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Supplementary Figs and Supplementary Texts
Introduction
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Supplementary Fig. 1 (a) Schematic diagram of the continuous CO- capture and methanation system; captured
gas (100 mL/min, 10%C02+10%02/He for 30 min) and hydrogenation gas (100 mL/min, pure H> for 30 min) were
alternately fed into each reactor containing 10 g of Ni-Ca/Al2O3 (b) Typical time course of the CH4, CO,, and CO
concentration in effluent 1 and 2, respectively. (¢) Variation in CH4 yield with DFM amount in continuous CO;
capture and methanation.

Supplementary Text 1

Previously, various DFMs for selective CH4 production were reported. Especially, Ni-Ca based DFMs were well-
known as high performance one (Supplementary Table 1 and 2). Recently, our group developed Ni-Ca/Al,O3 DFM,
which optimized Ni and Ca loading. Detail characterization revealed that 500 °C is the best condition for CO2
capture and methanation. For continuous CH4 production from high concentration of CO,, we carried out CO;
capture and methanation using the continuous CCR system (Supplementary Fig. 1a). First, the CO2/O2 mixture
was fed into one reactor for 30 min for CO capture. On the other hand, pure Hz was fed into the other reactor
(containing a CO.-captured Ni-Ca/Al>O3). Supplementary Fig. 1b shows the typical time course of the CH4, and
CO2 concentrations analyzed by online gas-cell IR in effluent 1 and 2, respectively. Supplementary Fig. 1c shows
the result of the optimization of Ni-Ca/Al203 amount. These results indicate that increasing the amount of DFM
has limited effects on improving CH, yield (<20%).




Results and Discussion
Screening and optimization of sorbents and catalysts
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Supplementary Fig. 2 lllustration of the experimental setup for CO, adsorption measurement.
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Supplementary Fig. 3 Schematic view of the setup used for operando IR measurement, including in situ IR cell
and IR gas cell. The inner diameter and length of the cell are provided with a unit of mm.
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Supplementary Fig. 4 (a) Validation in CO2 conversion with respect to temperature for different amounts of

Cu/ZnO/Al203. (b) Variation in CO2 conversion and CO selectivity with catalyst amount in steady-state RWGS
reaction over Cu/ZnO/Al,O:s.



Continuous production of O2-free CO2 from CO2/O2 mixture
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Supplementary Fig. 5 Schematic diagram and procedure of the continuous CO, capture and O»-free CO-
production.
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Supplementary Fig. 6 Typical time course of the Oz concentration in effluent 1 during continuous CO2 capture
and O»-free COz production.
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Supplementary Fig. 7 Effluent concentration profiles of CO2 for blank during continuous CO; capture and O2-free
CO2 production, methanation and. RWGS reaction side production; captured gas (100 mL/min,
10%C02+10%02/He for 29.5 min and then pure He for 0.5 min) and other side gas (120 mL/min, pure He for 30
min).

Supplementary Text 2

In continuous CO- capture and Ox-free CO; production, the total flow rate was moderately changed due to O»-free
COg2 production. The total flow rate in effluent 2 can be shown eq. 1. The produced O,-free CO, flow rate can be
calculated in eq. 2. Finally, eq. 3 to derive the total flow rate was calculated from egs. 1 and 2. The derived total
flow rate is close to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System
SF-1U combined VP-3U, Supplementary Fig. 7). From egs. 2 and 6, the amount of produced O,-free CO, every
0.5 min was derived and O»-free CO- yield was also calculated (O>-free CO2 yield = 97%, Supplementary Fig. 7).
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Supplementary Fig. 8 Comparison of changes about measured total flow rate and derived total flow rate from
outlet gas concentration in effluent 2 during CO, capture and O-free CO, production. Conditions are the same as
in Fig. 5. The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in

Supplementary Text 1.
5



Effluent 1 (CO, capture side)
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Supplementary Fig. 9 Time course of amount of captured COs in effluent 1, O>-free CO2 production in effluent 2
every 0.5 min, and total flow rate of effluent 2 for continuous CO, capture and RWGS reaction. Conditions are the
same as in Fig. 5.
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Supplementary Fig. 10 Transitions of the CO, capture efficiency and O,-free CO; yield during cyclic test of

continuous CO> capture and O2-free CO2 production. Conditions are the same as in Fig. 5.
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Continuous CO; capture and methanation/RWGS reaction using the tandem system

step 1 (29.5 min) step 2 (0.5 min)

CO,+0,/He He
¥

; ;

Hz Hz

CO, capture | A
40 °C

He purge A B | 0,-free CO,
40 °C production
ﬁ Rb-b = ~200 °C

Effluent 2 (CH,. CO, H,, He)

53

| B | i1 | |
A v A v A v A v
N\— Effiuent 1 5 Effluent 1
. — (O;, He) -« (He)
s ~ p -
i1 i1
methanation c methanation
iICeC 300 °C Ni 300 °C
D, .
] or IEI’: or
Cu/znO/Al,0, RWGS reaction Cu/znOJAl1,0, RWES reaction
650 °C 650 °C
| | B |
\ | | J
v ]

Effluent 2 (CH,. CO, H,, He)

et

step 4 (0.5 min) step 3 (29.5 min)

He CO,+0,/He
¥
H,
i1 i1
0,-free CO, B ' CO, capture 0,-free CO, B ' CO, capture
production 40 °C production 40 °C
~200 °C ~200 °C Rb-be:
|8 | |8 |
L% L v “ L v
N\—p Effluent 1 N—> Effluent 1
5 — (He) (Og,He)
e ™ A
i1
Cc methanation methanation
i 300 °C Ca 300 °C
or :@3: or
Cu/ZnOJAl,0, RWGS reaction Cu/ZnOJAl,O, RWGS reaction
[ 650 °C 650 °C
B | B |
\ | J \ | J
v v

Supplementary Fig. 11 Schematic diagram and procedure of the continuous CO, capture and methanation as

Effluent 2 (CH,. CO, H,, He)

well as RWGS reaction.
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Supplementary Text 3

In continuous high-concentration CO, capture and methanation, total flow rate was drastically changed due to
large amount of CH4 formation. The total flow rate in effluent 2 can be shown eq. 1, because of produced CO and
unreacted CO: are hardly observed, and produced H2O was captured by the cold trap. From the stochiometric
equation of methanation (eq. 3 in Main Text), produced CH4 and unreacted Ha flow rates can be shown egs. 2 and
3, respectively. amount of converted Hz can be calculated by eq. 4 and eq. 4 can transformed to eq. 5 using eq.
2. Finally, eq. 6 to derive the total flow rate was calculated from eqs. 4 and 5. The derived total flow rate is close
to the measured total flow rate by the soap-film flow meter (HORIBA, Ltd., Fluid Control System SF-1U combined
VP-3U). From egs. 2 and 6, the amount of produced CH4 every 0.5 min was derived and CH4 yield was also
calculated (CH4 yield = 92%, Supplementary Fig. 10).
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Supplementary Fig. 12 Comparison of changes about measured total flow rate and derived total flow rate from

outlet gas concentration in effluent 2 during CO> capture and methanation. Conditions are the same as in Fig. 5.

The methodology of total flow rate derivation from outlet gas concentration in effluent 2 is shown in Supplementary

Text 3.
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Supplementary Fig. 13 Time course of amount of captured COz in effluent 1, CH4 production in effluent 2 every
0.5 min, and total flow rate of effluent 2 for continuous CO2 capture and methanation. Conditions are the same as
in Fig. 5.
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Supplementary Fig. 14 Transitions of the CO; capture efficiency and CHs yield during cyclic test of continuous

COo capture and RWGS reaction. Conditions are the same as in Fig. 5.
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Supplementary Fig. 15 Variation in CO; capture efficiency and CHs yield with range of temperature changing
(minimum range from 40 °C to 120 °C) in continuous CO; capture and CH4 production.
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Supplementary Fig. 16 Variation in CHj yield and CH4 production rate with catalyst amount in continuous CO;
capture and CH4 production.
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Supplementary Fig. 17 (a) Schematic diagram of the two-reactor TSA system for continuous CO2 capture and
RWGS reaction; captured gas (100 mL/min, 10%CQO2+10%0./He for 29.5 min and then pure He for 0.5 min) and
hydrogenation gas (100 mL/min, pure Hx for 30 min) were alternately fed into each reactor containing 14 g of Rb-
beta (b and d) Typical time course of the CO2 and O2 concentration in effluent 1 and 2, respectively. (c and e)
Typical time course of the temperature changing in reactor a and b, respectively.
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Supplementary Text 4
In continuous high-concentration CO2 capture and RWGS reaction, total flow rate was slightly changed due to CO
formation and CO- desorption. Using the soap-film flow meter, total flow rate in effluent 2 was measured and the
amount of produced CO every 0.5 min was derived, and CO yield was also calculated (CO vyield = 85%,
Supplementary Fig. 18).
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Supplementary Fig. 18 Time course of amount of captured CO: in effluent 1, CO production in effluent 2 every
0.5 min, and total flow rate of effluent 2 for continuous CO, capture and RWGS reaction. Conditions are the same
as in Supplementary Fig. 17.
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Supplementary Fig. 19 Transitions of the CO- capture efficiency and CO yield during the cyclic test of continuous
CO2 capture and RWGS reaction. Conditions are the same as in Supplementary Fig. 17.
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Supplementary Fig. 20 Variation in CO yield and STYco with catalyst amount in continuous CO capture and
RWGS Reaction.
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Supplementary text 5

We demonstrated continuous COz capture and methanation, with the H» flow time of H, reduced from 30 min to
20 min. Similar to Fig. 6, 10% CO2 + 10% O was fed into one reactor for 29.5 min for CO2 capture with cooling,
and then pure He (0.5 min) was fed to purge the remaining O in the reactor and gas line (Supplementary Fig.
21a). At the same time, into the other reactor in parallel, pure H2 was fed at 20 min after 10 min of no gas flow with
heating. CO- capture efficiency and CHs yield were maintained during 4 cycles at 99% and 93%, respectively
(Supplementary Fig. 21e). The effect of Hz flow time was investigated and Hz conversion and the average CH4
concentration were increased from 38% to 58%, and from 9.8% to 15%, respectively.

Supplementary Text 6

H2 conversion is also an important property in the CO2> methanation process. We demonstrated continuous CO>
capture and methanation, with the Hz flow time of H2 reduced from 30 min to 20 min. Similar to Fig. 6, 10% CO, +
10% O was fed into one reactor for 29.5 min for CO2 capture with cooling, and then pure He (0.5 min) was fed to
purge the remaining O: in the reactor and gas line (Supplementary Fig. 21a). At the same time, into the other
reactor in parallel, pure H> was fed at 20 min after 10 min of no gas flow with heating. CO. capture efficiency and
CHg4 yield were maintained during 4 cycles at 99% and 93%, respectively (Supplementary Fig. 21e). The effect of

H> flow time was investigated and H> conversion and the average CH4 concentration were increased from 38% to
58%, and from 9.8% to 15%, respectively.
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Supplementary Fig. 21 (a) Schematic diagram and procedure of the continuous CO» capture and methanation;
captured gas (100 mL min~', 10% CO2+10%0O2/He for 29.5 min and then pure He for 0.5 min) and hydrogenation
gas (100 mL min~', pure H. for 20 min) were alternately fed into each reactor containing 14 g of Rb-beta. (b and
d) Typical time course of the CH4, CO», and CO concentration in effluent 1 and 2, respectively. (c and e) Typical
time course of the temperature changing in reactor a and b, respectively. (f) Transitions of the CO2 capture
efficiency and CHjs yield during cyclic test. (g) Comparison of H, conversion and average CH4 concentration in 1
cycle between conditions of Fig. 6 (denoted as process 1) and conditions of Supplementary Fig. 21 (denoted as

process 2).
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Continuous direct air capture and methanation
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Supplementary Fig. 22 Typical time course of CH4, CO, and unreacted COz in effluent 2 for continuous high-
concentration CO, capture and methanation. Conditions: 14 g of Rb-beta for each upper reactor, temperature

swing from 80 °C to 100 °C (heating rate = 20 °C/min). 15 g of Ni/CeO- for the bottom reactor, 300 °C. 500 mL/min
air for 5 min, switched to 10 mL min~" Hz for another 5 min.
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Tables
Results and Discussion

Supplementary Table 1. Summary of the continuous CO> capture and methanation in this study and other

reported CO- capture and methanation considering the effect of coexistent Oa.

DFMs CO2 capture gas Hydroge- CHa yield T ref
or nation [%] [°C]
catalyst gas
Ni(5)/CeO2 10%C0O2+10%02/He 100% H> 92 300 |~
Ru(1)-Ni(10)-Na20(6.1) 7.5%C02+4.5%0, 15%H2/N2 5.67 320 |°
/Al,03 +15%H>0/N>
Pt(1)-Ni(10)-Na2O(6.1) 7.5%C02+4.5%0, 15%H2/N> 3.73 320 |°
/Al,03 +15%H>0/N>
Ru(1)-Nax0(6.1) 7.5%C02+4.5%0, 15%H2/N> 4.63 320 |°
[Al,03 +15%H20/N>
Ru(5)-Na20(6.1) 7.5%C02+4.5%0; 15%H2/N2 4.35 320 |2
[Al,03 +15%H20/N>
Ni(10)-Na20O(6.1) 7.5%C02+4.5%0, 15%H2/N> 412 320 |2
[Al,O3 +15%H>0/N>»
Ru(0.95)-K(5) 1%C02+3%0,+ 4%H2/He 0.38 350 |3
[Al,03 2.5%H>0/He
Ru(0.95)-Ca(5.1) 1%C02+3%0- 4%H2/He 0.48 350 |3
[Al,03 +2.5%H,0/He
Ru(0.84)-Ba(16) 1%C02+3%0- 4%H2/He 2.22 350 |3
/AI203 +2.5%H>0/He
Ni(10)-Ca(30)/Al203 1%CO2+10%02/N> 100%H2 0.15 450 |4
(10)/Al.03 1%CO2+10%02/N> 100%H2 0.002 450 |4
Ni(10)-Ca(6)/Al.03 1%C0O2+10%02/N> 100%H:> 0.08 450 |4
Ni(10)-Ca(20)/Al.03 1%C0O2+10%02/N> 100%H:> 0.09 450 |4
Ni(10)-Ca(40)/Al203 1%CO2+10%02/N> 100%H2 0.15 450 |4
Ni(5)-Ca(30)/Al>03 1%CO2+10%02/N> 100%H2 0.13 450 |4
Ni(20)-Ca(30)/Al203 1%CO2+10%02/N> 100%H2 0.14 450 |4
Ca(30)-Ni(10)/Al203 1%C0O2+10%02/N> 100%H:> 0.064 450 |4
Ni(10)/Al203 2.5%C02+10%02/N> 100%H:> 0.43 500 |°
Ni(10)/CaO 2.5%C02+10%02/N> 100%H2 20.4 500 |°
Ni(10)-Ca(28)/Al203 2.5%C02+10%02/N> 100%H2 29.9 500 |°
Ni(10)-Ca(8)/Al>03 2.5%C02+10%02/N> 100%H2 8.66 500 |°
Ni(10)-Ca(14)/Al.03 2.5%C02+10%02/N> 100%H:> 15.54 500 |°
Ni(10)-Ca(32)/Al203 2.5%C02+10%02/N> 100%H:> 24 1 500 |°
Ni(30)-Ca(28)/Al203 2.5%C02+10%02/N> 100%H2 20.7 500 |°
Ni(50)-Ca(28)/Al203 2.5%C02+10%02/N> 100%H2 22.63 500 |°
Ni(10)-Ca(28)/Al.03 2.5%C02+10%02/N> 100%H:> 15.1 400 |°
Ni(10)-Ca(28)/Al.03 2.5%C02/10%02/N2 100%H:> 5.91 300 |°
Ni(10)-Ca(6)/Al.03 0.25%C02+10%02/N2 100%H:> 14.0 350 |6
lecaz-Mng|2 10%C02+5%02/He 20%H2/He 15.68 320 7
/LDH
Ni2Caas-Aly/LDH 10%C02+5%02/He 20%H2/He 12.88 320 |7
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Ni2Mg2-Al>-/LDH 10%C02+5%0,/He 20%H>./He 6.72 320 7
Ni(30)/Ca0(15)-MgO(15)-Al203 10%C02+5%0,/He 20%H>./He 6.16 320 7
Ru(0.84)-Ba(16)/Al203 1%C02+3%02+2.5%H20/He | 4%H2/He 112 350 8
Ru(1)/Al203 1%C02+3%02+2.5%H20/He | 4%H2/He 0.63 350 8
+
Ba(16)/Al>03
Na-Ni/Al203 5%C02+4.5%02+11%H20/Ar | 5%H2/Ar 0.47 350 9
K-Ni/Al,O3 5%C02+11%H20+4.5%02/Ar | 5%H2/Ar 2.333 350 9
Ba-Ni/Al.O3 5%CO02+11%H20+4.5%02/Ar | 5%H2/Ar 0.093 350 9
Ru(0.5)-Na>0O(6.1) 7.5%C02+4.5%0- 15%H2/N2 13.44 320 10
/Al,03 +15%H>0/N
Ru(1)-Na2x0(6.1) 7.5%C02+4.5%0- 15%H2/N2 14.93 320 10
[Al,03 +15%H20/N2
Ru(1)-Na/Al>O3 10%CO02+10%0- 10%H2/Ar 2.6 300 i
+10%H,0/He
Ru(1)-Na/Al>O3 10%C02+10%02/He 10%H2/Ar 15.4 300 "
Ru(1)-Na/Al>O3 10%CO02+10%02/He 10%H2/Ar 24.3 300 i
HT-23NiR 7.5%C02+4.5%0,/He 100%H2 0.020 250 12
HT-23NiR 7.5%C02+4.5%0,/He 100%H: 0.028 300 12
HT-23NiR 7.5%C02+4.5%0,/He 100%H: 0.022 320 12
HT-46NiR 7.5%C02+4.5%0,/He 100%H2 0.032 250 12
HT-46NiR 7.5%C02+4.5%0,/He 100%H2 0.038 300 12
HT-46NiR 7.5%C02+4.5%0,/He 100%H2 0.032 320 12
Ni-Pr/CeO2 10%C0O2+10%0,/Ar 10%H2/Ar 3.1 300 13
RuNi-Pr/CeO. 10%C0O2+10%0/Ar 10%H2/Ar 3.70 300 13

*This study
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Supplementary Table 2. Summary of the reported CO2 capture and methanation.

DFMs CO. capture Hydrogenation CHa4 yield T ref
or gas gas [%] [°C]
catalyst

Ru(5)-Na2CO3(10)/Al203 5%CO2/N2 5%H2/N2 5.23 320 |
Ru(5)-K2C0O3(10)/Al203 5%CO2/N2 5%H2/N2 4.53 320 |
Ni(1)/CeCaCO3 15%CO2/N2 100%H:> 8.96 550 |
Ni(10)/Ca0O 15%CO0O2/N2 100%H:> 3.73 550 |
Ni(1)/CeO2-CaOphy 15%CO2/N2 100%H:> 11.9 550 |
Ni(10)/g-Al>0O3 5%CO2/N2 100%H:2 0.19 450 |1®
Ni(10)-Na(15)/g-Al203 5%CO2/N2 100%H:2 3.33 450 |1®
Ni(10)-K(15)/g-Al203 5%CO0O2/N2 100%H:2 2.51 450 |1®
Ni(10)-Ca(15)/g-Al203 5%CO0O2/N> 100%H:2 1.08 450 |16
Ni(10)-Na(15)/g-Al203 5%CO2/N2 100%H:2 4.77 450 |6
Ni(10)-Na(15)/g-Al203 0.04%CO2/N> 100%H:2 17.8 450 |16
Ni(10)-Na(15)/g-Al203 0.01%CO2/N> 100%H:2 49.7 450 | 1'®
Ni(10)-Na(15)/g-Al203 2%CO2/N2 100%H:2 99 400 |
Ru(10)/Ca0O 1.4%CO./Ar 10%H./Ar 31.1 370 |8
Ru(10)/Na2CO3 1.4%CO./Ar 10%H./Ar 48.9 370 |8
Ru(5)/Ca0 11%CO2/Ar 10%H./Ar 2.04 280 |8
Ru(5)/Ca0 11%CO2/Ar 10%H./Ar 1.95 310 |8
Ru(5)/Ca0 11%CO2/Ar 10%H./Ar 1.87 340 |8
Ru(5)/Ca0 11%CO/Ar 10%H./Ar 1.70 370 |8
Ru(5)/Ca0 11%CO/Ar 10%H./Ar 1.53 400 |8
Ru(10)/Ca0O 11%CO2/Ar 10%H./Ar 3.39 280 |8
Ru(10)/Ca0O 11%CO2/Ar 10%H./Ar 3.56 310 |8
Ru(10)/Ca0O 11%CO/Ar 10%H./Ar 3.73 340 |8
Ru(10)/Ca0O 11%CO/Ar 10%H./Ar 3.90 370 |8
Ru(10)/Ca0O 11%CO/Ar 10%H./Ar 4.07 400 |8
Ru(15)/Ca0O 11%CO2/Ar 10%H./Ar 3.05 280 |8
Ru(15)/Ca0O 11%CO2/Ar 10%H./Ar 4.50 310 |8
Ru(15)/Ca0O 11%CO2/Ar 10%H./Ar 5.43 340 |8
Ru(15)/Ca0O 11%CO2/Ar 10%H./Ar 6.11 370 |8
Ru(15)/Ca0O 11%CO2/Ar 10%H./Ar 6.45 400 |8
Ru(5)/Na>COs 11%CO2/Ar 10%H2/Ar 2.55 280 |8
Ru(5)/Na>COs 11%CO2/Ar 10%H2/Ar 2.21 310 |8
Ru(5)/Na>COs 11%CO2/Ar 10%H2/Ar 1.87 340 |8
Ru(5)/Na>COs 11%CO2/Ar 10%H2/Ar 1.70 370 |8
Ru(5)/Na2COs 11%CO2/Ar 10%H./Ar 1.53 400 |8
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Ru(10)/Na2COs 11%CO2/Ar 10%H2/Ar 6.1 280 |8
Ru(10)/Na2COs 11%CO2/Ar 10%H2/Ar 6.19 310 |8
Ru(10)/NaxCOs 11%CO2/Ar 10%H2/Ar 6.1 340 |8
Ru(10)/NaxCOs 11%CO/Ar 10%H2/Ar 5.85 370 |8
Ru(10)/NaxCOs 11%CO2/Ar 10%H2/Ar 5.18 400 |8
Ru(15)/Na;COs 11%COZ/Ar 10%H2/Ar 5.77 280 |
Ru(15)/Na;COs 11%CO2/Ar 10%H2/Ar 6.11 310 |
Ru(15)/NaxCOs 11%CO2/Ar 10%H2/Ar 6.1 340 |8
Ru(15)/NaxCOs 11%CO2/Ar 10%H2/Ar 6.02 370 |8
Ru(15)/Na2COs 11%CO./Ar 10%H2/Ar 5.85 400 |8
Ni(5)-CaO(15)/Al,03 10%CO./Ar 10%H2/Ar 1.70 520 |
Ni(10)-CaO(15)/Al203 10%CO2/Ar 10%H2/Ar 1.96 520 |1
Ni(10)-CaO(15)/Al205 coimp 10%CO,/Ar 10%Ha/Ar 2.05 520 |19
Ni(15)-CaO(15)/Al205 10%COZ/Ar 10%Ha/Ar 2.65 520 |19
Ni(5)-CaO(15)/Al,03 10%CO2/Ar 10%H2/Ar 1.31 480 | 19
Ni(10)-CaO(15)/Al203 10%CO,/Ar 10%H/Ar 1.90 480 |19
Ni(10)-CaO(15)/Al203 coimp 10%CO/Ar 10%H/Ar 1.87 480 |1
Ni(15)-CaO(15)/Al205 10%CO2/Ar 10%Ha/Ar 2.43 480 | 19
Ni(5)-CaO(15)/Al203 10%COZ/Ar 10%Ha/Ar 14 440 | 19
Ni(10)-CaO(15)/Al203 10%CO/Ar 10%H2/Ar 1.50 440 |1
Ni(10)-CaO(15)/Al,03 coimp 10%CO2/Ar 10%H./Ar 1.50 440 | 1°
Ni(15)-CaO(15)/Al205 10%CO2/Ar 10%H2/Ar 2.33 440 |19
Ni(5)-CaO(15)/Al203 10%CO2/Ar 10%H2/Ar 14 400 |19
Ni(10)-CaO(15)/Al203 10%CO2/Ar 10%H2/Ar 1.49 400 |19
Ni(10)-CaO(15)/Al03 coimp 10%CO,/Ar 10%H/Ar 1.31 400 |19
Ni(15)-CaO(15)/Al203 10%CO./Ar 10%Ha/Ar 2.24 400 | ™
Ni(5)-CaO(15)/Al203 10%CO2/Ar 10%H2/Ar 1.31 360 |1
Ni(10)-CaO(15)/Al205 10%CO2/Ar 10%H2/Ar 14 360 |19
Ni(10)-CaO(15)/Al205 coimp 10%CO/Ar 10%H2/Ar 0.93 360 | ™
Ni(15)-CaO(15)/Al205 10%CO,/Ar 10%Ha/Ar 2.05 360 | 19
Ni(5)-CaO(15)/Al203 10%CO/Ar 10%H2/Ar 0.93 320 |
Ni(10)-CaO(15)/Alz03 10%CO/Ar 10%H2/Ar 112 320 |19
Ni(10)-CaO(15)/Al,05 coimp 10%CO/Ar 10%H2/Ar 0.47 320 |19
Ni(15)-CaO(15)/Al205 10%CO,/Ar 10%H2/Ar 1.49 320 |1
Ni(5)-CaO(15)/Al203 10%CO,/Ar 10%H2/Ar 0.19 280 | 19
Ni(10)-CaO(15)/Al203 10%CO/Ar 10%H2/Ar 0.56 280 | 19
Ni(10)-CaO(15)/Al,05 coimp 10%CO/Ar 10%H2/Ar 0.19 280 | 1
Ni(15)-CaO(15)/Al03 10%COZ/Ar 10%H2/Ar 0.93 280 | 1°
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Ni(5)-Na2CO3(10)/Al203 10%CO2/Ar 10%H2/Ar 1.87 520 | ™®
Ni(10)-Na2CO3(10)/Al203 10%CO2/Ar 10%H2/Ar 1.96 520 | ™®
Ni(10)-Na,COs(10)/Al203 coimp 10%CO4/Ar 10%H2/Ar 1.96 520 | 1
Ni(15)-Na2CO3(10)/Al05 10%CO/Ar 10%Hz/Ar 2.05 520 | 19
Ni(5)-NazCOs3(10)/Al,03 10%CO/Ar 10%Hz/Ar 2.24 480 | ™
Ni(10)-NazCO3(10)/Al,03 10%CO/Ar 10%H/Ar 2.61 480 | 19
Ni(10)-Na2CO3(10)/Al203 coimp 10%CO2/Ar 10%H2/Ar 2.52 480 |1
Ni(15)-Na2CO3(10)/Al:05 10%CO./Ar 10%H2/Ar 2.52 480 | ™
Ni(5)-NazCO3(10)/Al,03 10%CO./Ar 10%Hz/Ar 2.33 440 [
Ni(10)-Na,CO3(10)/Al,03 10%CO./Ar 10%H2/Ar 2.8 440 [
Ni(10)-Na2CO3(10)/Al203 coimp 10%CO/Ar 10%H./Ar 2.8 440 | "
Ni(15)-NazCO3(10)/Al,03 10%CO2/Ar 10%Ha/Ar 2.8 440 |1
Ni(5)-NazCOs3(10)/Al,03 10%CO/Ar 10%H2/Ar 2.8 400 |
Ni(10)-Na2CO3(10)/Al05 10%CO/Ar 10%H2/Ar 3.45 400 | ™
Ni(10)-NazCOs3(10)/Al203 coimp 10%CO2/Ar 10%Ha/Ar 3.43 400 |1
Ni(15)-NazCO3(10)/Al,03 10%CO/Ar 10%H2/Ar 3.47 400 |1
Ni(5)-NazCO3(10)/Al203 10%CO./Ar 10%H2/Ar 3.36 360 | 1
Ni(10)-Na2CO3(10)/Al05 10%CO/Ar 10%H2/Ar 3.17 360 | 1
Ni(10)-Na2CO3(10)/AloO3 coimp 10%CO/Ar 10%H2/Ar 2.8 360 |
Ni(15)-Na,CO3(10)/Al,05 10%CO./Ar 10%H2/Ar 3.27 360 | 1
Ni(5)-NazCO3(10)/Al,03 10%CO./Ar 10%H2/Ar 1.4 320 |19
Ni(10)-Na2CO3(10)/Al05 10%CO/Ar 10%H2/Ar 2.05 320 | 1
Ni(10)-Na2CO3(10)/Al>0O3 coimp 10%CO/Ar 10%H2/Ar 1.49 320 |
Ni(15)-Na2CO3(10)/Al.05 10%CO/Ar 10%H2/Ar 2.33 320 |
Ni(5)-NazCO3(10)/Al,03 10%CO./Ar 10%H2/Ar 0.093 280 | 1
Ni(10)-NazCOs3(10)/Al,03 10%CO/Ar 10%Ha/Ar 0.56 280 | ™
Ni(10)-Na2CO3(10)/AloO3 coimp 10%CO/Ar 10%H2/Ar 0.37 280 |
Ni(15)-Na2CO3(10)/Al05 10%CO/Ar 10%H2/Ar 0.65 280 | 19
Ru(2.5)/CeO. 65%CO02/N2 5%H2/N2 2.96 300 |20
Ru(5)/Ce0- 65%CO02/N2 5%H2/N2 3.41 300 |20
Ru(10)/CeO> 65%CO2/N> 5%H2/N2 3.65 300 |20
Ni(20)/MgO 10%CO,/Ar 5%Ha/Ar 0.17 250 | 21
Ni(20)/MgO 10%CO,/Ar 5%Ha/Ar 0.50 300 |7
Ni(20)/MgO 10%CO/Ar 5%Ha/Ar 0.45 350 |21
Ni(50)/MgO 10%COo/Ar 5%H2/Ar 0.34 250 | 21
Ni(50)/MgO 10%COo/Ar 5%H2/Ar 1.23 300 |7
Ni(50)/MgO 10%CO,/Ar 5%Ha/Ar 1.06 350 |2
Ni(80)/MgO 10%CO2/Ar 5%H2/Ar 0.45 250 |2
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Ni(80)/MgO 10%CO/Ar 5%H./Ar 1.51 300 |
Ni(80)/MgO 10%CO/Ar 5%H./Ar 1.29 350 |
Com-Ni(50)/MgO 10%CO2/Ar 5%Ha/Ar 0.017 250 | 2
Com-Ni(50)/MgO 10%CO2/Ar 5%Ha/Ar 0.45 300 |2
Com-Ni(50)/MgO 10%CO2/Ar 5%Ha/Ar 0.039 350 |2
Ni/CaO 10%CO0O2/N2 10%H2/N> 0.67 400 |2
Ni/Ca0O-MgO 10%CO2/N; 10%H2/N2 0.69 400 |2
Ni/Ca0O-MgO 10%CO2/N2 10%H2/N2 0.24 400 |2
Ni/MgO 10%CO2/N2 10%H2/N> 0.15 400 |2
AMS-Ni/MgO 65%CO2/N2 20%H2/N2 0.040 450 | =
AMS-Ni/MgO 65%CO2/N2 60%H2/N> 0.052 450 |23
AMS-Ni/MgO 65%CO02/N2 100%H> 0.046 450 |23
AMS-Ni/MgO 65%CO02/N2 100%H: 0.034 400 | =
AMS-Ni/MgO 65%CO02/N2 100%H: 0.044 500 |2
Ru(0.84)-Ba(16)/Al,03 1%CO2/He 4%Ha/He 2.06 350 |2
Ru(1)/Al>.03 1%CO2/He 4%H>/He 1.32 350 |
+a( 6)/A1,03
Ru(1)/Al>03 1%CO2/He 4%H>/He 0.027 350 |3

Ru(0.99)-Li(1)/Al,03 1%CO,/He 4%H/He 0.027 350 |3

Ru(0.97)-Na(3)/Al,03 1%CO,/He 4%Ha/He 0.63 350 |3

Ru(0.95)-K(5)/A1203 1%CO2/He 4%Ha/He 2.53 350 |3

Ru(0.97)-Mg(3.2)/Al,05 1%CO,/He 4%Ha/He 0.054 350 |3

Ru(0.95)-Ca(5.1)/Al,03 1%CO4/He 4%Ha/He 1.85 350 |3

Ru(0.84)-Ba(16)/A1,05 1%CO,/He 4%Ha/He 3.02 350 |3

Ru/rod-CeO2-MgO 35%CO02/N2 5%H2/N2 0.22 300 | %
Ru/particle-CeO2-MgO 35%CO02/N2 5%H2/N2 0.24 300 |
Ru/cube-Ce0,-MgO 35%C02/N2 5%H2/N2 0.032 300 | %
Ni-NaxC0O3/Al,03 9.5%CO02/N> 10%H2/N2 1.12 320 |
Ni-CaO/Al203 9.5%CO02/N2 10%H2/N2 0.88 320 |
LisSiOs@Ni(2.5)/Ce0y 15%CO2/N> 100%H: 9.16 560 |2
LisSiOs@Ni(5)/CeO2 15%CO2/N> 100%H: 9.96 560 | 2
LisSiO4s@Ni(7.5)/Ce02 15%CO2/N> 100%H> 9.56 560 |7
Na-Ni/Al,O3 5%CO,/Ar 5%H./Ar 0.16 250 |28
K-Ni/Al203 5%CO./Ar 5%H2/Ar 0.17 250 |28
Ba-Ni/Al203 5%CO./Ar 5%H2/Ar 0.084 250 |28
Na-Ni/Al.O3 5%CO,/Ar 5%H./Ar 1.87 300 |8
K-Ni/Al203 5%CO,/Ar 5%H./Ar 2.43 300 |
Ba-Ni/Al>O3 5%CO2/Ar 5%H2/Ar 0.47 300 |8
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Ni/Al,O3 5%CO,/Ar 5%Ha/Ar 0.47 300 |2
Na-Ni/Alz03 5%COa/Ar 5%Ha/Ar 3.17 350 |28
K-Ni/Al,03 5%CO,/Ar 5%Ha/Ar 1.49 350 |28
Ba-Ni/Alz03 5%CO,/Ar 5%Ha/Ar 0.93 350 |28
Na-Ni/Al,03 5%CO,/Ar 5%Ha/Ar 2.61 400 |28
K-Ni/Al,03 5%COa/Ar 5%Ha/Ar 1.59 400 | =
Ba-Ni/Al,O3 5%CO2/Ar 5%Ha/Ar 0.75 400 |
Na-Ni/Al,03 5%CO,/Ar 5%Ha/Ar 2.89 450 |28
K-Ni/Al,03 5%CO,/Ar 5%Ha/Ar 2.29 450 |28
Ba-Ni/Al,O3 5%COa/Ar 5%Ha/Ar 0.65 450 | =
Ru(0.89)-Li(5)/Al,03 10%CO2/N; 10%H2/N; 2.02 280 | @
Ru(3)-K(10)/Al,05 5%CO2/Ar 5%Ha/Ar 4.85 300 |2
Ru(3)-K(10)/Alz05 5%COL/Ar 5%Ha/Ar 0.93 350 |2
Ru(3)-K(10)/Alz05 5%CO,/Ar 5%Ha/Ar 7.09 400 |2
Ru(3)-K(10)/Al,05 5%COa/Ar 5%Ha/Ar 4.57 450 |2
Ru(3)-Na(10)/Al,05 5%CO,/Ar 5%Ha/Ar 10.4 300 |2
Ru(3)-Na(10)/Al,05 5%CO,/Ar 5%Ha/Ar 9.15 350 |2
Ru(3)-Na(10)/Alz05 5%CO./Ar 5%Ha/Ar 7.65 400 |2
Ru(3)-Na(10)/Alz05 5%CO,/Ar 5%Ha/Ar 3.45 450 |2
Ru(3)-Ba(10)/Al,03 5%CO,/Ar 5%Ha/Ar 1.49 250 | @
Ru(3)-Ba(10)/A1,05 5%CO,/Ar 5%Ha/Ar 6.35 300 |2
Ru(3)-Ba(10)/Al,03 5%CO,/Ar 5%Ha/Ar 4.85 350 |2
Ru(3)-Ba(10)/Al,03 5%CO./Ar 5%Ha/Ar 2.05 400 |2
Ru(3)-Ba(10)/Al,03 5%CO./Ar 5%Ha/Ar 2.61 450 | 2
Ru(1)-Na(20)/Al205 10%CO2/N; 5%Ha/Nz 153 340 | ®
Ru(0.5)-Na;0(6.1) 7 5%C0,/N; 15%H2/N2 9.71 320 |
JA1LO3

Ru(0.5)-Naz0(6.1)/Alz03 7.5%CO+ 15%H2/N; 7.47 320 |

15%H20/N>

Ni/Hydrotalcite 15%CO2/N; 100%H; 3.88 400 | %
Ni/Hydrotalcite 15%C02/N; 100%H; 4.85 450 | %2
Ni/Hydrotalcite 15%CO2/N2 100%H; 4.78 500 | %
Ni/Hydrotalcite 15%CO2/N2 100%H; 3.96 550 | %
Ni/Hydrotalcite 15%C02/N; 100%H; 3.58 600 | 2
Ni-Cs(10)/Hydrotalcite 15%C02/N; 100%H; 4.93 350 | %2
Ni(1)/CaO 15%CO02/N; 100%H; 2.99 550 | %
Ni(10)/CaO 15%CO2/N2 100%H; 3.73 550 | ®
Ni(1)/CeCaO 15%CO2/N2 100%H; 4.93 550 | ®
Ni(1)/CeCaCO3 15%CO2/N2 100%H; 8.96 550 | ®
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Ni(1)/CeO2 15%CO2/N2 100%H2 11.95 550 | %
EaO

LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.16 280 |3
LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.77 320 |
LaNiO3(20)/Ce0O2 10%CO2/Ar 5%H2/Ar 1.87 360 |3
LaNiO3(20)/CeO2 10%CO/Ar 5%H2/Ar 2.02 400 |3
LaNiO3(20)/Ce0O2 10%CO/Ar 5%H2/Ar 2.05 440 |3
LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 2.00 480 |3
LaNiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.92 520 |3
Lag.7Cao.3NiO3(20)/CeO> 10%CO/Ar 5%H2/Ar 1.4 280 |
Lag.7Cao.3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.87 320 |4
Lao.7Cao.3NiO3(20)/CeO2 10%CO./Ar 5%H2/Ar 2.24 360 |
Lao.7Cao.3NiO3(20)/CeO2 10%CO./Ar 5%H2/Ar 2.39 400 |3
Lao.7CaosNiO3(20)/CeO, 10%CO/Ar 5%Ha/Ar 2.61 440 |
Lao.7Cao.3NiO3(20)/CeO> 10%CO/Ar 5%H./Ar 2.8 480 | %
Lao.7Cao.3NiO3(20)/CeO> 10%CO/Ar 5%H./Ar 2.37 520 |3
Lao.7Ban.3NiO3(20)/CeO- 10%CO./Ar 5%H2/Ar 1.16 280 |
Lao.7Ban.3sNiO3(20)/CeO- 10%CO./Ar 5%H2/Ar 1.77 320 |
Lao.7Ban.3NiO3(20)/CeO- 10%CO./Ar 5%H2/Ar 2.02 360 |
Lao.7Ban.3NiO3(20)/CeO- 10%CO/Ar 5%H./Ar 2.05 400 |3
Lao.7Ban.3NiO3(20)/CeO- 10%CO/Ar 5%Ho/Ar 1.98 440 | %
Lao.7Ban.3NiO3(20)/CeO- 10%CO/Ar 5%H2/Ar 1.59 480 |3
Lao.7Ban.3NiO3(20)/CeO- 10%CO/Ar 5%H2/Ar 14 520 |
Lao.7Nao.3NiO3(20)/CeO2 10%CO/Ar 5%H./Ar 1.08 280 |3
Lao.7Nao.3NiO3(20)/CeO2 10%CO/Ar 5%H./Ar 1.21 320 |3
Lao.7Nao.3NiO3(20)/CeO2 10%CO/Ar 5%H./Ar 1.30 360 |3
Lao.7Nao.3NiO3(20)/CeO2 10%CO/Ar 5%H2/Ar 1.16 400 |3
Lao.7NaosNiO3(20)/CeO, 10%CO2/Ar 5%Ha/Ar 1.10 440 |
Lao.7Nao 3NiO3(20)/CeO2 10%CO2/Ar 5%H2/Ar 1.03 480 |3
Lao.7Nao 3NiO3(20)/CeO2 10%CO/Ar 5%H./Ar 0.75 520 |3
Lap.7Ko.3NiO3(20)/CeO2 10%CO/Ar 5%H./Ar 0.65 280 |
Lao.7Ko.3NiO3(20)/CeOz2 10%CO/Ar 5%H2/Ar 0.896 320 |
Lao.7K0.3NiO3(20)/CeO2 10%CO/Ar 5%H2/Ar 0.93 360 |
Lap.7Ko.3NiO3(20)/CeO2 10%CO2/Ar 5%H./Ar 0.93 400 |3
Lap.7Ko.3NiO3(20)/CeO2 10%CO2/Ar 5%H./Ar 0.91 440 |4
Lao.7K0.3NiO3(20)/CeO2 10%CO/Ar 5%H2/Ar 0.90 480 |3
Lao.7Ko.3NiO3(20)/CeO- 10%CO2/Ar 5%H2/Ar 0.84 520 |3
Ru/Ce02-CaCOs3 20%CO2/N2 100%H2 1.79 350 |
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Ru/Ce0,-KNO3 CaCOs 20%CO2/N; 100%H; 2.52 350 | ®
Ru/CeO,-LiNO3 CaCOs 20%CO2/N; 100%H; 1.456 350 | ®
Ru/CeO,-(Li-K)NO3 CaCOs3 20%CO2/N; 100%H; 2.184 350 | ®
Ru/CeO,-KNO3 CaCOs 20%CO2/N; 100%H; 3.192 400 |
Ru/CeO,-KNO3 CaCOs 20%CO2/N; 100%H; 5.32 450 | %
Ru/Ce0,-KNO3 CaCOs 20%CO2/N; 100%H; 3.81 500 | ®
Ru(0.25)-Na/Al,05 10%CO4/Ar 10%Hz/Ar 0.72 300 | %
Ru(0.5)-Na/Al,Os 10%CO/Ar 10%H2/Ar 2.27 300 | %
Ru(1)-Na/Alz03 10%CO/Ar 10%H2/Ar 2.688 300 | %
Ru(2)-Na/Al,05 10%CO4/Ar 10%Hz/Ar 2.68 300 | %
Ru(4)-Na/Alz05 10%COo/Ar 10%Hz/Ar 2.66 300 | %
Ni-Pr/CeO; 10%CO4/Ar 10%Hz/Ar 4.66 300 | °
RuNi-Pr/CeOy 10%CO/Ar 10%H2/Ar 5.62 300 | °
Ni/MgO 65%CO2/N; 50%H2/N2 0.046 500 | %
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Supplementary Table 3. Summary of the continuous CO- capture and RWGS reaction in this study and other
reported CO- capture and RWGS reaction considering the effect of coexistent Oa.

DFMs COo capture gas Hydrogenation | CO yield T ref
or gas [%] [°C]
catalyst
Cu/ZnO/Al203 10%C0O2+10%0./He 100%H2 85.1 650 *
Pt(1)-Na(3)/Al.03 1%C02+10%02/N2 5%H2/N> 8.8 350 38
Pt(1)-Na(3)/MgO 1%C02+10%02/N2 5%H2/N> 3.4 350 38
Pt(1)-Ca(6)/Al203 1%C02+10%02/N2 5%H2/N2 2.3 350 38
Pt(1)-Mg(3)/Al.03 1%C02/10%02/N2 5%H2/N2 0.56 450 38
Pt(1)-K(6)/Al203 1%C02+10%02/N2 5%H2/N> 0.39 450 38
Ru(1)-Na(3)/Al.O3 1%C02+10%02/N2 5%H2/N> 0.34 450 38
Cu(1)-Na(3)/Al203 1%C02+10%02/N2 5%H2/N2 0.17 450 38
Pt(1)-Na(3)/SiO> 1%C02+10%02/N2 5%H2/N> 0.34 450 38
Pt(1)-Na(3)/TiO- 1%C02+10%02/N2 5%H2/N> 1.68 450 38
Rb-Ni/Al203 0.5%C02+10%02/N> 20%H2/N2 47.8 450 39
Pt-Na/Al203 0.5%C02+10%02/N> 20%H2/N2 34.7 450 39
Ni-Rb/Al203 0.5%C02+10%02/N> 20%H2/N2 28.2 450 39
Na-Ni/Al203 0.5%C02+10%02/N> 20%H2/N2 12.9 450 39
Mg-Ni/Al203 0.5%C02+10%02/N> 20%H2/N2 0.54 450 39
Na/Al2O3 0.5%C02+10%02/N> 20%H2/N2 15.1 450 39
Rb/Al>03 0.5%C02+10%02/N> 20%H2/N2 16.1 450 39
Fe(6.91)Cr(0.58)Cu(0.20)- | 5.8%C0O2+5%02+4%H20/N> 100%H2 41.3 450 40
K(9.98)/hydrotalcite
Fe(6.91)Cr(0.58)Cu(0.20)- | 5.8%C02+5%0,+4%H20/N, 100%H: 52.2 500 40
K(9.98)/hydrotalcite
Fe(6.91)Cr(0.58)Cu(0.20)- | 5.8%C02+5%0,+4%H20/N, 100%H: 56.0 530 40
K(9.98)/hydrotalcite
*This study
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Supplementary Table 4. Summary of reported CO, capture and RWGS reaction.

DFMs or catalyst CO. capture gas Hydrogenation | CO yield. T ref
gas [%] [°C]

CaiNig.10 15%CO0O2/N2 5%H2/N2 10.3 650 |4
Ca1Nio.1Ce0.0170 15%C0O2/N2 5%H2/N2 10.8 650 |4
Ca1Nio_1C60,033O 15%C02/N2 5%H2/N2 10.9 650 4“1
Fe(5)Co(5)Mg(10)/Ca0O 10%CO2/He 100%H:2 30.9 650 |4
CaO 10%CO2/He 100%H2 10.3 650 |4
Fe(10)Mg(10)/CaO 10%CO2/He 100%H:2 26.9 650 |4
Fe(8)Co(2)Mg(10)CaO 10%CO2/He 100%H:2 26.5 650 |4
Fe(7.5)Co(2.5)Mg(10)CaO 10%CO2/He 100%H:2 27.7 650 |4
Fe(6.7)Co(3.3)Mg(10)CaO 10%CO2/He 100%H:2 29.7 650 |4
Fe(3.3)Co(6.7)Mg(10)CaO 10%CO2/He 100%H:2 26.0 650 |4
Co(10)Mg(10)CaO 10%CO2/He 100%H2 24.4 650 |4
Ni(10)/Ca0O 10%CO2/N2 5%H2/N2 10.6 650 |4
Ni(10)/Carbide slag(CS) 10%CO2/N2 5%H2/N2 10.6 650 |4
Rb-Ni/Al203 0.5%CO02/N2 20%H2/N2 22.0 450 | %
Ni(10)/Cazr(O) 15%CO02/N2 66.7%H2/N2 4.80 600 |4
Ni(10)/CaAl(O) 15%CO02/N2 66.7%H2/N2 6.95 600 |4
Ni(10)/Ca0O 15%CO0O2/N2 66.7%H2/N2 6.09 600 |4
Ni(10)/CaMg(O) 15%C0O2/N2 66.7%H2/N2 5.37 600 |4
Cu(11)-K(10)/Al203 4.4%CO/He 100%H:2 27.6 450 | %
Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%C0O2/N2 100%H2 72.7 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%C02+4%H20/N> 100%H:2 64.3 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%C02/4%02/N> 100%H2 50.8 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 7.6%C0O2/N2 100%H2 54.7 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 7.6%C02/4%H20/N2 100%H:2 449 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 9.5%CO02/N2 100%H:2 38.7 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 9.5%C02/4%H20/N2 100%H2 324 550 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%CO02/N2 100%H:2 72.3 450 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%CO02/N2 100%H:2 72.7 470 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%C0O2/N2 100%H2 78.5 500 |40
K(9.98)/hydrotalcite

Fe(6.91)Cr(0.58)Cu(0.20)- 5.8%C0O2/N2 100%H2 83.1 530 |40
K(9.98)/hydrotalcite

Na(16)/Al203 5%CO2/N, 100%H:2 5.08 450 |46
K(21)/Al203 5%CO02/N2 100%H:2 5.97 450 |46
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Ca(15)/Al20; 5%CO2/N2 100%Hs 2.7 450 | %
Alz03 5%CO2/N; 100%Hs 0.30 450 | %
Na(16)/Al,0s 5%CO2/N; 100%Hs 2.33 350 | %
Na(16)/Al,0s 5%CO2/N; 100%Hs 4.928 400 | %
Na(16)/Al,0s 5%CO2/N; 100%Hs 5.36 500 | %
CaO 15%CO2/N; 15%H. 1.58 600 | ¥
CaO 15%CO2/N; 15%H 71 650 | 7
CaO 15%CO2/N; 15%H 19.3 700 | ¥
Ce05(33)/Ca0 17%CO2IN; 5%H2/N, 2.16 650 |
Ce0,(33)/Ca0 17%CO2/N; 5%H2/N; 0.98 600 | ¥/
Ce0,(33)/Ca0 17%CO2/N; 5%H2/N; 3.63 700 | ¥
Ce04(33)/Ca0 17%CO2IN; 5%H2/N; 1.81 750 | ¥
Ce0(10)/Ca0 17%CO2IN; 5%H2/N; 0.84 600 |
Ce0(10)/Ca0 17%CO2IN; 5%H2/N; 3.56 650 | %/
Ce0,(10)/Ca0 17%CO2/N; 5%H2/N; 4.88 700 | ¥
Ce0,(10)/Ca0 17%CO2/N; 5%H2/N; 2.23 750 | ¥
CeO4(16)/Ca0 17%CO2IN; 5%H2/N; 0.70 600 |
Ce05(16)/Ca0 17%CO2IN; 5%H2/N; 2.51 650 | %7
Ce04(16)/Ca0 17%CO2/N; 5%H2/N; 474 700 | ¥
CeO4(16)/Ca0 17%C0,/N; 5%Ha/N2 2.65 750 | ¥
Ce0,(50)/Ca0 17%C0,/N; 5%Ha/N2 0.56 600 |
Ce02(50)/Ca0 17%CO2IN; 5%H2/N; 2.23 650 | %/
Ce02(50)/Ca0 17%CO2IN; 5%H2/N; 2.93 700 | ¥
Ce02(50)/Ca0 17%CO2/N; 5%H2/N; 0.84 750 | 47
Ce0,(67)/Ca0 17%C0,/N; 5%Ha/N2 0.35 600 |
Ce0,(67)/Ca0 17%C0,/N; 5%Ha/N2 1.39 650 |
Ce05(67)/Ca0 17%CO2IN; 5%H2/N; 1.39 700 | ¥
Ce05(67)/Ca0 17%CO2IN; 5%H2/N; 0.56 750 | 4
Ni/CaO 10%C02/10%H;0/N; 10%H,/N; 215 700 | 8
La(15)-Ni(2.5)/Ca0 10%CO2/Ar 10%H/Ar 433 650 | *°
Mg(15)-Ni(2.5)/CaO 10%CO2/Ar 10%H/Ar 38.8 650 | *°
Zr(15)-Ni(2.5)/Ca0 10%CO,/Ar 10%H,/Ar 36.3 650 | %
Ce(15)-Ni(2.5)/Ca0 10%CO,/Ar 10%H,/Ar 413 650 | %
Ni(2.5)/Ca0 10%CO2/Ar 10%H/Ar 31.36 650 | *°
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