
I. Connection of the projection to local linear embedding (LLE) 1 

In this work, we use the neighborhood of a data point to approximate the corresponding tangent 2 

space of the data manifold. Such approximation has been used in other applications such as the 3 

local linear embedding (LLE)5. Here we provide a derivation of representing velocity vectors 4 

based on LLE. 5 

Consider a data point 𝐱!  and its neighbors. Applying LLE one has ∑ 𝑤!"$𝑥" − 𝑥!' ="#!	6 
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(𝑥! − 𝑥'). Now consider after 𝛿𝑡 → 0 𝐱! moves to 𝐱!( = 𝐱! + 𝒗)!𝛿𝑡, which should be also within 8 

the local linear embedding space. Again with LLE one has ∑ 𝑤!"( $𝑥" − 𝑥!(' = 0"#! , with 9 

∑ 𝑤!"( = 1" . Then one has 𝒗)!=∑
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𝛿!" 	="#! ∑ 𝜙!"𝛿!" 	"#! , with a form similar to that in eq. 10 

1 of the main text. 11 

The above derivation suggests an iterative trajectory propagation algorithm for obtaining the 12 

velocities in the new representation: 13 

1) Use a trial 𝒗)! to propagate the state and obtain (𝐱! , 𝐱′!). One can propagate backward and 14 

forward by 𝛿𝑡/2 and use central difference to estimate the velocity vectors. 15 

2) Apply LLE to get 𝑤!" 	and 𝑤′!". I 16 

3) Obtain a new 𝒗)! 17 

4) Go back to step 1 until the result converges below a threshold. 18 

We numerically tested the above algorithm, the one with the loss function given in eq. 2 of the 19 

main text with the parameter b = 0 and	𝑏 ≠ 0. All the three algorithms worked well on synthetic 20 

data. The first two actually outperformed the third one (used in the main text). However, the first 21 



two sometime showed numerical instability once applied to real single cell data. Therefore, in 22 

subsequent applications, we used the general loss function form in eq. 2, using the direction 23 

information from the second term (with 𝑏 ≠ 0) to further regularize the projection. 24 

II. Numerical issues of using eq. 1 for tangent space projection 25 

The relation in eq. 1 provides an algorithm for projecting a measured 𝐯 onto ℳ by minimizing the 26 

following loss function, 27 

ℒ(𝝓!) = &𝒗! − 𝒗∥!&
# + 𝜆‖𝝓!‖#, 28 

which unfortunately is numerically unstable. The redundancy of the basis vectors leads to 29 

coefficients that are not uniquely determined, and failure of the projection. To see the latter, notice 30 

that in real data the subspace formed by the displacement vectors only approximates the tangent 31 

space 𝑇ℳ locally, and it likely contains small components in the orthogonal space. Then the 32 

projection procedure tries to express both 𝐯∥(𝐱) and all or part of the remaining (𝐯𝒊 − 𝐯∥) as a linear 33 

combination of 𝛅ij with some |𝜙ij| ≫ 0, which can only be counterbalanced by a very large value 34 

of 𝜆. The latter would impose large weight on the regularization. While further data preprocessing 35 

may be developed in the future to alleviate the problem, in this work we provided a strategy of 36 

adding an additional cosine kernel term for the direction information.  37 

We also experimented with the idea of removing the redundancy through dimension reduction 38 

with PCA. The numerical results were not satisfactory, since it converged slowly with the sampling 39 

size, which becomes impractical. 40 

 41 



III. Reformulation of Cosine kernel used in the literature in the context of tangent 42 

space projection 43 

In the original RNA velocity study, a Cosine kernel has been proposed to transform the RNA 44 

velocity vectors between different representations6. We re-casted the cosine kernel in the context 45 

of the tangent space projection with a form similar to that of eq. 1 in the main text: 46 
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 defined in the form of softmax functions, 47 

with	cos(∙,∙) denoting the cosine similarity between two input vectors, 𝜎 an arbitrary bandwidth 48 

parameter, and 𝑘  the number of neighbors for each cell. Here 𝑃!"  gives a heuristic transition 49 

probability from cell 𝑖 to 𝑗. The term (−1/𝑘), called the “density correction”, is designed to correct 50 

the potential sampling bias where the embedded velocity vectors tend to point towards the 51 

direction of regions with high cell density. Li et al. showed that mathematically the cosine kernel 52 

asymptotically converges to the correct direction of a velocity vector7. However, the correlation 53 

kernel loses information about the magnitude of the velocity vectors 𝐯! (i.e., the speed), due to the 54 

normalization in the correlation functions.  Intuitively, the correlation kernel is qualitatively guided 55 

by the physical intuition that a cell has a high tendency to move along the direction of its velocity 56 

vector. Here, we used the direction information of 𝜙!"4566 to help on constraining	𝛟!.  57 

IV. Further discussions on applications of GraphVelo to manifolds formed by multi-58 

modal single cell data. 59 

GraphVelo is based on the following mathematical assumption: the manifolds of a given system 60 

embedded in two different spaces are homeomorphic so one can establish a one-to-one mapping 61 



between the two. Here we use one simple example of scRNAseq/scATACseq multiomic data to 62 

illustrate that one can still apply GraphVelo if this assumption is violated. Consider that a cellular 63 

system switches between two discrete epigenetic states, and for each epigenetic state there is a 64 

corresponding (quasi)continuous transcriptomic manifold. Label the two disjoint manifolds as 65 

ℳ1(x) and ℳ2(x), where x represents the transcriptomic state. Consider two cells having the same 66 

x but different chromatin state, c1 on ℳ1 and c2 on ℳ2. Multiomic data allows distinction between 67 

two cells.  That is, the neighborhood of c1 is composed of cells on ℳ1, and the neighborhood of 68 

c2 is composed of cells on ℳ2. Therefore, GraphVelo analyses treat cells on ℳ1 and ℳ2 69 

separately. 70 

V. Feature selection for robustly estimated velocity genes. 71 

In datasets featuring non-differentiating cell types organized in a hierarchical manner, application 72 

of RNA velocity may show different kinetic regimes. Analyzing cell fate transition using 73 

unreliable velocity genes can lead to emergence of spurious cell state transitions. Different 74 

packages subset the well-estimated kinetic genes for further analyses in different scenarios. In the 75 

implementation of scVelo, one first regresses out the uncertain genes are based on the r-squared 76 

coefficient in the steady-state model and further selects trustful velocity genes according to the 77 

log-likelihood in the dynamical mode. PhyloVelo relies on monotonically expressed genes to infer 78 

transcriptomic velocity, which is a more stringent requirement. However, the monotonic 79 

assumptions are counter intuitive and oversimplify the gene expression kinetics along 80 

differentiation or disease trajectories due to the non-sequential nature of these cascades. Dynamo 81 

provides a biological prior-guided method and filters out the unreliable genes based on the 82 

knowledge of lineage information. 83 
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