried out CO2 

capture and methanation using the continuous CCR system (Supplementary Fig. 1a). First, the CO2/O2 mixture 

was fed into one reactor for 30 min for CO2 capture. On the other hand, pure H2 was fed into the other reactor 

(containing a CO2-captured Ni-Ca/Al2O3). Supplementary Fig. 1b shows the typical time course of the CH4, and 

CO2 concentrations analyzed by online gas-cell IR in effluent 1 and 2, respectively. Supplementary Fig. 1c shows 

the result of the optimization of Ni-Ca/Al2O3 amount. These results indicate that increasing the amount of DFM 

has limited effects on improving CH₄ yield (<20%). 
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Results and Discussion 

Screening and optimization of sorbents and catalysts 

 

Supplementary Fig. 2 Illustration of the experimental setup for CO2 adsorption measurement. 

 

 
Supplementary Fig. 3 Schematic view of the setup used for operando IR measurement, including in situ IR cell 

and IR gas cell. The inner diameter and length of the cell are provided with a unit of mm. 

 

 

Supplementary Fig. 4 (a) Validation in CO2 conversion with respect to temperature for different amounts of 

Cu/ZnO/Al2O3. (b) Variation in CO2 conversion and CO selectivity with catalyst amount in steady-state RWGS 

reaction over Cu/ZnO/Al2O3. 
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Continuous production of O2-free CO2 from CO2/O2 mixture 

 

Supplementary Fig. 5 Schematic diagram and procedure of the continuous CO2 capture and O2-free CO2 

production. 

 

 

Supplementary Fig. 6 Typical time course of the O2 concentration in effluent 1 during continuous CO2 capture 

and O2-free CO2 production. 
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Supplementary Fig. 7 Effluent concentration profiles of CO2 for blank during continuous CO2 capture and O2-free 

CO2 production, methanation and. RWGS reaction side production; captured gas (100 mL/min, 

10%CO2+10%O2/He for 29.5 min and then pure He for 0.5 min) and other side gas (120 mL/min, pure He for 30 

min). 

 

Supplementary Text 2 

In continuous CO2 capture and O2-free CO2 production, the total flow rate was moderately changed due to O2-free 

CO2 production. The total flow rate in effluent 2 can be shown eq. 1. The produced O2-free CO2 flow rate can be 

calculated in eq. 2. Finally, eq. 3 to derive the total flow rate was calculated from eqs. 1 and 2. The derived total 

flow rate is close to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System 

SF-1U combined VP-3U, Supplementary Fig. 7). From eqs. 2 and 6, the amount of produced O2-free CO2 every 

0.5 min was derived and O2-free CO2 yield was also calculated (O2-free CO2 yield = 97%, Supplementary Fig. 7). 

𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

= 𝐹𝐶𝑂2
𝑜𝑢𝑡(2)

+ 𝐹𝐻𝑒
𝑜𝑢𝑡(2)

                    (1) 

𝐹𝐶𝑂2
𝑜𝑢𝑡(2)

= 𝐶𝐶𝑂2
𝑜𝑢𝑡(2)

× 𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

                    (2) 

𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

=
𝐹𝐻𝑒
𝑜𝑢𝑡(2)

1−𝐶𝐶𝑂2
𝑜𝑢𝑡(2)                     (3) 

 

Supplementary Fig. 8 Comparison of changes about measured total flow rate and derived total flow rate from 

outlet gas concentration in effluent 2 during CO2 capture and O2-free CO2 production. Conditions are the same as 

in Fig. 5. The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in 

Supplementary Text 1. 
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Supplementary Fig. 9 Time course of amount of captured CO2 in effluent 1, O2-free CO2 production in effluent 2 

every 0.5 min, and total flow rate of effluent 2 for continuous CO2 capture and RWGS reaction. Conditions are the 

same as in Fig. 5. 

 

 

Supplementary Fig. 10 Transitions of the CO2 capture efficiency and O2-free CO2 yield during cyclic test of 

continuous CO2 capture and O2-free CO2 production. Conditions are the same as in Fig. 5. 
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Continuous CO2 capture and methanation/RWGS reaction using the tandem system 

 

Supplementary Fig. 11 Schematic diagram and procedure of the continuous CO2 capture and methanation as 

well as RWGS reaction. 
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Supplementary Text 3 

In continuous high-concentration CO2 capture and methanation, total flow rate was drastically changed due to 

large amount of CH4 formation. The total flow rate in effluent 2 can be shown eq. 1, because of produced CO and 

unreacted CO2 are hardly observed, and produced H2O was captured by the cold trap. From the stochiometric 

equation of methanation (eq. 3 in Main Text), produced CH4 and unreacted H2 flow rates can be shown eqs. 2 and 

3, respectively. amount of converted H2 can be calculated by eq. 4 and eq. 4 can transformed to eq. 5 using eq. 

2. Finally, eq. 6 to derive the total flow rate was calculated from eqs. 4 and 5. The derived total flow rate is close 

to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System SF-1U combined 

VP-3U). From eqs. 2 and 6, the amount of produced CH4 every 0.5 min was derived and CH4 yield was also 

calculated (CH4 yield = 92%, Supplementary Fig. 10). 

𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

= 𝐹𝐶𝐻4
𝑜𝑢𝑡 + 𝐹𝐻2

𝑜𝑢𝑡                     (1) 

𝐹𝐶𝐻4
𝑜𝑢𝑡 = 𝐶𝐶𝐻4

𝑜𝑢𝑡 × 𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

                     (2) 

𝐹𝐻2
𝑜𝑢𝑡 = (1 − 𝐶𝐶𝐻4

𝑜𝑢𝑡) × 𝐹𝑎𝑙𝑙
𝑜𝑢𝑡(2)

                   (3) 

𝐹𝐻2
𝑖𝑛 − 𝐹𝐻2

𝑜𝑢𝑡 = 4 × 𝐹𝐶𝐻4
𝑜𝑢𝑡                    (4) 

𝐹𝐻2
𝑖𝑛 − 𝐹𝐻2

𝑜𝑢𝑡 = 4 × 𝐶𝐶𝐻4
𝑜𝑢𝑡 × 𝐹𝑎𝑙𝑙

𝑜𝑢𝑡(2)
                  (5) 

𝐹𝑎𝑙𝑙
𝑜𝑢𝑡 =

𝐹𝐻2
𝑖𝑛

1+3𝐶𝐶𝐻4
𝑜𝑢𝑡                      (6) 

 

 

Supplementary Fig. 12 Comparison of changes about measured total flow rate and derived total flow rate from 

outlet gas concentration in effluent 2 during CO2 capture and methanation. Conditions are the same as in Fig. 5. 

The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in Supplementary 

Text 3. 
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Supplementary Fig. 13 Time course of amount of captured CO2 in effluent 1, CH4 production in effluent 2 every 

0.5 min, and total flow rate of effluent 2 for continuous CO2 capture and methanation. Conditions are the same as 

in Fig. 5. 

 

 

Supplementary Fig. 14 Transitions of the CO2 capture efficiency and CH4 yield during cyclic test of continuous 

CO2 capture and RWGS reaction. Conditions are the same as in Fig. 5. 
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Supplementary Fig. 15 Variation in CO2 capture efficiency and CH4 yield with range of temperature changing 

(minimum range from 40 C to 120 C) in continuous CO2 capture and CH4 production. 

 

 

Supplementary Fig. 16 Variation in CH4 yield and CH4 production rate with catalyst amount in continuous CO2 

capture and CH4 production. 
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Supplementary Fig. 17  (a) Schematic diagram of the two-reactor TSA system for continuous CO2 capture and 

RWGS reaction; captured gas (100 mL/min, 10%CO2+10%O2/He for 29.5 min and then pure He for 0.5 min) and 

hydrogenation gas (100 mL/min, pure H2 for 30 min) were alternately fed into each reactor containing 14 g of Rb-

beta (b and d) Typical time course of the CO2 and O2 concentration in effluent 1 and 2, respectively. (c and e) 

Typical time course of the temperature changing in reactor a and b, respectively. 
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Supplementary Text 4 

In continuous high-concentration CO2 capture and RWGS reaction, total flow rate was slightly changed due to CO 

formation and CO2 desorption. Using the soap-film flow meter, total flow rate in effluent 2 was measured and the 

amount of produced CO every 0.5 min was derived, and CO yield was also calculated (CO yield = 85%, 

Supplementary Fig. 18). 

 

 

Supplementary Fig. 18 Time course of amount of captured CO2 in effluent 1, CO production in effluent 2 every 

0.5 min, and total flow rate of effluent 2 for continuous CO2 capture and RWGS reaction. Conditions are the same 

as in Supplementary Fig. 17. 
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Supplementary Fig. 19 Transitions of the CO2 capture efficiency and CO yield during the cyclic test of continuous 

CO2 capture and RWGS reaction. Conditions are the same as in Supplementary Fig. 17. 

 

 

Supplementary Fig. 20 Variation in CO yield and STYCO with catalyst amount in continuous CO2 capture and 

RWGS Reaction. 
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Supplementary text 5 

We demonstrated continuous CO2 capture and methanation, with the H2 flow time of H2 reduced from 30 min to 

20 min. Similar to Fig. 6, 10% CO2 + 10% O2 was fed into one reactor for 29.5 min for CO2 capture with cooling, 

and then pure He (0.5 min) was fed to purge the remaining O2 in the reactor and gas line (Supplementary Fig. 

21a). At the same time, into the other reactor in parallel, pure H2 was fed at 20 min after 10 min of no gas flow with 

heating. CO2 capture efficiency and CH4 yield were maintained during 4 cycles at 99% and 93%, respectively 

(Supplementary Fig. 21e). The effect of H2 flow time was investigated and H2 conversion and the average CH4 

concentration were increased from 38% to 58%, and from 9.8% to 15%, respectively. 

 

Supplementary Text 6 

H2 conversion is also an important property in the CO2 methanation process. We demonstrated continuous CO2 

capture and methanation, with the H2 flow time of H2 reduced from 30 min to 20 min. Similar to Fig. 6, 10% CO2 + 

10% O2 was fed into one reactor for 29.5 min for CO2 capture with cooling, and then pure He (0.5 min) was fed to 

purge the remaining O2 in the reactor and gas line (Supplementary Fig. 21a). At the same time, into the other 

reactor in parallel, pure H2 was fed at 20 min after 10 min of no gas flow with heating. CO2 capture efficiency and 

CH4 yield were maintained during 4 cycles at 99% and 93%, respectively (Supplementary Fig. 21e). The effect of 

H2 flow time was investigated and H2 conversion and the average CH4 concentration were increased from 38% to 

58%, and from 9.8% to 15%, respectively. 

 

 

Supplementary Fig. 21 (a) Schematic diagram and procedure of the continuous CO2 capture and methanation; 

captured gas (100 mL min−1, 10% CO2+10%O2/He for 29.5 min and then pure He for 0.5 min) and hydrogenation 

gas (100 mL min−1, pure H2 for 20 min) were alternately fed into each reactor containing 14 g of Rb-beta. (b and 

d) Typical time course of the CH4, CO2, and CO concentration in effluent 1 and 2, respectively. (c and e) Typical 

time course of the temperature changing in reactor a and b, respectively. (f) Transitions of the CO2 capture 

efficiency and CH4 yield during cyclic test. (g) Comparison of H2 conversion and average CH4 concentration in 1 

cycle between conditions of Fig. 6 (denoted as process 1) and conditions of Supplementary Fig. 21 (denoted as 

process 2).  
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Continuous direct air capture and methanation 

 

Supplementary Fig. 22 Typical time course of CH4, CO, and unreacted CO2 in effluent 2 for continuous high-

concentration CO2 capture and methanation. Conditions: 14 g of Rb-beta for each upper reactor, temperature 

swing from 80 C to 100 C (heating rate = 20 C/min). 15 g of Ni/CeO2 for the bottom reactor, 300 C. 500 mL/min 

air for 5 min, switched to 10 mL min−1 H2 for another 5 min. 
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Tables 

Results and Discussion 

Supplementary Table 1. Summary of the continuous CO2 capture and methanation in this study and other 

reported CO2 capture and methanation considering the effect of coexistent O2. 

DFMs 
 or 
 catalyst 

CO2 capture gas Hydroge-
nation 
gas 

CH4 yield 
[%] 

T 

[℃] 

ref 

Ni(5)/CeO2 10%CO2+10%O2/He 100% H2 92 300 * 

Ru(1)-Ni(10)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 

+15%H2O/N2 
15%H2/N2 5.67 320 1 

Pt(1)-Ni(10)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 

+15%H2O/N2 
15%H2/N2 3.73 320 1 

Ru(1)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 

+15%H2O/N2 
15%H2/N2 4.63 320 1 

Ru(5)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 

+15%H2O/N2 
15%H2/N2 4.35 320 2 

Ni(10)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 

+15%H2O/N2 
15%H2/N2 4.12 320 2 

Ru(0.95)-K(5) 
/Al2O3 

1%CO2+3%O2+ 
2.5%H2O/He 

4%H2/He 0.38 350 3 

Ru(0.95)-Ca(5.1) 
/Al2O3 

1%CO2+3%O2 
+2.5%H2O/He 

4%H2/He 0.48 350 3 

Ru(0.84)-Ba(16) 
/Al2O3 

1%CO2+3%O2 
+2.5%H2O/He 

4%H2/He 2.22 350 3 

Ni(10)-Ca(30)/Al2O3 1%CO2+10%O2/N2 100%H2 0.15 450 4 

Ni(10)/Al2O3 1%CO2+10%O2/N2 100%H2 0.002 450 4 

Ni(10)-Ca(6)/Al2O3 1%CO2+10%O2/N2 100%H2 0.08 450 4 

Ni(10)-Ca(20)/Al2O3 1%CO2+10%O2/N2 100%H2 0.09 450 4 

Ni(10)-Ca(40)/Al2O3 1%CO2+10%O2/N2 100%H2 0.15 450 4 

Ni(5)-Ca(30)/Al2O3 1%CO2+10%O2/N2 100%H2 0.13 450 4 

Ni(20)-Ca(30)/Al2O3 1%CO2+10%O2/N2 100%H2 0.14 450 4 

Ca(30)-Ni(10)/Al2O3 1%CO2+10%O2/N2 100%H2 0.064 450 4 

Ni(10)/Al2O3 2.5%CO2+10%O2/N2 100%H2 0.43 500 5 

Ni(10)/CaO 2.5%CO2+10%O2/N2 100%H2 20.4 500 5 

Ni(10)-Ca(28)/Al2O3 2.5%CO2+10%O2/N2 100%H2 29.9 500 5 

Ni(10)-Ca(8)/Al2O3 2.5%CO2+10%O2/N2 100%H2 8.66 500 5 

Ni(10)-Ca(14)/Al2O3 2.5%CO2+10%O2/N2 100%H2 15.54 500 5 

Ni(10)-Ca(32)/Al2O3 2.5%CO2+10%O2/N2 100%H2 24.1 500 5 

Ni(30)-Ca(28)/Al2O3 2.5%CO2+10%O2/N2 100%H2 20.7 500 5 

Ni(50)-Ca(28)/Al2O3 2.5%CO2+10%O2/N2 100%H2 22.63 500 5 

Ni(10)-Ca(28)/Al2O3 2.5%CO2+10%O2/N2 100%H2 15.1 400 5 

Ni(10)-Ca(28)/Al2O3 2.5%CO2/10%O2/N2 100%H2 5.91 300 5 

Ni(10)-Ca(6)/Al2O3 0.25%CO2+10%O2/N2 100%H2 14.0 350 6 

Ni2Ca2-Mg2Al2 

/LDH 
10%CO2+5%O2/He 20%H2/He 15.68 320 7 

Ni2Ca4-Al2/LDH 10%CO2+5%O2/He 20%H2/He 12.88 320 7 
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Ni2Mg2-Al2-/LDH 10%CO2+5%O2/He 20%H2/He 6.72 320 7 

Ni(30)/CaO(15)-MgO(15)-Al2O3 10%CO2+5%O2/He 20%H2/He 6.16 320 7 

Ru(0.84)-Ba(16)/Al2O3 1%CO2+3%O2+2.5%H2O/He 4%H2/He 1.12 350 8 

Ru(1)/Al2O3 
+ 
Ba(16)/Al2O3 

1%CO2+3%O2+2.5%H2O/He 4%H2/He 0.63 350 8 

Na-Ni/Al2O3 5%CO2+4.5%O2+11%H2O/Ar 5%H2/Ar 0.47 350 9 

K-Ni/Al2O3 5%CO2+11%H2O+4.5%O2/Ar 5%H2/Ar 2.333 350 9 

Ba-Ni/Al2O3 5%CO2+11%H2O+4.5%O2/Ar 5%H2/Ar 0.093 350 9 

Ru(0.5)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 
+15%H2O/N2 

15%H2/N2 13.44 320 10 

Ru(1)-Na2O(6.1) 
/Al2O3 

7.5%CO2+4.5%O2 
+15%H2O/N2 

15%H2/N2 14.93 320 10 

Ru(1)-Na/Al2O3 10%CO2+10%O2 
+10%H2O/He 

10%H2/Ar 2.6 300 11 

Ru(1)-Na/Al2O3 10%CO2+10%O2/He 10%H2/Ar 15.4 300 11 

Ru(1)-Na/Al2O3 10%CO2+10%O2/He 10%H2/Ar 24.3 300 11 

HT-23NiR 7.5%CO2+4.5%O2/He 100%H2 0.020 250 12 

HT-23NiR 7.5%CO2+4.5%O2/He 100%H2 0.028 300 12 

HT-23NiR 7.5%CO2+4.5%O2/He 100%H2 0.022 320 12 

HT-46NiR 7.5%CO2+4.5%O2/He 100%H2 0.032 250 12 

HT-46NiR 7.5%CO2+4.5%O2/He 100%H2 0.038 300 12 

HT-46NiR 7.5%CO2+4.5%O2/He 100%H2 0.032 320 12 

Ni-Pr/CeO2 10%CO2+10%O2/Ar 10%H2/Ar 3.11 300 13 

RuNi-Pr/CeO2 10%CO2+10%O2/Ar 10%H2/Ar 3.70 300 13 

*This study 

  



18 
 

Supplementary Table 2. Summary of the reported CO2 capture and methanation. 

DFMs  
or 
catalyst 

CO2 capture 
gas 

Hydrogenation 
gas 

CH4 yield 
 [%] 

T 

[C] 

ref 

Ru(5)-Na2CO3(10)/Al2O3 5%CO2/N2 5%H2/N2 5.23 320 14 

Ru(5)-K2CO3(10)/Al2O3 5%CO2/N2 5%H2/N2 4.53 320 14 

Ni(1)/CeCaCO3 15%CO2/N2 100%H2 8.96 550 15 

Ni(10)/CaO 15%CO2/N2 100%H2 3.73 550 15 

Ni(1)/CeO2-CaOphy 15%CO2/N2 100%H2 11.9 550 15 

Ni(10)/g-Al2O3 5%CO2/N2 100%H2 0.19 450 16 

Ni(10)-Na(15)/g-Al2O3 5%CO2/N2 100%H2 3.33 450 16 

Ni(10)-K(15)/g-Al2O3 5%CO2/N2 100%H2  2.51 450 16 

Ni(10)-Ca(15)/g-Al2O3 5%CO2/N2 100%H2 1.08 450 16 

Ni(10)-Na(15)/g-Al2O3 5%CO2/N2 100%H2  4.77 450 16 

Ni(10)-Na(15)/g-Al2O3 0.04%CO2/N2 100%H2 17.8 450 16 

Ni(10)-Na(15)/g-Al2O3 0.01%CO2/N2 100%H2 49.7 450 16 

Ni(10)-Na(15)/g-Al2O3 2%CO2/N2 100%H2 99 400 17 

Ru(10)/CaO 1.4%CO2/Ar 10%H2/Ar 31.1 370 18 

Ru(10)/Na2CO3 1.4%CO2/Ar 10%H2/Ar 48.9 370 18 

Ru(5)/CaO 11%CO2/Ar 10%H2/Ar 2.04 280 18 

Ru(5)/CaO 11%CO2/Ar 10%H2/Ar  1.95 310 18 

Ru(5)/CaO 11%CO2/Ar 10%H2/Ar 1.87 340 18 

Ru(5)/CaO 11%CO2/Ar 10%H2/Ar 1.70 370 18 

Ru(5)/CaO 11%CO2/Ar 10%H2/Ar 1.53 400 18 

Ru(10)/CaO 11%CO2/Ar 10%H2/Ar 3.39 280 18 

Ru(10)/CaO 11%CO2/Ar 10%H2/Ar 3.56 310 18 

Ru(10)/CaO 11%CO2/Ar 10%H2/Ar 3.73 340 18 

Ru(10)/CaO 11%CO2/Ar 10%H2/Ar 3.90 370 18 

Ru(10)/CaO 11%CO2/Ar 10%H2/Ar 4.07 400 18 

Ru(15)/CaO 11%CO2/Ar 10%H2/Ar 3.05 280 18 

Ru(15)/CaO 11%CO2/Ar 10%H2/Ar 4.50 310 18 

Ru(15)/CaO 11%CO2/Ar 10%H2/Ar 5.43 340 18 

Ru(15)/CaO 11%CO2/Ar 10%H2/Ar 6.11 370 18 

Ru(15)/CaO 11%CO2/Ar 10%H2/Ar 6.45 400 18 

Ru(5)/Na2CO3 11%CO2/Ar 10%H2/Ar 2.55 280 18 

Ru(5)/Na2CO3 11%CO2/Ar 10%H2/Ar 2.21 310 18 

Ru(5)/Na2CO3 11%CO2/Ar 10%H2/Ar 1.87 340 18 

Ru(5)/Na2CO3 11%CO2/Ar 10%H2/Ar 1.70 370 18 

Ru(5)/Na2CO3 11%CO2/Ar 10%H2/Ar 1.53 400 18 
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Ru(10)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.11 280 18 

Ru(10)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.19 310 18 

Ru(10)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.11 340 18 

Ru(10)/Na2CO3 11%CO2/Ar 10%H2/Ar 5.85 370 18 

Ru(10)/Na2CO3 11%CO2/Ar 10%H2/Ar 5.18 400 18 

Ru(15)/Na2CO3 11%CO2/Ar 10%H2/Ar 5.77 280 18 

Ru(15)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.11 310 18 

Ru(15)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.11 340 18 

Ru(15)/Na2CO3 11%CO2/Ar 10%H2/Ar 6.02 370 18 

Ru(15)/Na2CO3 11%CO2/Ar 10%H2/Ar 5.85 400 18 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.70 520 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.96 520 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 2.05 520 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 2.65 520 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.31 480 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.90 480 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 1.87 480 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 2.43 480 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.4 440 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.50 440 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 1.50 440 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 2.33 440 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.4 400 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.49 400 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 1.31 400 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 2.24 400 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.31 360 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.4 360 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 0.93 360 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 2.05 360 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 0.93 320 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.12 320 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 0.47 320 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 1.49 320 19 

Ni(5)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 0.19 280 19 

Ni(10)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 0.56 280 19 

Ni(10)-CaO(15)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 0.19 280 19 

Ni(15)-CaO(15)/Al2O3 10%CO2/Ar 10%H2/Ar 0.93 280 19 
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Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 1.87 520 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 1.96 520 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 1.96 520 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.05 520 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.24 480 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.61 480 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 2.52 480 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.52 480 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.33 440 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.8 440 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 2.8 440 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.8 440 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.8 400 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 3.45 400 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 3.43 400 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 3.47 400 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 3.36 360 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 3.17 360 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 2.8 360 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 3.27 360 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 1.4 320 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.05 320 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 1.49 320 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 2.33 320 19 

Ni(5)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 0.093 280 19 

Ni(10)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 0.56 280 19 

Ni(10)-Na2CO3(10)/Al2O3 coimp 10%CO2/Ar 10%H2/Ar 0.37 280 19 

Ni(15)-Na2CO3(10)/Al2O3 10%CO2/Ar 10%H2/Ar 0.65 280 19 

Ru(2.5)/CeO2 65%CO2/N2 5%H2/N2 2.96 300 20 

Ru(5)/CeO2 65%CO2/N2 5%H2/N2 3.41 300 20 

Ru(10)/CeO2 65%CO2/N2 5%H2/N2 3.65 300 20 

Ni(20)/MgO 10%CO2/Ar 5%H2/Ar 0.17 250 21 

Ni(20)/MgO 10%CO2/Ar 5%H2/Ar 0.50 300 21 

Ni(20)/MgO 10%CO2/Ar 5%H2/Ar 0.45 350 21 

Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 0.34 250 21 

Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 1.23 300 21 

Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 1.06 350 21 

Ni(80)/MgO 10%CO2/Ar 5%H2/Ar 0.45 250 21 
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Ni(80)/MgO 10%CO2/Ar 5%H2/Ar 1.51 300 21 

Ni(80)/MgO 10%CO2/Ar 5%H2/Ar 1.29 350 21 

Com-Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 0.017 250 21 

Com-Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 0.45 300 21 

Com-Ni(50)/MgO 10%CO2/Ar 5%H2/Ar 0.039 350 21 

Ni/CaO 10%CO2/N2 10%H2/N2 0.67 400 22 

Ni/CaO-MgO 10%CO2/N2 10%H2/N2 0.69 400 22 

Ni/CaO-MgO 10%CO2/N2 10%H2/N2 0.24 400 22 

Ni/MgO 10%CO2/N2 10%H2/N2 0.15 400 22 

AMS-Ni/MgO 65%CO2/N2 20%H2/N2 0.040 450 23 

AMS-Ni/MgO 65%CO2/N2 60%H2/N2 0.052 450 23 

AMS-Ni/MgO 65%CO2/N2 100%H2 0.046 450 23 

AMS-Ni/MgO 65%CO2/N2 100%H2 0.034 400 23 

AMS-Ni/MgO 65%CO2/N2 100%H2 0.044 500 23 

Ru(0.84)-Ba(16)/Al2O3 1%CO2/He 4%H2/He 2.06 350 24 

Ru(1)/Al2O3 
+ 
Ba(16)/Al2O3 

1%CO2/He 4%H2/He 1.32 350 24 

Ru(1)/Al2O3 1%CO2/He 4%H2/He 0.027 350 3 

Ru(0.99)-Li(1)/Al2O3 1%CO2/He 4%H2/He 0.027 350 3 

Ru(0.97)-Na(3)/Al2O3 1%CO2/He 4%H2/He 0.63 350 3 

Ru(0.95)-K(5)/Al2O3 1%CO2/He 4%H2/He 2.53 350 3 

Ru(0.97)-Mg(3.2)/Al2O3 1%CO2/He 4%H2/He 0.054 350 3 

Ru(0.95)-Ca(5.1)/Al2O3 1%CO2/He 4%H2/He 1.85 350 3 

Ru(0.84)-Ba(16)/Al2O3 1%CO2/He 4%H2/He 3.02 350 3 

Ru/rod-CeO2-MgO 35%CO2/N2 5%H2/N2 0.22 300 25 

Ru/particle-CeO2-MgO 35%CO2/N2 5%H2/N2 0.24 300 25 

Ru/cube-CeO2-MgO 35%CO2/N2 5%H2/N2 0.032 300 25 

Ni-Na2CO3/Al2O3 9.5%CO2/N2 10%H2/N2 1.12 320 26 

Ni-CaO/Al2O3 9.5%CO2/N2 10%H2/N2 0.88 320 26 

Li4SiO4@Ni(2.5)/CeO2 15%CO2/N2 100%H2 9.16 560 27 

Li4SiO4@Ni(5)/CeO2 15%CO2/N2 100%H2 9.96 560 27 

Li4SiO4@Ni(7.5)/CeO2 15%CO2/N2 100%H2 9.56 560 27 

Na-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.16 250 28 

K-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.17 250 28 

Ba-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.084 250 28 

Na-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 1.87 300 28 

K-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 2.43 300 28 

Ba-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.47 300 28 
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Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.47 300 28 

Na-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 3.17 350 28 

K-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 1.49 350 28 

Ba-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.93 350 28 

Na-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 2.61 400 28 

K-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 1.59 400 28 

Ba-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.75 400 28 

Na-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 2.89 450 28 

K-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 2.29 450 28 

Ba-Ni/Al2O3 5%CO2/Ar 5%H2/Ar 0.65 450 28 

Ru(0.89)-Li(5)/Al2O3 10%CO2/N2 10%H2/N2 2.02 280 29 

Ru(3)-K(10)/Al2O3 5%CO2/Ar 5%H2/Ar 4.85 300 29 

Ru(3)-K(10)/Al2O3 5%CO2/Ar 5%H2/Ar 0.93 350 29 

Ru(3)-K(10)/Al2O3 5%CO2/Ar 5%H2/Ar 7.09 400 29 

Ru(3)-K(10)/Al2O3 5%CO2/Ar 5%H2/Ar 4.57 450 29 

Ru(3)-Na(10)/Al2O3 5%CO2/Ar 5%H2/Ar 10.4 300 29 

Ru(3)-Na(10)/Al2O3 5%CO2/Ar 5%H2/Ar 9.15 350 29 

Ru(3)-Na(10)/Al2O3 5%CO2/Ar 5%H2/Ar 7.65 400 29 

Ru(3)-Na(10)/Al2O3 5%CO2/Ar 5%H2/Ar 3.45 450 29 

Ru(3)-Ba(10)/Al2O3 5%CO2/Ar 5%H2/Ar 1.49 250 29 

Ru(3)-Ba(10)/Al2O3 5%CO2/Ar 5%H2/Ar 6.35 300 29 

Ru(3)-Ba(10)/Al2O3 5%CO2/Ar 5%H2/Ar 4.85 350 29 

Ru(3)-Ba(10)/Al2O3 5%CO2/Ar 5%H2/Ar 2.05 400 29 

Ru(3)-Ba(10)/Al2O3 5%CO2/Ar 5%H2/Ar 2.61 450 29 

Ru(1)-Na(20)/Al2O3 10%CO2/N2 5%H2/N2 1.53 340 30 

Ru(0.5)-Na2O(6.1) 
/Al2O3 

7.5%CO2/N2 15%H2/N2 9.71 320 31 

Ru(0.5)-Na2O(6.1)/Al2O3 7.5%CO2+ 
15%H2O/N2 

15%H2/N2 7.47 320 31 

Ni/Hydrotalcite 15%CO2/N2 100%H2 3.88 400 32 

Ni/Hydrotalcite 15%CO2/N2 100%H2 4.85 450 32 

Ni/Hydrotalcite 15%CO2/N2 100%H2 4.78 500 32 

Ni/Hydrotalcite 15%CO2/N2 100%H2 3.96 550 32 

Ni/Hydrotalcite 15%CO2/N2 100%H2 3.58 600 32 

Ni-Cs(10)/Hydrotalcite 15%CO2/N2 100%H2 4.93 350 32 

Ni(1)/CaO 15%CO2/N2 100%H2 2.99 550 33 

Ni(10)/CaO 15%CO2/N2 100%H2 3.73 550 33 

Ni(1)/CeCaO 15%CO2/N2 100%H2 4.93 550 33 

Ni(1)/CeCaCO3 15%CO2/N2 100%H2 8.96 550 33 



23 
 

Ni(1)/CeO2 
+ 
CaO 

15%CO2/N2 100%H2 11.95 550 33 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.16 280 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.77 320 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.87 360 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.02 400 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.05 440 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.00 480 34 

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.92 520 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.4 280 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.87 320 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.24 360 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.39 400 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.61 440 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.8 480 34 

La0.7Ca0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.37 520 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.16 280 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.77 320 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.02 360 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.05 400 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.98 440 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.59 480 34 

La0.7Ba0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.4 520 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.08 280 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.21 320 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.30 360 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.16 400 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.10 440 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.03 480 34 

La0.7Na0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.75 520 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.65 280 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.896 320 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.93 360 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.93 400 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.91 440 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.90 480 34 

La0.7K0.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 0.84 520 34 

Ru/CeO2-CaCO3 20%CO2/N2 100%H2 1.79 350 35 
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Ru/CeO2-KNO3 CaCO3 20%CO2/N2 100%H2 2.52 350 35 

Ru/CeO2-LiNO3 CaCO3 20%CO2/N2 100%H2 1.456 350 35 

Ru/CeO2-(Li-K)NO3 CaCO3 20%CO2/N2 100%H2 2.184 350 35 

Ru/CeO2-KNO3 CaCO3 20%CO2/N2 100%H2 3.192 400 35 

Ru/CeO2-KNO3 CaCO3 20%CO2/N2 100%H2 5.32 450 35 

Ru/CeO2-KNO3 CaCO3 20%CO2/N2 100%H2 3.81 500 35 

Ru(0.25)-Na/Al2O3 10%CO2/Ar 10%H2/Ar 0.72 300 36 

Ru(0.5)-Na/Al2O3 10%CO2/Ar 10%H2/Ar 2.27 300 36 

Ru(1)-Na/Al2O3 10%CO2/Ar 10%H2/Ar 2.688 300 36 

Ru(2)-Na/Al2O3 10%CO2/Ar 10%H2/Ar 2.68 300 36 

Ru(4)-Na/Al2O3 10%CO2/Ar 10%H2/Ar 2.66 300 36 

Ni-Pr/CeO2 10%CO2/Ar 10%H2/Ar 4.66 300 13 

RuNi-Pr/CeO2 10%CO2/Ar 10%H2/Ar 5.62 300 13 

Ni/MgO 65%CO2/N2 50%H2/N2 0.046 500 37 
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Supplementary Table 3. Summary of the continuous CO2 capture and RWGS reaction in this study and other 

reported CO2 capture and RWGS reaction considering the effect of coexistent O2. 

DFMs 
or 
catalyst 

CO2 capture gas Hydrogenation 
gas 

CO yield 
[%] 

T 

[C] 

ref 

Cu/ZnO/Al2O3 10%CO2+10%O2/He 100%H2 85.1 650 * 

Pt(1)-Na(3)/Al2O3 1%CO2+10%O2/N2 5%H2/N2 8.8 350 38 

Pt(1)-Na(3)/MgO 1%CO2+10%O2/N2 5%H2/N2 3.4 350 38 

Pt(1)-Ca(6)/Al2O3 1%CO2+10%O2/N2 5%H2/N2 2.3 350 38 

Pt(1)-Mg(3)/Al2O3 1%CO2/10%O2/N2 5%H2/N2 0.56 450 38 

Pt(1)-K(6)/Al2O3 1%CO2+10%O2/N2 5%H2/N2 0.39 450 38 

Ru(1)-Na(3)/Al2O3 1%CO2+10%O2/N2 5%H2/N2 0.34 450 38 

Cu(1)-Na(3)/Al2O3 1%CO2+10%O2/N2 5%H2/N2 0.17 450 38 

Pt(1)-Na(3)/SiO2 1%CO2+10%O2/N2 5%H2/N2 0.34 450 38 

Pt(1)-Na(3)/TiO2 1%CO2+10%O2/N2 5%H2/N2 1.68 450 38 

Rb-Ni/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 47.8 450 39 

Pt-Na/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 34.7 450 39 

Ni-Rb/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 28.2 450 39 

Na-Ni/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 12.9 450 39 

Mg-Ni/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 0.54 450 39 

Na/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 15.1 450 39 

Rb/Al2O3 0.5%CO2+10%O2/N2 20%H2/N2 16.1 450 39 

Fe(6.91)Cr(0.58)Cu(0.20)- 
K(9.98)/hydrotalcite 

5.8%CO2+5%O2+4%H2O/N2 100%H2 41.3 450 40 

Fe(6.91)Cr(0.58)Cu(0.20)- 
K(9.98)/hydrotalcite 

5.8%CO2+5%O2+4%H2O/N2 100%H2 52.2 500 40 

Fe(6.91)Cr(0.58)Cu(0.20)- 
K(9.98)/hydrotalcite 

5.8%CO2+5%O2+4%H2O/N2 100%H2 56.0 530 40 

*This study 
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Supplementary Table 4. Summary of reported CO2 capture and RWGS reaction. 

DFMs or catalyst CO2 capture gas Hydrogenation 
gas 

CO yield. 
[%] 

T 

[C] 

ref 

Ca1Ni0.1O 15%CO2/N2 5%H2/N2 10.3 650 41 

Ca1Ni0.1Ce0.017O 15%CO2/N2 5%H2/N2 10.8 650 41 

Ca1Ni0.1Ce0.033O 15%CO2/N2 5%H2/N2 10.9 650 41 

Fe(5)Co(5)Mg(10)/CaO 10%CO2/He 100%H2 30.9 650 42 

CaO 10%CO2/He 100%H2 10.3 650 42 

Fe(10)Mg(10)/CaO 10%CO2/He 100%H2 26.9 650 42 

Fe(8)Co(2)Mg(10)CaO 10%CO2/He 100%H2 26.5 650 42 

Fe(7.5)Co(2.5)Mg(10)CaO 10%CO2/He 100%H2 27.7 650 42 

Fe(6.7)Co(3.3)Mg(10)CaO 10%CO2/He 100%H2 29.7 650 42 

Fe(3.3)Co(6.7)Mg(10)CaO 10%CO2/He 100%H2 26.0 650 42 

Co(10)Mg(10)CaO 10%CO2/He 100%H2 24.4 650 42 

Ni(10)/CaO 10%CO2/N2 5%H2/N2 10.6 650 43 

Ni(10)/Carbide slag(CS) 10%CO2/N2 5%H2/N2 10.6 650 43 

Rb-Ni/Al2O3 0.5%CO2/N2 20%H2/N2 22.0 450 39 

Ni(10)/CaZr(O) 15%CO2/N2 66.7%H2/N2 4.80 600 44 

Ni(10)/CaAl(O) 15%CO2/N2 66.7%H2/N2 6.95 600 44 

Ni(10)/CaO 15%CO2/N2 66.7%H2/N2 6.09 600 44 

Ni(10)/CaMg(O) 15%CO2/N2 66.7%H2/N2 5.37 600 44 

Cu(11)-K(10)/Al2O3 4.4%CO2/He 100%H2 27.6 450 45 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/N2 100%H2 72.7 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2+4%H2O/N2 100%H2 64.3 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/4%O2/N2 100%H2 50.8 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

7.6%CO2/N2 100%H2 54.7 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

7.6%CO2/4%H2O/N2 100%H2 44.9 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

9.5%CO2/N2 100%H2 38.7 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

9.5%CO2/4%H2O/N2 100%H2 32.4 550 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/N2 100%H2 72.3 450 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/N2 100%H2 72.7 470 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/N2 100%H2 78.5 500 40 

Fe(6.91)Cr(0.58)Cu(0.20)-
K(9.98)/hydrotalcite 

5.8%CO2/N2 100%H2 83.1 530 40 

Na(16)/Al2O3 5%CO2/N2 100%H2 5.08 450 46 

K(21)/Al2O3 5%CO2/N2 100%H2 5.97 450 46 
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Ca(15)/Al2O3 5%CO2/N2 100%H2 2.7 450 46 

Al2O3 5%CO2/N2 100%H2 0.30 450 46 

Na(16)/Al2O3 5%CO2/N2 100%H2 2.33 350 46 

Na(16)/Al2O3 5%CO2/N2 100%H2 4.928 400 46 

Na(16)/Al2O3 5%CO2/N2 100%H2 5.36 500 46 

CaO 15%CO2/N2  15%H2 1.58 600 47 

CaO 15%CO2/N2 15%H2 7.1 650 47 

CaO 15%CO2/N2 15%H2 19.3 700 47 

CeO2(33)/CaO 17%CO2/N2 5%H2/N2 2.16 650 47 

CeO2(33)/CaO 17%CO2/N2 5%H2/N2 0.98 600 47 

CeO2(33)/CaO 17%CO2/N2 5%H2/N2 3.63 700 47 

CeO2(33)/CaO 17%CO2/N2 5%H2/N2 1.81 750 47 

CeO2(10)/CaO 17%CO2/N2 5%H2/N2  0.84 600 47 

CeO2(10)/CaO 17%CO2/N2 5%H2/N2 3.56 650 47 

CeO2(10)/CaO 17%CO2/N2 5%H2/N2 4.88 700 47 

CeO2(10)/CaO 17%CO2/N2 5%H2/N2 2.23 750 47 

CeO2(16)/CaO 17%CO2/N2 5%H2/N2 0.70 600 47 

CeO2(16)/CaO 17%CO2/N2 5%H2/N2 2.51 650 47 

CeO2(16)/CaO 17%CO2/N2 5%H2/N2 4.74 700 47 

CeO2(16)/CaO 17%CO2/N2 5%H2/N2 2.65 750 47 

CeO2(50)/CaO 17%CO2/N2 5%H2/N2 0.56 600 47 

CeO2(50)/CaO 17%CO2/N2 5%H2/N2 2.23 650 47 

CeO2(50)/CaO 17%CO2/N2 5%H2/N2 2.93 700 47 

CeO2(50)/CaO 17%CO2/N2 5%H2/N2 0.84 750 47 

CeO2(67)/CaO 17%CO2/N2 5%H2/N2 0.35 600 47 

CeO2(67)/CaO 17%CO2/N2 5%H2/N2 1.39 650 47 

CeO2(67)/CaO 17%CO2/N2 5%H2/N2 1.39 700 47 

CeO2(67)/CaO 17%CO2/N2 5%H2/N2 0.56 750 47 

Ni/CaO 10%CO2/10%H2O/N2 10%H2/N2 21.5 700 48 

La(15)-Ni(2.5)/CaO 10%CO2/Ar 10%H2/Ar 43.3 650 49 

Mg(15)-Ni(2.5)/CaO 10%CO2/Ar 10%H2/Ar 38.8 650 49 

Zr(15)-Ni(2.5)/CaO 10%CO2/Ar 10%H2/Ar 36.3 650 49 

Ce(15)-Ni(2.5)/CaO 10%CO2/Ar 10%H2/Ar 41.3 650 49 

Ni(2.5)/CaO 10%CO2/Ar 10%H2/Ar 31.36 650 49 
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