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Figure S 1. Boxplots illustrating the water table depth (WTD) differences among the eastern (E), central (Mid), and western (W) sections of the L1 and L3 cranberry fields. Data were analyzed using ANOVA (p-value < 0.05). The lower WTD values (approximately 600 mm) on the W side indicate subirrigation conditions, while the higher WTD values on the E and Mid sections are consistent with conventional irrigation practices.
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Figure S 2. (A) Principal Component Analysis (PCA) of soil samples from L1 East, L1 West, L3 East, and L3 West, showing their distribution relative to pH, moisture, and total/available elements. Ellipses represent 95% confidence intervals. (B) Variable contributions (%) to the first two PCA dimensions, highlighting key factors influencing the observed variability among regions.
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Figure S 3.  Spatial distribution of cranberry yield (Mg/ha) for fields L1 and L3. Hollow circles indicate soil sampling points in the West and East regions. Yield surfaces were generated using the Thin Plate Spline Regression (TPS) interpolation. Coordinates are in UTM.
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Figure S 4. (A) Empirical variogram and (B) cross-validation results of the Thin Plate Spline Regression (TPS) interpolation method used to estimate cranberry yield.
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Figure S 5. Pearson’s correlation matrix displaying relationships (Pearson’s R) among selected soil variables (Mg.av, Cu.av, Moisture) and cranberry yield. Circle size and color intensity correspond to the correlation strength and direction. Significance levels are indicated by asterisks (***p<0.001, **p<0.01, *p<0.05).
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Figure S 6. Relative abundances of predicted nitrogen-cycle genes (e.g., denitrification, nitrate assimilation, DNRA, nitrogen fixation) in each field and region (L1 East, L1 West, L3 East, and L3 West). Predictions are based on Tax4Fun2 functional inference from 16S rRNA gene data, highlighting how soil bacterial community potential for nitrogen transformations varies across different field sides. Genes are grouped by their functional roles: nitrogen fixation (nifH, nifD, nifK), DNRA (nirD), ANRA and nitrate assimilation (nirA, narB, nasA, nasB, nrtA, nrtB, nrtC, nrtD), denitrification (narG, narH, narI, napA, nirS, nirK, norB, norC, nosZ), and hydroxylamine reduction (hcp). These gene sets underscore the soil bacterial community’s capacity to drive key nitrogen transformations, potentially influencing nitrogen retention, plant availability, and yield under different moisture regimes and management practices.
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Figure S 7. Boxplots showing the relative abundance (%) of nitrate transporter genes (Nrt, NrtA, NrtB, NrtC, and NrtD) across the four field sides (L1 East, L1 West, L3 East, and L3 West). Statistical differences were assessed using the Kruskal-Wallis test, with significance levels indicated as ns (not significant), * (p<0.05), ** (p<0.01), and *** (p<0.001). These comparisons highlight variations in nitrate assimilation potential among cranberry fields managed under different moisture and irrigation conditions.
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Figure S 8. Boxplots showing the relative abundance (%) of nitrate reductase genes (narB, narG, narH, narI) across the four field sides (L1 East, L1 West, L3 East, and L3 West). Each gene is involved in the initial steps of nitrate reduction, influencing nitrogen cycling and availability in the soil. Statistical differences were tested using the Kruskal-Wallis test, with significance levels indicated as ns (not significant), * (p<0.05), ** (p<0.01), and *** (p<0.001).
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Figure S 9. Boxplots of relative abundances (%) for key denitrification genes (nirK, nirS, norB, norC, nosZ) across the four field sides (L1 East, L1 West, L3 East, and L3 West). nirK and nirS encode nitrite reductases, norB and norC encode nitric oxide reductases, and nosZ encodes nitrous oxide reductase. These genes represent different steps in the denitrification pathway, influencing nitrogen gas losses and soil nitrogen availability. Statistical differences were tested using the Kruskal-Wallis test, with significance levels indicated as ns (not significant), * (p<0.05), ** (p<0.01), and *** (p<0.001).
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Figure S 10. Boxplots showing the relative abundances (%) of genes napA, nasA, nasB, nirA, and nirD across the four field sides (L1 East, L1 West, L3 East, and L3 West). napA encodes a periplasmic nitrate reductase, while nasA and nasB are involved in assimilatory nitrate reduction. nirA contributes to assimilatory nitrite reduction, and nirD is associated with DNRA. Statistical differences were assessed using the Kruskal-Wallis test, with significance indicated as ns (not significant), * (p<0.05), ** (p<0.01), and *** (p<0.001). These variations highlight shifts in nitrogen reduction pathways under distinct moisture and irrigation conditions.
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Figure S 11. Boxplots showing the relative abundances (%) of nitrogen fixation genes (nifD, nifH, nifK) and the hydroxylamine reductase gene (hcp) across the four field sides (L1 East, L1 West, L3 East, and L3 West). The nif genes are pivotal for converting atmospheric N₂ into bioavailable ammonia, thereby enhancing plant nitrogen nutrition. The hcp gene is associated with the reduction of hydroxylamine to ammonium, further contributing to nitrogen mineralization and retention. Statistical differences were evaluated using the Kruskal-Wallis test, with significance indicated as ns (not significant), * (p<0.05), ** (p<0.01), and *** (p<0.001). These results illustrate how varying moisture conditions and irrigation strategies influence key microbial functions that support nitrogen availability in cranberry soils.
Supplementary Table 1. PERMANOVA (adonis2) results testing the effect of soil variables on bacterial community composition (Bray-Curtis dissimilarity, 999 permutations).
	Variable
	Df
	Sums of Squares
	Mean Squares
	F.Model
	R²
	Pr(>F)
	Significance

	Mg.av
	1
	0.6723
	0.67234
	3.2377
	0.03866
	0.001
	***

	Ca.av
	1
	0.6618
	0.66181
	3.1870
	0.03805
	0.002
	**

	Mn.av
	1
	0.6129
	0.61290
	2.9514
	0.03524
	0.002
	**

	Moisture
	1
	0.8135
	0.81349
	3.9174
	0.04677
	0.001
	***

	Yield
	1
	0.7057
	0.70575
	3.3986
	0.04058
	0.001
	***

	[bookmark: OLE_LINK1]Cu.tot
	1
	0.4285
	0.42855
	2.0637
	0.02464
	0.026
	*

	Residuals
	65
	13.4979
	0.20766
	
	0.77607
	
	

	Total
	71
	17.3928
	
	
	1.00000
	
	


Significance codes: *** p < 0.001, ** p < 0.01, * p < 0.05

Supplementary Table S2. Pearson’s correlation coefficients (R) and p-values (p) for selected significant (p<0.05) relationships among soil properties and cranberry yield. Soil elements measured as plant-available (Mehlich III, “.av”) indicate nutrients readily accessible to plants, while total concentrations (X-ray fluorescence, “.tot”) reflect overall elemental content. pH, soil moisture, and yield correlations are also included.
	Row
	Column
	Pearson R
	p-value

	Mg.av
	Ca.av
	0.52
	0.01

	Ca.av
	K.av
	0.46
	0.01

	K.av
	Cu.av
	0.31
	0.01

	Ca.av
	Zn.av
	0.27
	0.02

	Mg.av
	Mn.av
	0.56
	0.01

	Ca.av
	Mn.av
	0.62
	0.01

	Mn.av
	Fe.av
	0.42
	0.01

	Cu.av
	P.av
	0.26
	0.03

	Ca.av
	pH
	0.25
	0.04

	Cu.av
	pH
	0.29
	0.01

	Zn.av
	pH
	0.23
	0.05

	Mg.av
	Yield
	-0.39
	0.00

	Cu.av
	Yield
	0.45
	0.01

	Moisture
	Yield
	-0.56
	0.01

	Mg.av
	K.tot
	-0.29
	0.01

	Moisture
	Ca.tot
	0.25
	0.03

	K.tot
	Ca.tot
	0.76
	0.01

	P.av
	Ti.tot
	0.26
	0.03

	Fe.tot
	Ti.tot
	0.53
	0.01

	Ca.tot
	Ti.tot
	0.45
	0.01

	pH
	Ba.tot
	-0.24
	0.04

	Moisture
	Ba.tot
	0.28
	0.02

	Fe.tot
	Ba.tot
	0.42
	0.01

	K.tot
	Ba.tot
	0.40
	0.01

	Ca.tot
	Ba.tot
	0.44
	0.01

	Ti.tot
	Ba.tot
	0.26
	0.03

	Moisture
	Zr.tot
	0.38
	0.01

	Yield
	Zr.tot
	-0.28
	0.02

	Fe.tot
	Zr.tot
	0.53
	0.01

	K.tot
	Zr.tot
	0.35
	0.00

	Ca.tot
	Zr.tot
	0.55
	0.01

	Ti.tot
	Zr.tot
	0.65
	0.01

	Ba.tot
	Zr.tot
	0.58
	0.01

	Moisture
	Mn.tot
	0.29
	0.01

	Fe.tot
	Mn.tot
	0.57
	0.01

	Ca.tot
	Mn.tot
	0.50
	0.01

	Ti.tot
	Mn.tot
	0.61
	0.01

	Ba.tot
	Mn.tot
	0.40
	0.01

	Zr.tot
	Mn.tot
	0.61
	0.01

	Fe.tot
	Sr.tot
	0.39
	0.01

	K.tot
	Sr.tot
	0.58
	0.01

	Ca.tot
	Sr.tot
	0.65
	0.01

	Ti.tot
	Sr.tot
	0.30
	0.01

	Ba.tot
	Sr.tot
	0.81
	0.01

	Zr.tot
	Sr.tot
	0.55
	0.01

	Mn.tot
	Sr.tot
	0.45
	0.01

	pH
	Rb.tot
	-0.26
	0.03

	Fe.tot
	Rb.tot
	0.36
	0.01

	K.tot
	Rb.tot
	0.54
	0.01

	Ca.tot
	Rb.tot
	0.51
	0.01

	Ti.tot
	Rb.tot
	0.29
	0.02

	Ba.tot
	Rb.tot
	0.80
	0.00

	Zr.tot
	Rb.tot
	0.52
	0.01

	Mn.tot
	Rb.tot
	0.34
	0.01

	Sr.tot
	Rb.tot
	0.90
	0.01

	Mg.av
	Zn.tot
	0.41
	0.01

	Ca.av
	Zn.tot
	0.35
	0.01

	Mn.av
	Zn.tot
	0.32
	0.01

	Fe.tot
	Zn.tot
	0.51
	0.01

	K.tot
	Zn.tot
	-0.48
	0.01

	Ca.tot
	Zn.tot
	-0.25
	0.04

	Ba.tot
	Zn.tot
	0.27
	0.02

	Mn.tot
	Zn.tot
	0.29
	0.01

	Mg.av
	Ta.tot
	0.29
	0.01

	Ti.tot
	Ta.tot
	0.25
	0.04

	Ba.tot
	Ta.tot
	0.34
	0.01

	Zr.tot
	Ta.tot
	0.34
	0.01
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