

Supplemental Information

Fullerene-Decorated PdCo Nano-Resistor Network Hydrogen Sensors: Sub-Second Response and Part-per-Trillion Detection at Room Temperature

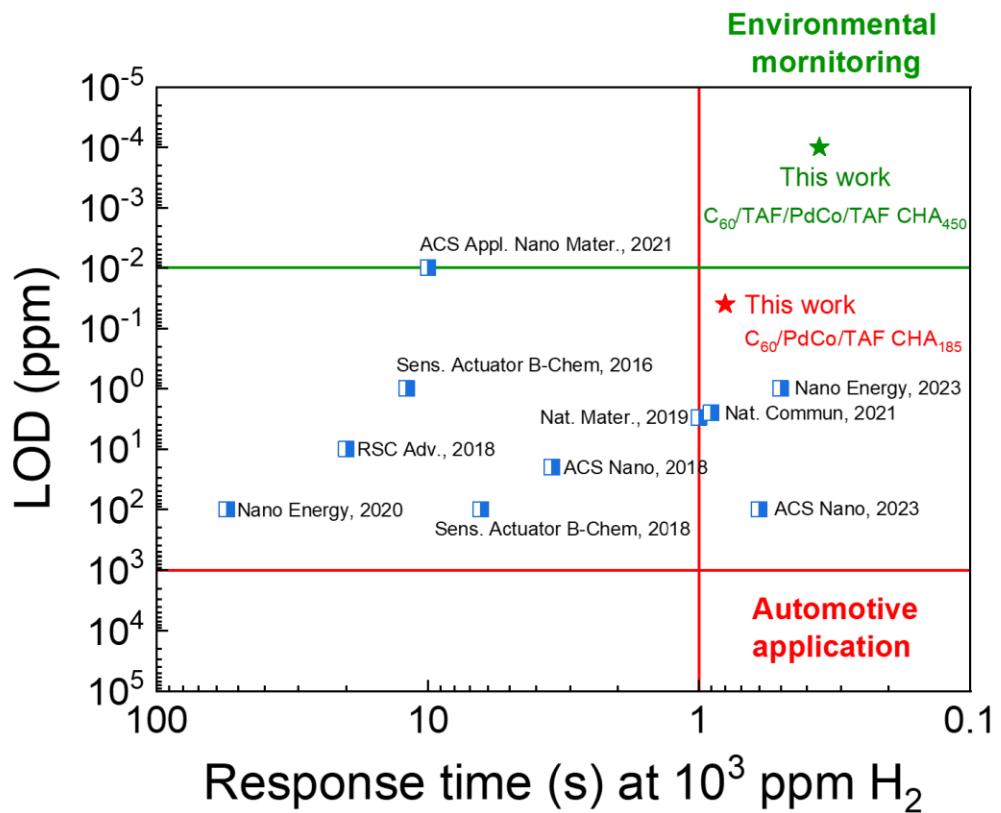
Tu Anh Ngo^{a,*}, Ashwin T. Magar^a, Minh T. Pham^a, Hoang M. Luong^a, George Larsen^b, Yiping Zhao^a, and Tho D. Nguyen^{a,*}

^a Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA.

^b Hydrogen Isotope Science Group, Savannah River National Laboratory, Aiken, South Carolina 29808, USA.

* Corresponding author

Correspondence to: anhngo@uga.edu (T. A. Ngo), ngtho@uga.edu (T. D. Nguyen).


KEYWORDS

electrical hydrogen gas sensor, PdCo composite, nanohole arrays, Fullerene C₆₀, Teflon AF

1 **Table of Contents**

2	S1. State-of-the-art Pd-based H ₂ sensors	3
3	S2. SEM and EDS elemental mapping images.....	6
4	S3. Hydrogen sensing characterization setups.....	7
5	S3. Sensing characteristics of PdCo thin films	9
6	S5. CHAs with different etching time t _{RIE}	13
7	S5.1. Morphology characterization and glancing angle deposition (GLACD) simulation.....	13
8	S5.2. Surface-to-volume (SVR) ratio calculation	16
9	S5.3. Resistivity model.....	18
10	S5.4. Sensing characteristics of CHAs with different etching time t _{RIE}	20
11	S6. Noise evaluation	26
12	S7. Interference gases and humidity tests	27
13	S8. Pressure transducer's reaction time	28
14	Supplementary references	29
15		
16		

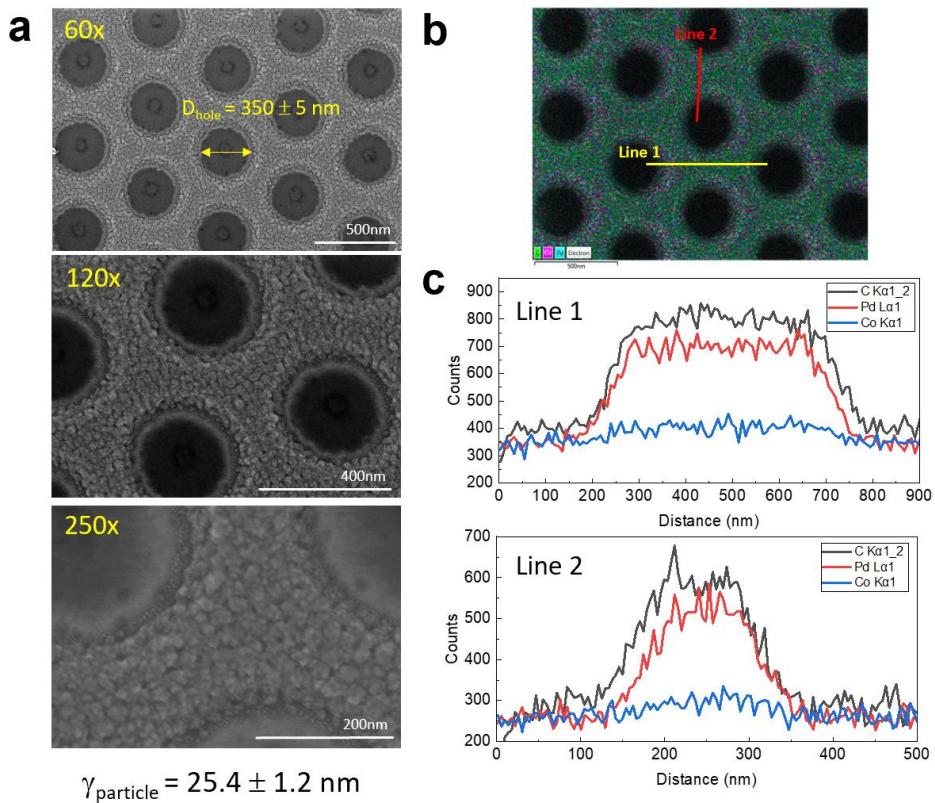
1 **S1. State-of-the-art Pd-based H₂ sensors**

Figure S1. State-of-the-art Pd-based hydrogen gas sensors' sensing metrics. The response time and LOD requirements for automotive¹ and environmental monitoring² applications are denoted in red and green lines, respectively.

2

Sens. Actuator B-Chem, 2016	Ref. ³	Nano Energy, 2020	Ref. ⁴
RSC Adv., 2018	Ref. ⁵	ACS Appl. Nano Mater., 2021	Ref. ⁶
ACS Nano, 2018	Ref. ⁷	Nat. Commun., 2021	Ref. ⁸
Sens. Actuator B-Chem, 2018	Ref. ⁹	Nano Energy, 2023	Ref. ¹⁰
Nat. Mater., 2019	Ref. ¹¹	ACS Nano, 2023	Ref. ¹²

3


1 **Table S1.** Sensing metrics of electrical H₂ gas sensors operating at room temperature with either
 2 response time < 30 s at 1 mbar (or 0.1 vol.%) H₂ or LOD < 1000 ppm. n.a. = not addressed.

Device structure	Response time (s) (t ₉₀ if not specified)	Ambient pressure (mbar)	LOD (ppm - if not specified)	Sensor's hysteresis-free behavior	Resistance to poisoning gases	Ref.
C ₆₀ /PdCo/ Teflon AF/PMMA CHA ₁₈₅	≤ 0.8	1	40 ppb	Yes	Yes	This work
C ₆₀ /Teflon AF/ PdCo/Teflon AF CHA ₄₅₀	≤ 0.36	1	100 ppt			This work
PMMA-coated Pd-Co nanohole array	10.8	1	<0.01	Yes	Yes	⁶
Hollow Pd nanotube network (PVA@Pd8)	2.1	1	10	n.a.	Yes	¹³
Pd-Ni alloy thin films	t ₆₃ = 5	10	n.a.	n.a.	n.a.	¹⁴
Palladium nanowire engineered nanofiltration	13	1	1000	n.a.	n.a.	¹⁵
Ultrasmall grained Pd nanopattern	12	30	2.5	n.a.	n.a.	¹⁶
Pd-capped Mg film	6	10	1	n.a.	n.a.	¹⁷
Pd@Au core-shell nanoparticles	15	200	1000	n.a.	n.a.	¹⁸
Networks of ultrasmall palladium nanowires	~25	1	n.a.	n.a.	n.a.	¹⁹
Pd-decorated silicon nanomesh	t ₈₀ ~ 10	1	50	n.a.	n.a.	²⁰
SiO ₂ nanorod coated-Pd	17	10	10	n.a.	n.a.	²¹
Pt-TiO ₂	10 ± 5	1	30	n.a.	n.a.	²²
polyurethane@Pd	24	1	20	n.a.	n.a.	²³
Pd nanowires	25	1	50	n.a.	n.a.	²⁴
Pd NP/graphene	300	1	20	n.a.	n.a.	²⁵
PdNi Nanogap	0.5	20	500	n.a.	n.a.	²⁶
Discontinuous palladium films on Polyimide	5	40	5000	n.a.	n.a.	²⁷

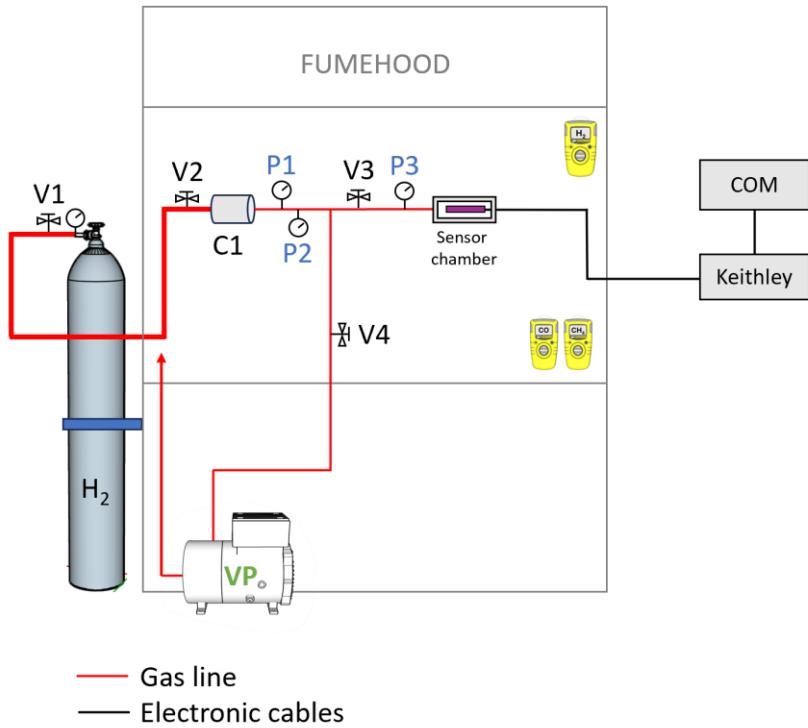
Pd nanorod	7	n.a.	1000	n.a.	n.a.	²⁸
Pd nanoparticles	1.2	10	10^4	n.a.	n.a.	²⁹
Pd nanoparticles coated Multi-Walled Carbon Nano Tubes	15	300	n.a.	n.a.	n.a.	³⁰

1

1 **S2. SEM and EDS elemental mapping images**

Figure S2. (a) SEM images of 20 nm C₆₀/5 nm PdCo CHA₄₅₀ (hole diameter $D_{\text{hole}} = 350 \pm 5 \text{ nm}$) at different magnifications. The estimated diameter of the PdCo particles on the surface is $\gamma_{\text{particle}} = 25.4 \pm 1.2 \text{ nm}$. (b) Energy-dispersive spectroscopy (EDS) elemental layered mapping. (c) EDS line spectra along two lines denoted in (b). Counts are based on weight percentages.

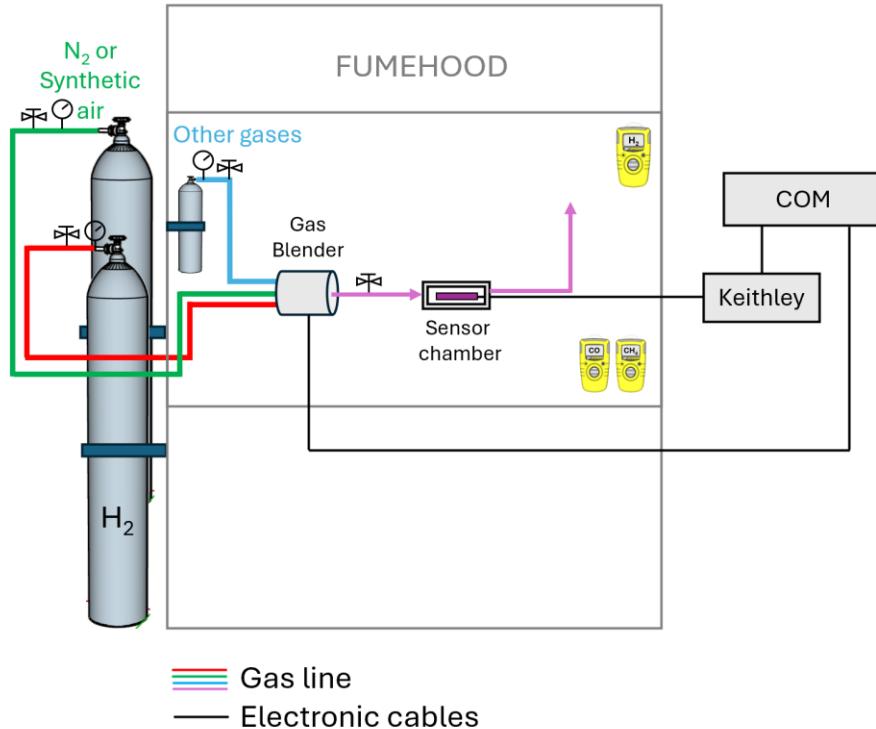
2


3 **Table S2.** Weight % to atomic % conversion table

Elements	Map (Fig. S2b)		Line 1 (Fig. S2c)		Line 2 (Fig. S2c)	
	Wt. %	At. %	Wt. %	At. %	Wt. %	At. %
C	79.5		7.15 ± 0.11		9.28 ± 0.13	
Pd	15.4	63	0.87 ± 0.02	67.7 ± 5.8	0.58 ± 0.02	62.8 ± 7.0
Co	5.1	37	0.24 ± 0.02	33.3 ± 2.9	0.19 ± 0.02	37.2 ± 4.1

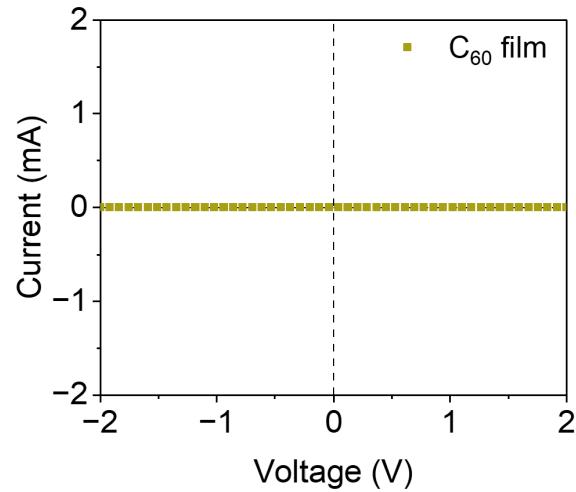
4

5

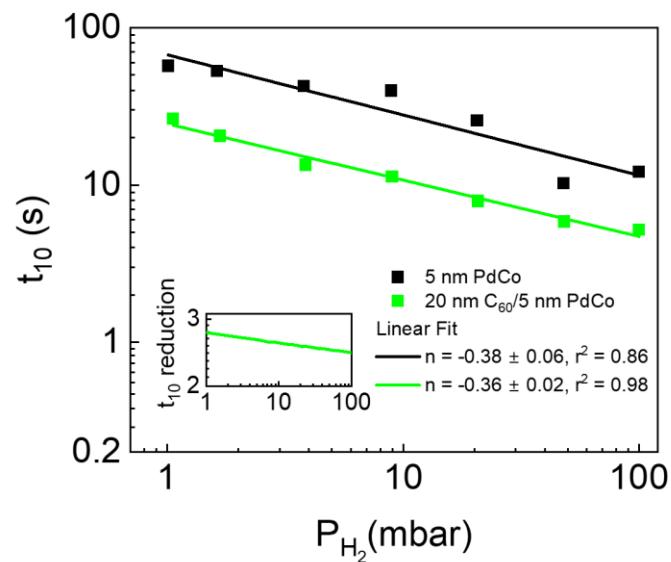

1 **S3. Hydrogen sensing characterization setups**

2 **Figure S3.** H₂ electrical sensing vacuum mode setup.

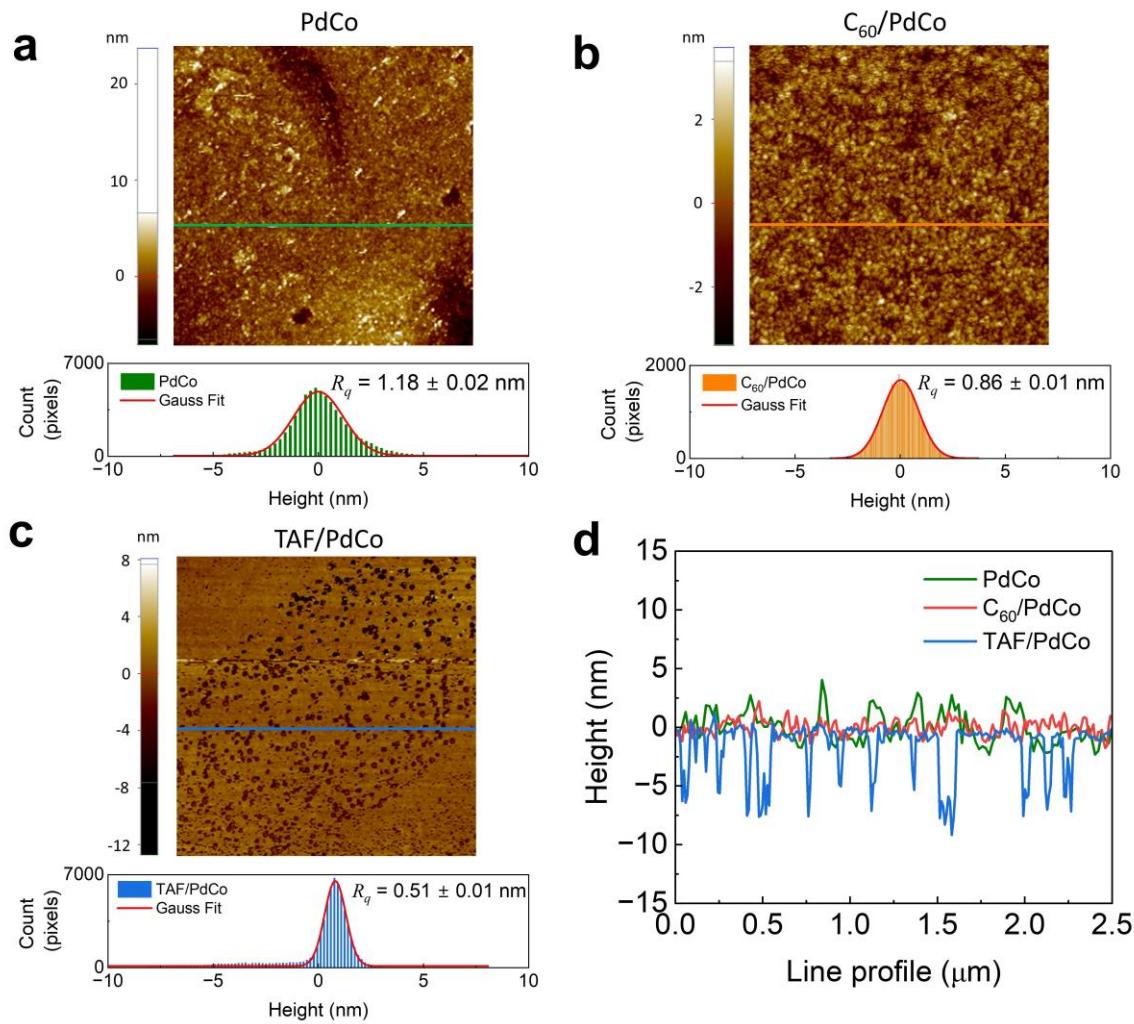
3 The vacuum mode set up is depicted in **Figure S3**. Different H₂ gas pressure in the sensor
4 chamber can be prepared by recurringly diluting pure H₂ gas or the gas mixture of 4% H₂ in N₂
5 (Airgas) from chamber 1 (C1) to the sensor chamber by several gas valves (V1-V3). The H₂
6 pressures are monitored by three independent pressure transducers (two PX409-USBH, Omega
7 and a Baratron, MKS). Finally, the chamber sensor is isolated to C1, and the gas inside the chamber
8 is pumped out using valve V4 to achieve the base pressure of $\sim 5 \times 10^{-4}$ mbar in the chamber. The
9 resistance of the sensors is recorded during the process using 4-point probe measurement by a
10 Keithley 2635B current source. In order to further exploring the measurement at a lower H₂
11 pressure, 4% or 100 ppm of H₂ mixed gas in N₂ balance can be used. In this case, we can prepare
12 a mixture gas with H₂ pressure in sensor chamber down to 1 mbar, which is equivalent to partial
13 hydrogen pressure/concentration of 40 ppm or 100 ppb, respectively. In order to probe at lower H₂


1 concentrations (a few ppb or ppt level), we will need to utilize further diluted H₂ gas as the gas
2 source.

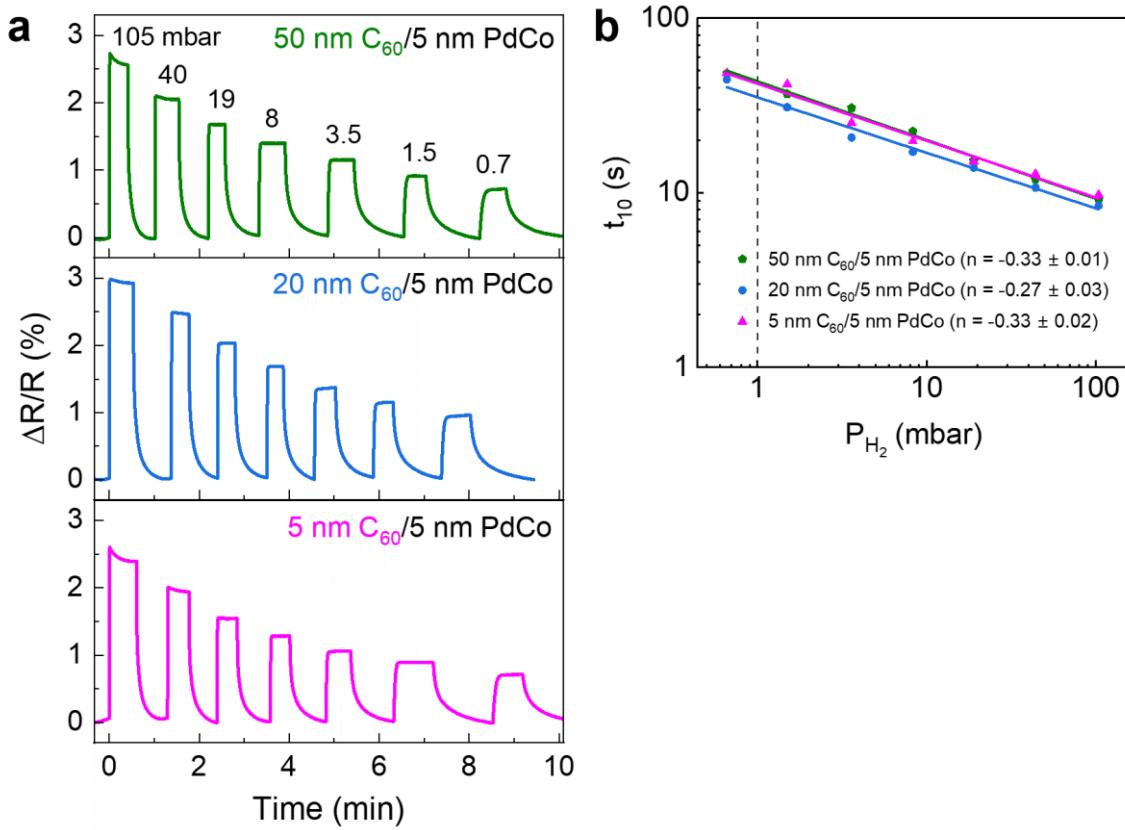
3 **Figure S4.** H₂ electrical sensing flow mode setup.


4 In addition to the vacuum mode setup, the gas sensing measurement is also performed in
5 flow mode to mimic the leakage (Figure S4). 4% H₂ balance in N₂ are further diluted with ultra-
6 high purity N₂ gas to the targeted concentrations \leq 4 vol. % H₂ by a commercial gas blender (GB-
7 103, MCQ Instruments). The gas flow rate is kept constant at 400 ml/min or 400 sccm at 1 atm for
8 all measurements. The gas cell and gas outlet are placed inside a fume hood during the
9 measurement.

1 **S3. Sensing characteristics of PdCo thin films**


Figure S5. I-V characteristics of C_{60} film.

2


Figure S6. Desorption time t_{10} of 5 nm PdCo and 20 nm $C_{60}/5$ nm PdCo thin films.

3

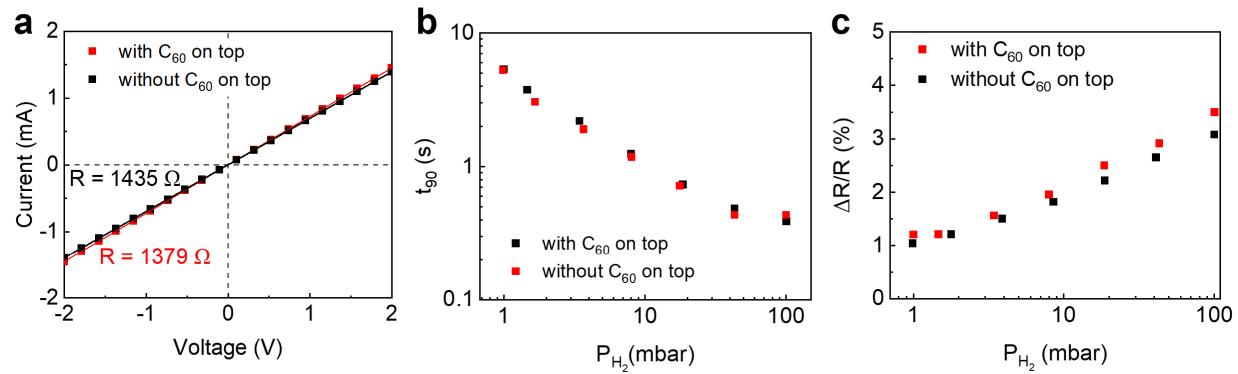


Figure S7. AFM images of 5 nm PdCo thin film on (a) a glass substrate, (b) a 50-nm C₆₀-coated glass substrate, (c) a 30-nm TAF-coated glass substrate and the corresponding histograms. (d) The line profiles across the films extracted from figures (a-c).

1 **S4. Sensing characteristics of CHAs on different C_{60} thicknesses**

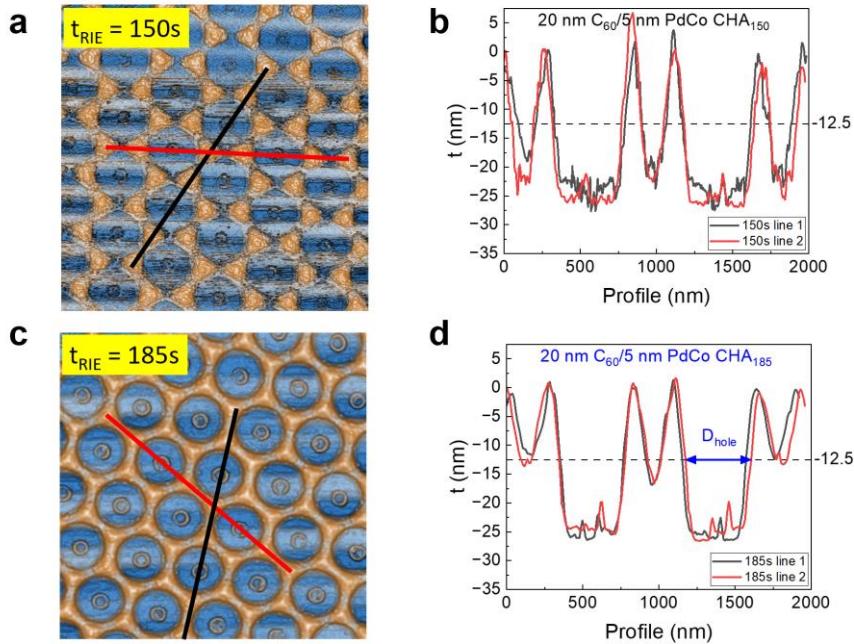
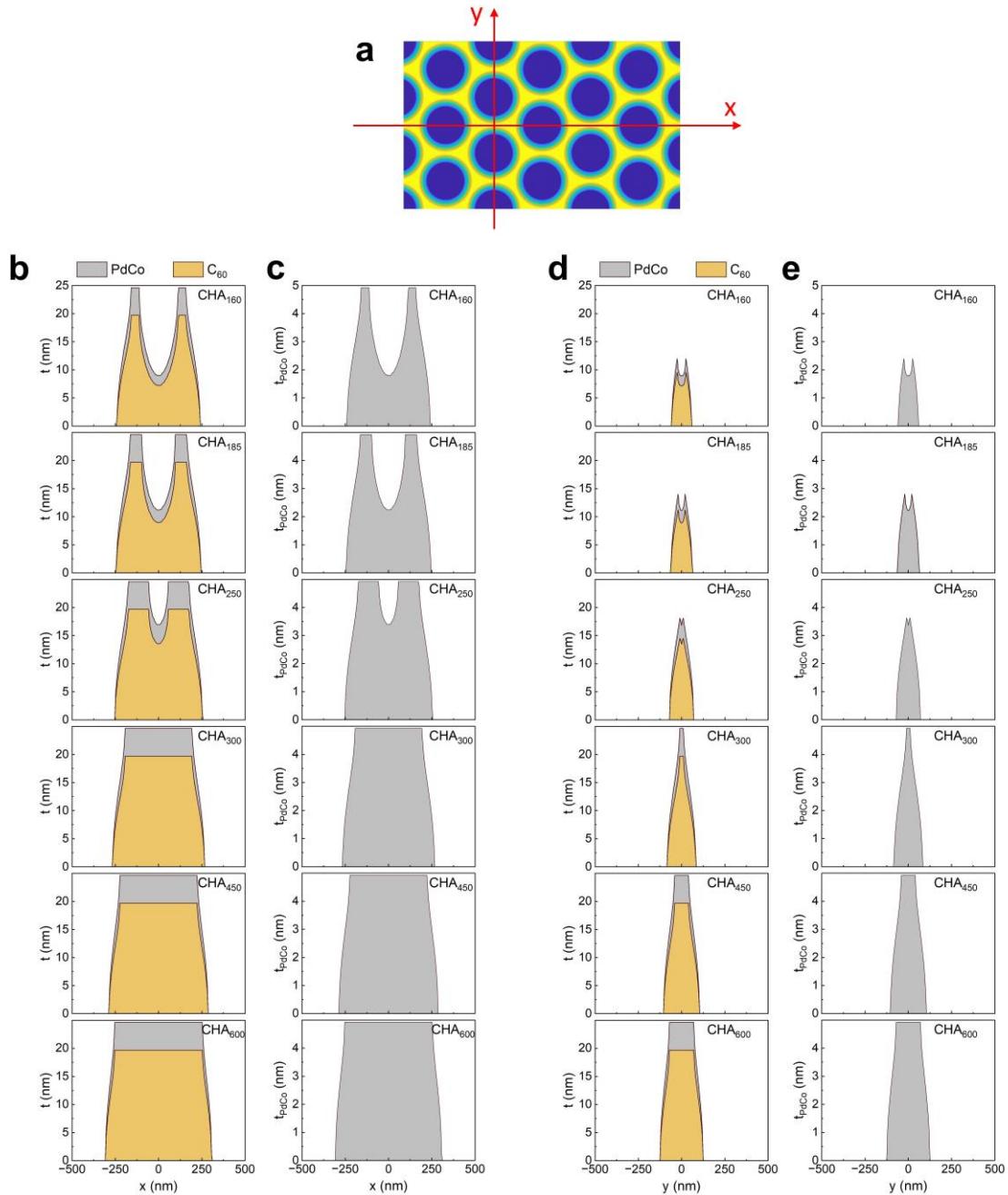

Figure S8. Sensing performances of $C_{60}/5$ nm PdCo CHA₄₅₀ sensors with different C_{60} thicknesses. (a) Sorption dynamics in response to step wise decreasing H_2 pressure from 105 to 0.7 mbar. (b) Release time t_{10} extracted from (a). All measurements were performed in vacuum mode at room temperature.

Figure S9. Sensing performances of 20 nm C₆₀/5 nm PdCo CHA₃₀₀ sensors with and without 20 nm C₆₀ on top. (a) I-V characteristics, (b) response time t_{90} and (c) sensitivity of the sensors in response to step wise decreasing H₂ pressure from 100 to 1 mbar. All measurements were performed in vacuum mode at room temperature.


1 **S5. CHAs with different etching time t_{RIE}**

2 **S5.1. Morphology characterization and glancing angle deposition (GLACD) simulation**

Figure S10. (a)(c) Top-view AFM image of CHA₁₅₀ and CHA₁₈₅ and (b)(d) the corresponding line profile along 2 lines denoted in (a)(c). The hole diameter D_{hole} is extracted from the middle of the hole and is averaged from 4 holes as depicted in (d).

3
4 When etching time < 160 s (Fig. S10 a&b), a nanotriangle array was achieved instead of a nanohole
5 array due to the pronounced shadow effect from the big PS beads, resulting in a discontinuous
6 nano network. The hole diameters of all CHAs were extracted from AFM line profiles (similar to
7 CHA₁₈₅ depicted in Fig. S10c&d) and summarized in Table S3. D_{hole} was then used as input
8 parameters for GLACD simulation.³¹

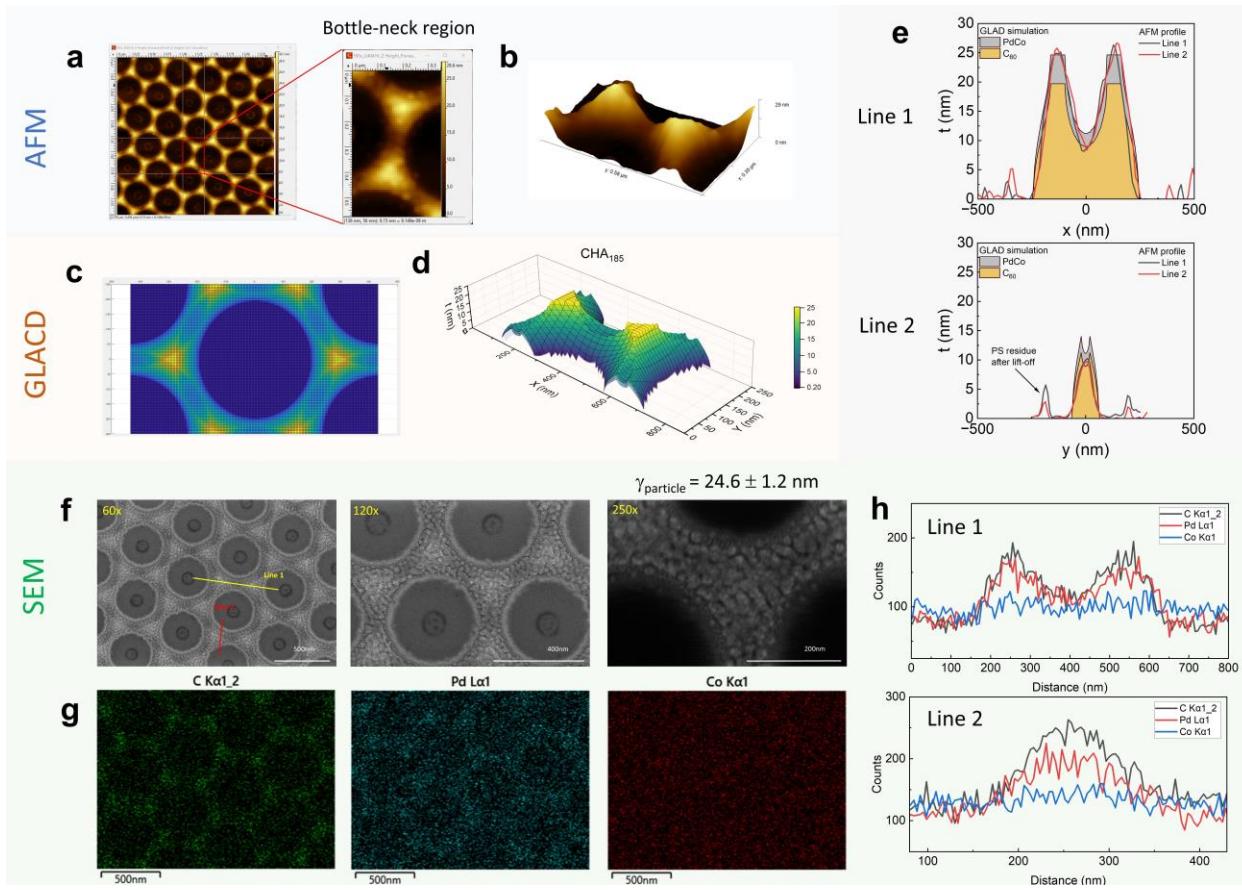


Figure S11. (a) Simulated hole array diagram and the bottleneck cross-section for each CHA_t along (b) the x-axis and (d) the y-axis denoted in (a). (c) and (e) are the thicknesses of the PdCo layer in (b) and (d) projected on a flat substrate.

1

2

3

Figure S12. Comparison between GLACD simulation and data from AFM and SEM. (a) Top-view and (b) side-view AFM images of CHA₁₈₅. (c) Top-view and (d) side-view of CHA₁₈₅ from GLACD simulation. (e) Line profiles along (line 1) and across (line 2) the bottle-neck region. (f) SEM images of 20 nm C₆₀/5 nm PdCo CHA₁₈₅ at different magnifications. The estimated diameter of PdCo grains on the surface is $\gamma_{\text{particle}} = 24.6 \pm 1.2$ nm. (g) Energy-dispersive spectroscopy (EDS) elemental mapping. (h) EDS line spectra along (line 1) and across (line 2) the bottle-neck region denoted in (f). Counts are based on weight percentages.

1
2

1 **S5.2. Surface-to-volume (SVR) ratio calculation**

2 The morphology of each layer in CHAs was simulated using an in-house glancing angle
3 deposition simulation.³¹ The result of the simulation on the substrate for one unit cell is depicted
4 in Fig. S12c with a resolution of 173 x 100 pixels². For polystyrene (PS) monolayer with a bead
5 diameter of 500 nm, each pixel has a size of 5 x 5 nm². The color bar represents the thickness t of
6 the deposited materials. The morphology of each layer can be illustrated as a 3D surface (Fig.
7 S12d), and its surface area is calculated using *surfacearea* function in MATLAB.³² The total
8 surface area of PdCo layer can be calculated as

9 Total PdCo surface = Top surface area of PdCo + Top surface area of C₆₀. (S1)

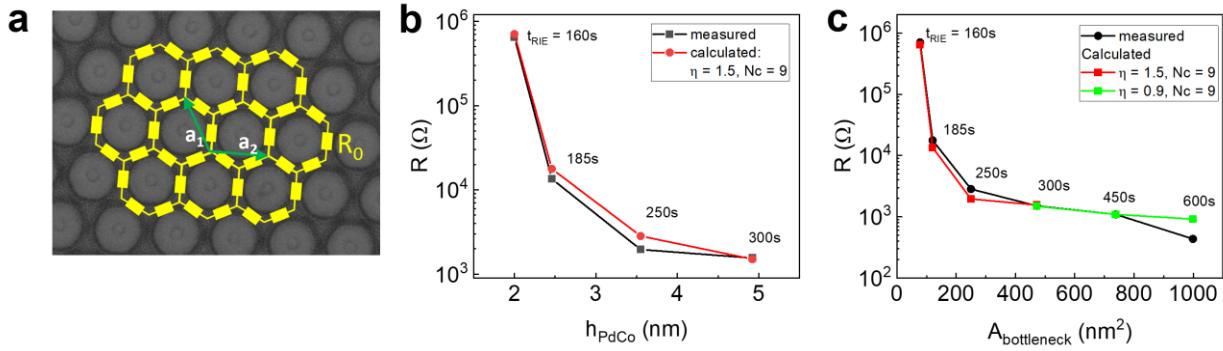
10 The volume of each layer is V_{layer} = 5 x 5 x t (nm³), thus the volume of PdCo layer is

11 V_{PdCo} = V_{total} - V_{C60}, (S2)

12 Where V_{total} is total volume of the device C₆₀/PdCo and V_{C60} is volume of the C₆₀ layer only.

13 Finally, the surface-to-volume ratio is calculated as

14 SVR = Total PdCo surface/V_{PdCo}. (S3)


15

1 **Table S3.** Summary of all parameters of 20 nm C₆₀/5 nm PdCo CHA_{t_{RIE}} extracted from AFM
 2 images and GLACD simulations.

Etching time	Hole diameter	Bottle-neck width	Bottle-neck thickness of PdCo	Cross-sectional area	Bottle-neck length	Surface to volume ratio	Resistance	
							R _{without TAF}	R _{with TAF}
s	nm	nm	nm	nm ²	nm	nm ⁻¹	Ω	Ω
160	460 ± 3	40	2.00	1463.96	220	0.82	7062300	1889203
185	450 ± 4	50	2.46	1648.88	201	0.75	17744	15003
250	430 ± 8	70	3.55	2011.55	160	0.66	2835	2430
300	404 ± 2	96	4.92	2294.89	392	0.58	1503	1157
450	350 ± 5	150	4.92	2540.55	450	0.50	1093	1350
600	297 ± 6	203	4.92	2786.28	512	0.46	435	637

3

1 **S5.3. Resistivity model**

Figure S13. Resistivity model for 20 nm C₆₀/5 nm PdCo CHA _{t_{RIE}} . (a) Schematic of the infinite two-dimensional hexagonal lattice of identical resistors R_0 . (b)(c) Comparison between thickness-dependent resistance and Lacy's model (Ref. 7).

2
3 A hexagonal CHA structure can be considered as an infinite honeycomb resistor network
4 of identical unit resistors (Fig. S13a); and its resistance R_{NH} is directly proportional to the
5 elementary resistance R_0 :

6
$$R_{NH} = N R_0, \quad (\text{S4})$$

7 where the constant N is determined by

8
$$N = \frac{3}{4\pi^3} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1 - \cos(mx+ny)}{3 - \cos(x) - \cos(y) - \cos(x+y)} dx dy. \quad (\text{S5})$$

9 R_{NH} , here, is calculated spaced; the origin (0,0) and a given lattice point (m,n) of a two-dimensional
10 hexagonal resistor network.³³ Since the clip test's pins using for 4-point-probe measurements are
11 equally spaced, N should be a constant and has the same value for all devices. The effective
12 resistance of the elementary resistor can be estimated by the following equation:

13
$$R_0 = \rho \frac{l}{w \cdot h_{PdCo}} \quad (\text{S6})$$

14 with ρ is the resistivity of PdCo alloy; l , w , and h_{PdCo} are the length, width, and thickness of PdCo
15 layer (Table S2). Note that the value of the elementary resistance is determined solely by the
16 intersection of the narrowest (w) and thinnest bottleneck region (h_{PdCo}).⁶

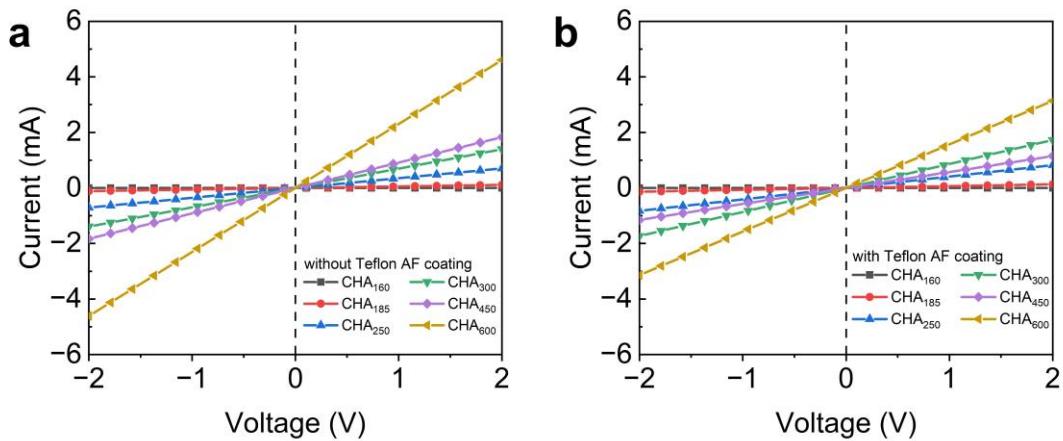
1 When the film thickness h_{PdCo} is smaller than the electronic mean free path in bulk l_{bulk} , the
 2 resistivity ρ is no longer a constant equal to the bulk resistivity ρ_0 , but increases nonlinearly with
 3 the decrease of film's thickness. Lacy³⁴ had developed a general model that demonstrates the
 4 dependent of ρ on the film thickness, the surface roughness, and the grain boundary of the metallic
 5 thin film:

$$6 \quad \rho = \frac{c\rho_0}{\kappa'(1-\ln(\kappa'))}, \quad (S8)$$

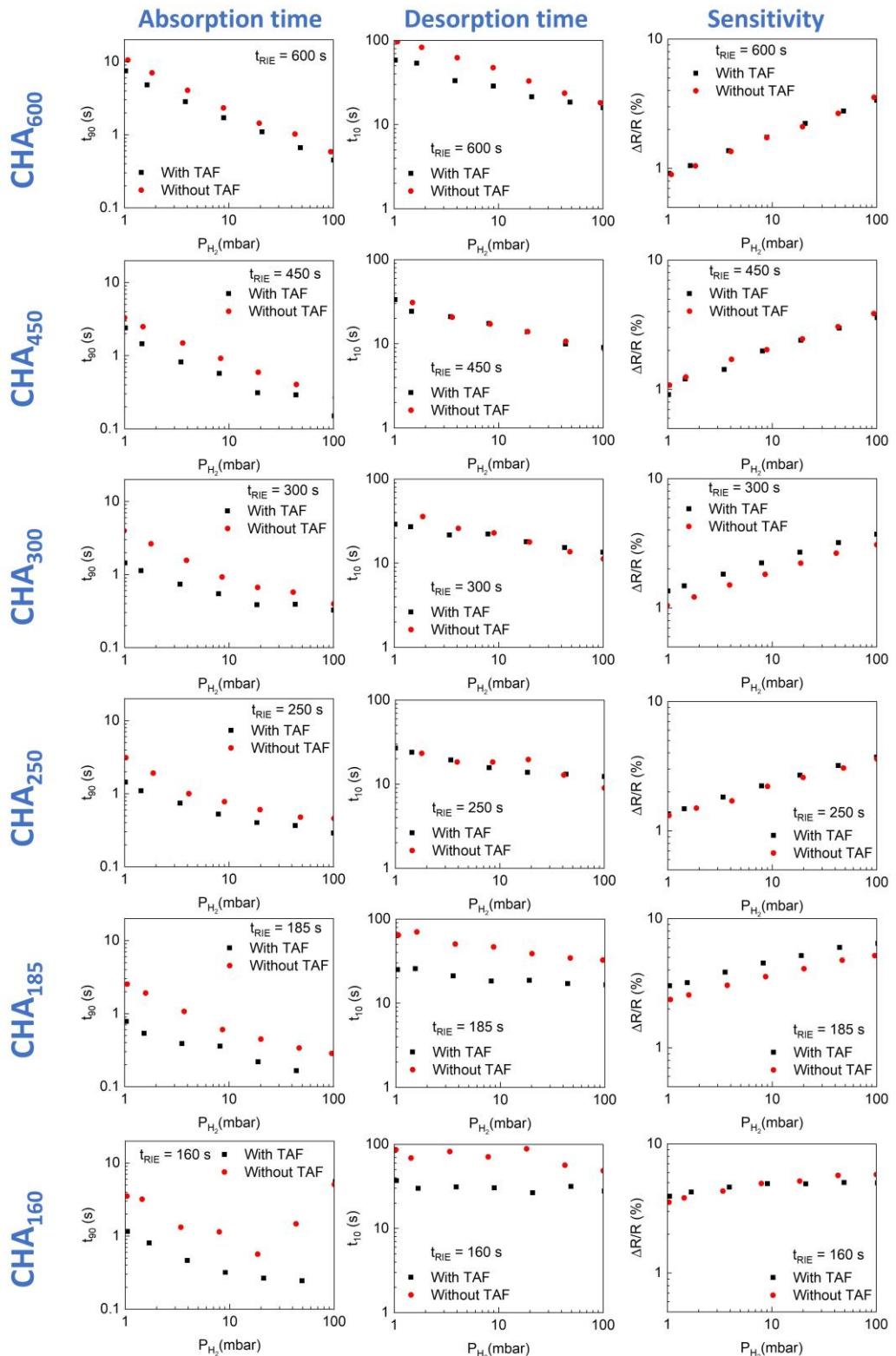
7 in which

$$8 \quad \kappa' = \frac{t_{PdCo}-\eta}{2l_{bulk}}. \quad (S9)$$

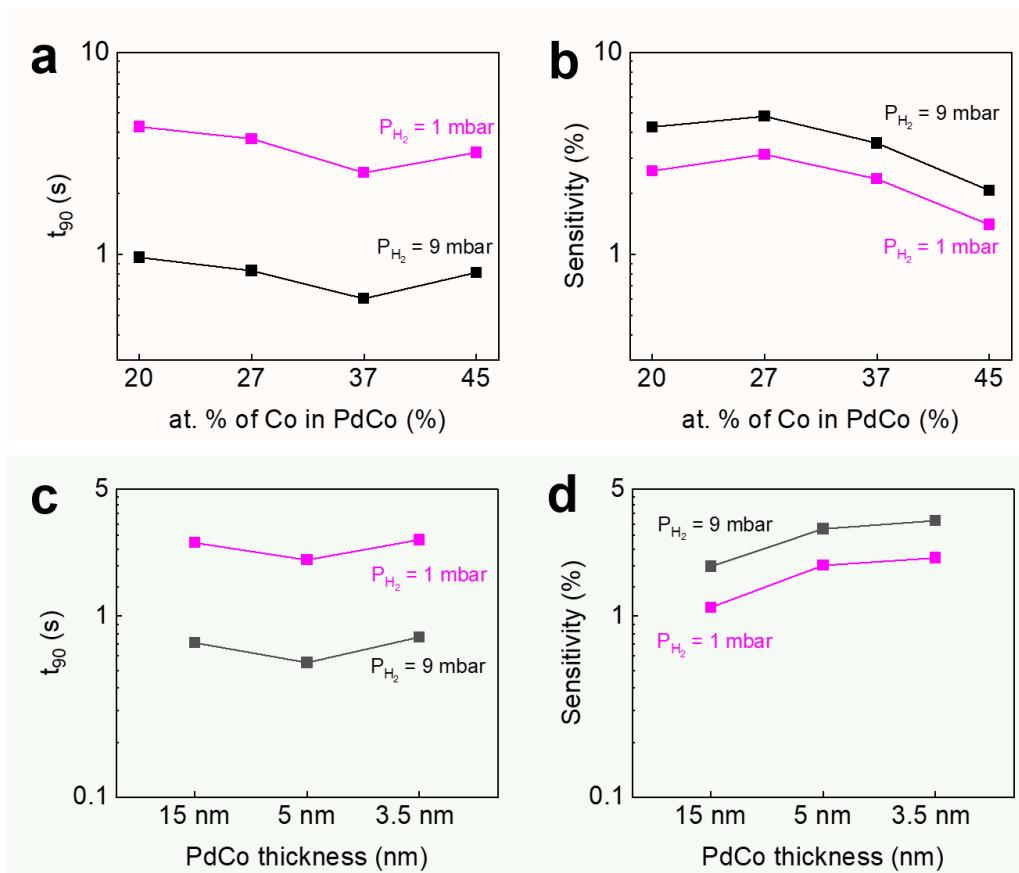
9 In this model, c is a correction factor for the scattering from impurities in films ($c > 1$), and η is
 10 a thickness correction factor that accounts for the scattering from the surfaces, grain boundaries
 11 and surface roughness ($\eta < t_{PdCo}$). Thus, R_{NH} can be calculated using Lacy's model by
 12 substituting equations (S6 – S9) into (S4):


$$13 \quad (R_{NH})_{calculated} = \frac{Nc}{\frac{t_{PdCo}-\eta}{2l_{bulk}}(1-\ln\frac{t_{PdCo}-\eta}{2l_{bulk}})} \rho_0 \frac{l}{wt_{PdCo}}. \quad (S10)$$

14 Using the values in Table S2 with fixed $l_{bulk} = 20$ nm and $\rho_0 = 6.72 \times 10^{-8}$ (Ωm), the thickness-
 15 dependent resistivities of CHA_{t_{RIE}} ($t_{RIE} = 160$ s to 300 s) are shown in Fig. S13b. The theoretical
 16 model best fits experimental data when $\eta = 1.5$ nm and $Nc = 9.0$ for this regime. The small
 17 mismatch here could be explained by (i) the complexity of the CHA structure with non-uniformed
 18 film thickness and (ii) the assumption that the contribution of the triangle regions is negligible
 19 compared to the bottle-neck regions. For $t_{RIE} > 300$ s, t_{PdCo} remains unchanged, therefore R_{NH}
 20 was plotted versus the cross-sectional area of the bottleneck region in Fig. S13c with $\eta = 0.9$ nm
 21 and $Nc = 9.0$. Here, a smaller fitting parameter η than the ultra-thin film regime was used indicating
 22 that the scattering effects at the surface/grain boundaries/impurities is less serious in thicker films.


1 Overall, the non-linear dependency of CHAs' electrical resistance on the thickness or the
2 bottleneck size being observed in the experiment was explained through Lacy's resistivity model.

3


4 **S5.4. Sensing characteristics of CHAs with different etching time t_{RIE}**

5 **Figure S14.** I-V characteristics of CHA_{t_{RIE}} **(a)** without and **(b)** with TAF coating.

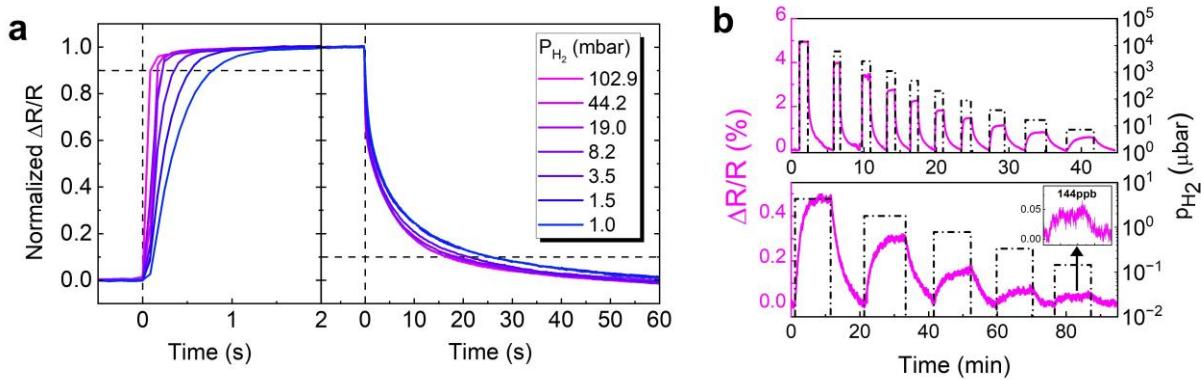
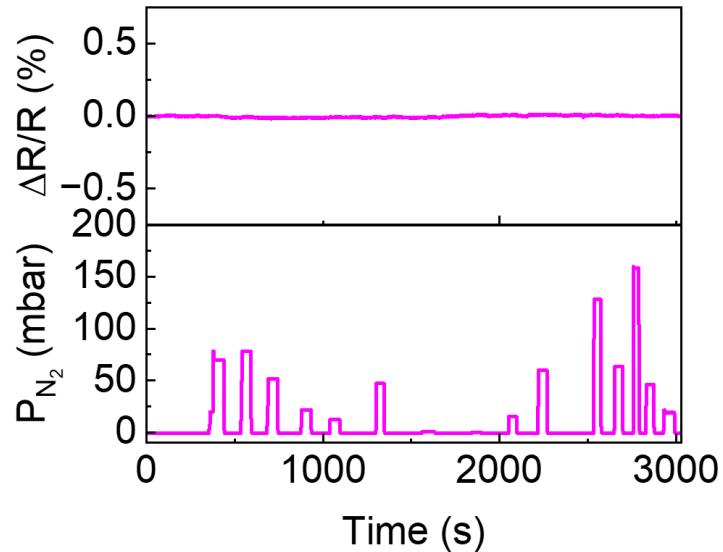
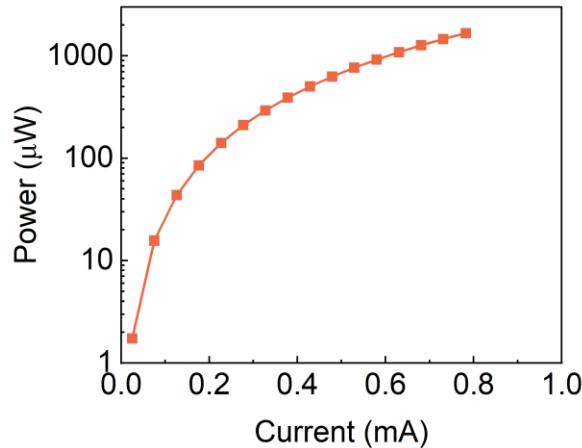


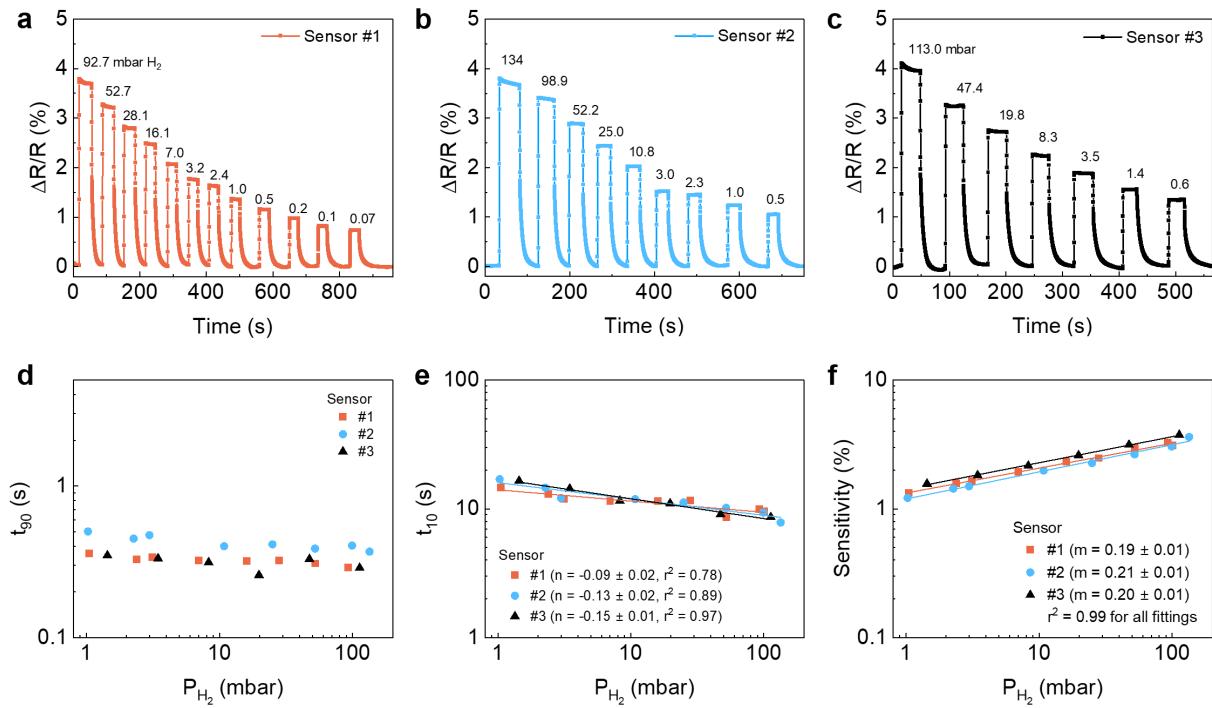
Figure S15. Absorption times, desorption times and sensitivities of 20 nm C₆₀/5 nm PdCo/(30 nm TAF) CHA_{t_{RIE}} measured in vacuum mode at room temperature.


Figure S16. (a-b) Pd:Co composition-dependent and (c-d) PdCo thickness-dependent sensing performances of 20 nm C₆₀/PdCo CHA₁₈₅.

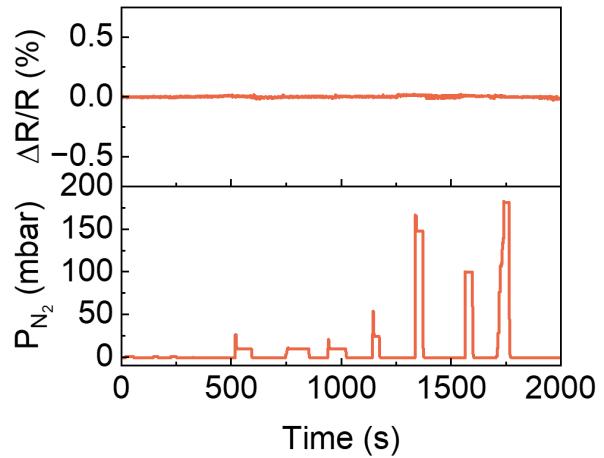
1
2
3


Figure S17. Sensing performances of 20 nm C₆₀/5 nm PdCo/30 nm TAF CHA₁₈₅. (a) Normalized absorption/desorption (left/right) kinetic of the sensor in response to varying H_2 pressure from 100 to 1 mbar measured at 12.2 Hz sampling frequency. (b) $\Delta R/R$ response to stepwise decreasing partial H_2 pressures of (top) 13880 – 7.2 μ bar and (bottom) 4.32 – 0.144 μ bar measured at 8.4 Hz sampling frequency. All measurements were performed in vacuum mode at room temperature.

1


Figure S18. Controlled experiment of 20 nm C₆₀/3nm TAF/5 nm PdCo/30 nm TAF CHA₁₈₅ sensor with pure N₂. Top panel shows the sensor's response to the corresponding step-wise N_2 pressure pulses (from 0.1 to < 200 mbar) in the bottom panel. The experiment were performed in vacuum mode at room temperature and at sampling frequency $f_{\text{sampling}} = 12.2$ Hz.

2


Figure S19. Measured power of the 20 nm C₆₀/3nm TAF/5 nm PdCo/30 nm TAF CHA₄₅₀ sensor.

1

Figure S20. Sensing performances of 20 nm C₆₀/3nm TAF/5 nm PdCo/30 nm TAF CHA₄₅₀ sensors. (a)(b)(c) $\Delta R/R$ responses of 3 sensors with the same device structure to stepwise decreasing H₂ pressures of ~ 100 to < 1 mbar ($f_{\text{sampling}} = 12.2$ Hz). (d) Absorption time (t_{90}), (e) desorption time (t_{10}) and (f) sensitivity of the 3 sensors extracted from (a-c). All measurements were performed in vacuum mode at room temperature. Note that the data presented in Fig. S20 d&e are identical with the ones shown in the main text Fig. 6b.

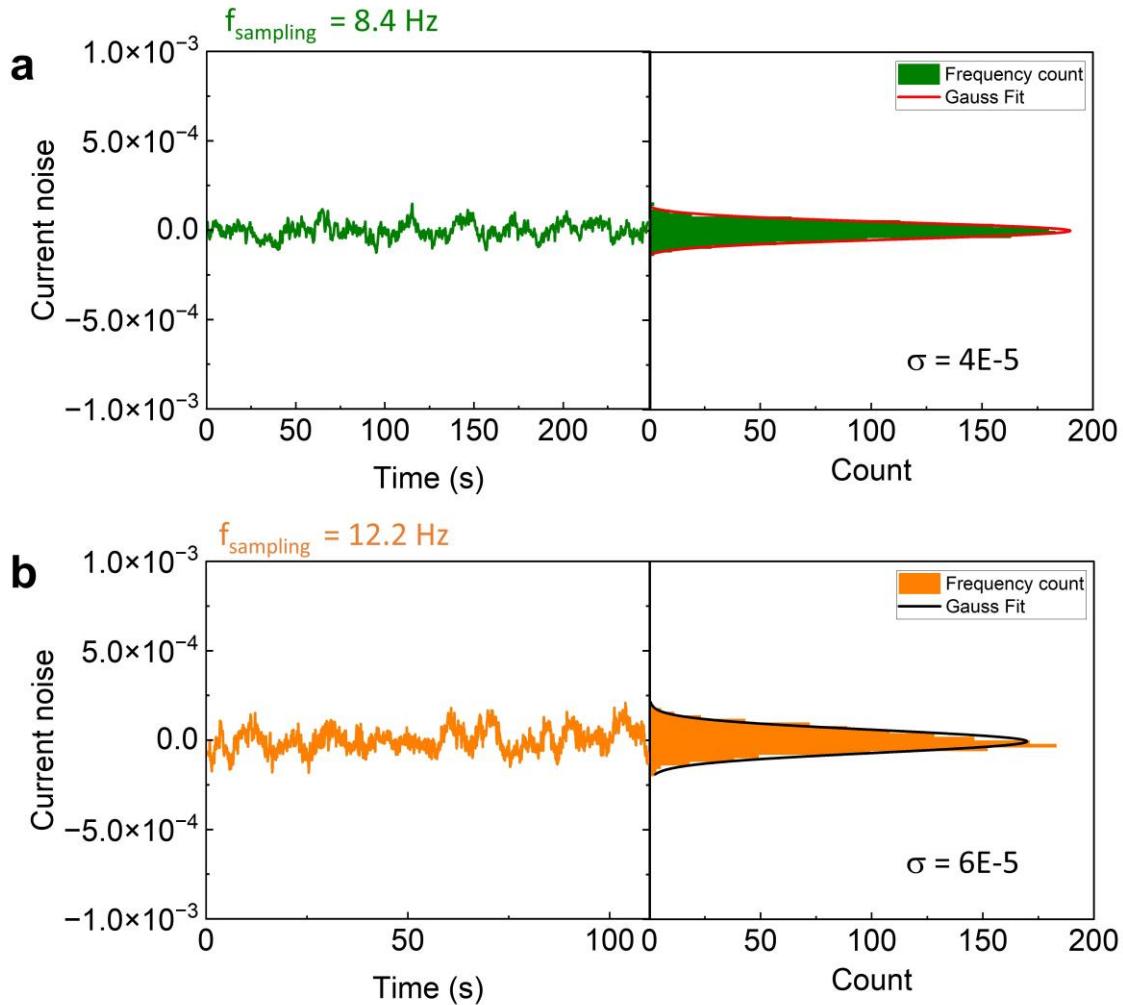

2

Figure S21. Controlled experiment of 20 nm C₆₀/3nm TAF/5 nm PdCo/30 nm TAF CHA₄₅₀ sensor with pure N₂. Top panel shows the sensor's response to the corresponding step-wise N₂ pressure pulses (from 0.1 to < 200 mbar) in the bottom panel. The experiment were performed in vacuum mode at room temperature and at sampling frequency $f_{\text{sampling}} = 12.2$ Hz.

1

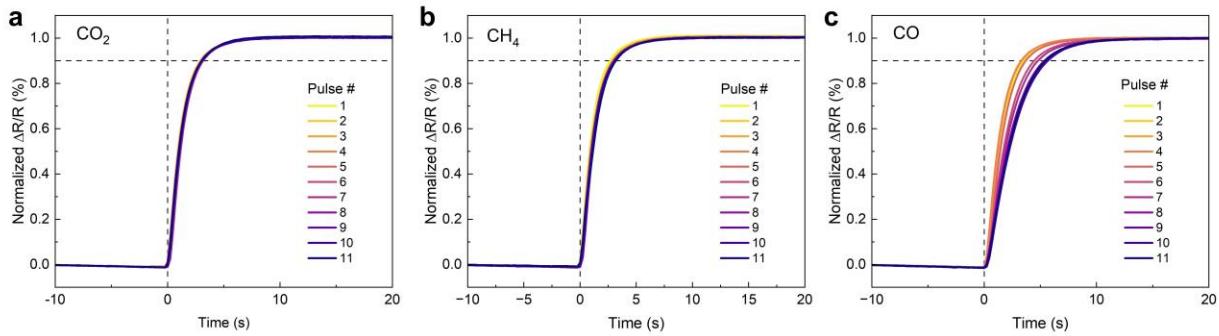

1 **S6. Noise evaluation**

Figure S22. (left panel) Experimental current noise or resistance noise (defined as $\Delta I/I = \Delta R/R$) versus acquisition time of the 20 nm C₆₀/5 nm PdCo/30 nm TAF CHA_{185s} at different sampling frequency: **(a)** $f_{\text{sampling}} = 8.4 \text{ Hz}$ and **(b)** $f_{\text{sampling}} = 12.2 \text{ Hz}$. ΔI is the fluctuation of the electric current around the equilibrium current, I . **(right panel)** Histogram plot of signal intensity. By definition, the LOD is 3σ with σ is the standard deviation extracted from the Gaussian Fits. Thus, at $f_{\text{sampling}} = 8.4 \text{ Hz}$, $3\sigma = 0.012\%$; and at $f_{\text{sampling}} = 12.2 \text{ Hz}$, $3\sigma = 0.018\%$.

2
3

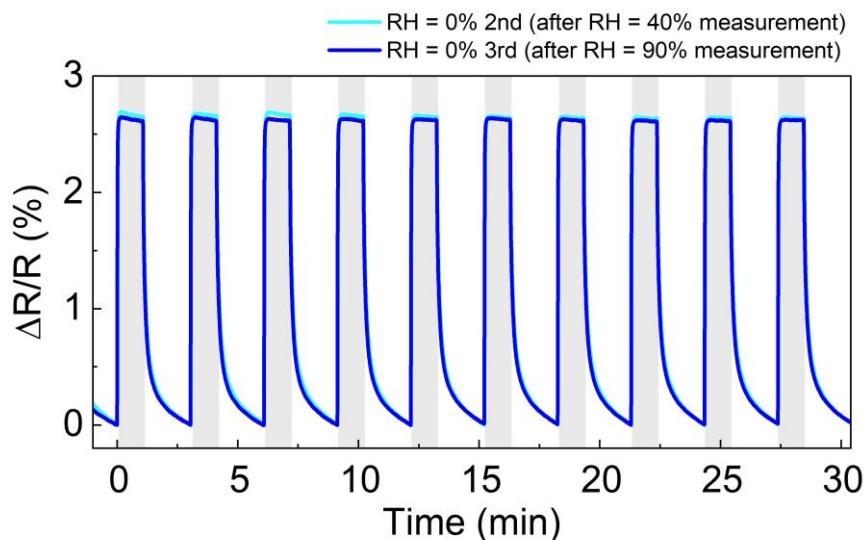

1 **S7. Interference gases and humidity tests**

Figure S23. Normalized resistance dynamics of 20 nm C₆₀/5 nm PdCo/TAF/PMMA CHA₄₅₀ sensor under the influence of interference gases extracted from Figure 6c. Pulses #1-3 and #9-11 are 2% H₂, and pulses #4-8 are a mixture of 2% H₂ and (a) 5% CO₂ or (b) 5% CH₄ or (c) 0.2% CO.

2

3

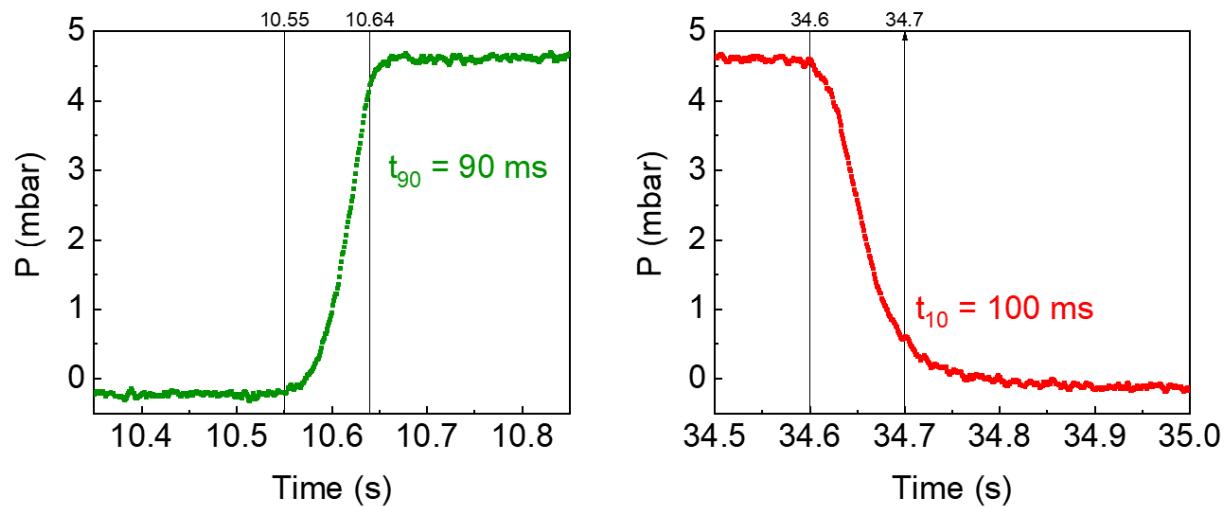


Figure S24. Time-resolved ΔR/R response of the 20 nm C₆₀/5 nm PdCo/TAF/PMMA CHA₄₅₀ to 10 pulses of 2% H₂ with relative humidities (RH) of 0%, measured after the RH test.

4

5

1 **S8. Pressure transducer's reaction time**

Figure S25. Reaction time of the pressure transducers while (a) loading and (b) unloading H₂ in the sensor chamber.

1 **Supplementary references**

2 1 Energy Efficiency and Renewable Energy (EERE), F. C. T. O. *Multi-Year Research,*
3 *Development, and Demonstration Plan, 2011–2020. Section 3.7 Hydrogen Safety, Codes*
4 *and Standards;*,
5 <https://www.energy.gov/sites/prod/files/2015/06/f23/fcto_myrdd_safety_codes.pdf>
6 (2015).

7 2 Energy Efficiency and Renewable Energy (EERE), E. E. a. R. E. *Funding Opportunity in*
8 *Support of the Hydrogen Shot and a University Research Consortium on Grid Resilience,*
9 <<https://eere-exchange.energy.gov/Default.aspx?foaId=47252393-c846-4779-9760-86414eddda9f#FoaId47252393-c846-4779-9760-86414eddda9f>> (2022).

11 3 Moon, J., Hedman, H.-P., Kemell, M., Tuominen, A. & Punkkinen, R. Hydrogen sensor of
12 Pd-decorated tubular TiO₂ layer prepared by anodization with patterned electrodes on
13 SiO₂/Si substrate. *Sensors and Actuators B: Chemical* **222**, 190-197 (2016).
14 <https://doi.org:https://doi.org/10.1016/j.snb.2015.08.054>

15 4 Luong, H. M. *et al.* Bilayer plasmonic nano-lattices for tunable hydrogen sensing platform. *Nano Energy* **71**, 104558 (2020).
17 <https://doi.org:https://doi.org/10.1016/j.nanoen.2020.104558>

18 5 He, J. *et al.* Integrating plasmonic nanostructures with natural photonic architectures in Pd-modified <i>Morpho</i> butterfly wings for sensitive hydrogen gas sensing. *RSC Advances* **8**, 32395-32400 (2018). <https://doi.org:10.1039/c8ra05046e>

21 6 Pham, M. T. *et al.* Pd80Co20 Nanohole Arrays Coated with Poly(methyl methacrylate) for High-Speed Hydrogen Sensing with a Part-per-Billion Detection Limit. *ACS Applied Nano Materials* **4**, 3664-3674 (2021). <https://doi.org:10.1021/acsanm.1c00169>

24 7 Nugroho, F. A. A., Darmadi, I., Zhdanov, V. P. & Langhammer, C. Universal Scaling and Design Rules of Hydrogen-Induced Optical Properties in Pd and Pd-Alloy Nanoparticles. *ACS Nano* **12**, 9903-9912 (2018). <https://doi.org:10.1021/acsnano.8b02835>

27 8 Luong, H. M. *et al.* Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. *Nature Communications* **12**, 2414 (2021). <https://doi.org:10.1038/s41467-021-22697-w>

30 9 Lupan, O. *et al.* Ultra-sensitive and selective hydrogen nanosensor with fast response at room temperature based on a single Pd/ZnO nanowire. *Sensors and Actuators B: Chemical* **254**, 1259-1270 (2018). <https://doi.org:https://doi.org/10.1016/j.snb.2017.07.200>

33 10 Luong, H. M. *et al.* Ultra-fast and sensitive magneto-optical hydrogen sensors using a magnetic nano-cap array. *Nano Energy* **109**, 108332 (2023).
35 <https://doi.org:https://doi.org/10.1016/j.nanoen.2023.108332>

36 11 Nugroho, F. A. A. *et al.* Metal–polymer hybrid nanomaterials for plasmonic ultrafast hydrogen detection. *Nature Materials* **18**, 489-495 (2019). <https://doi.org:10.1038/s41563-019-0325-4>

39 12 Jo, M.-S. *et al.* Ultrafast (~0.6 s), Robust, and Highly Linear Hydrogen Detection up to 10% Using Fully Suspended Pure Pd Nanowire. *ACS Nano* **17**, 23649-23658 (2023).
41 <https://doi.org:10.1021/acsnano.3c06806>

42 13 Bi, S. *et al.* High-performance palladium nanotube network as fast, high-resolution, and wide range hydrogen detector in atmosphere. *Sensors and Actuators B: Chemical* **404**, 135307 (2024). <https://doi.org:https://doi.org/10.1016/j.snb.2024.135307>

45 14 Lee, E. *et al.* Hydrogen gas sensing performance of Pd–Ni alloy thin films. *Thin Solid Films* **519**, 880-884 (2010). <https://doi.org:https://doi.org/10.1016/j.tsf.2010.07.122>

1 15 Koo, W.-T. *et al.* Accelerating Palladium Nanowire H₂ Sensors Using Engineered
2 Nanofiltration. *ACS Nano* **11**, 9276-9285 (2017). <https://doi.org/10.1021/acsnano.7b04529>

3 16 Cho, S.-Y. *et al.* Ultrasmall Grained Pd Nanopattern H₂ Sensor. *ACS Sensors* **3**, 1876-1883
4 (2018). <https://doi.org/10.1021/acssensors.8b00834>

5 17 Hassan, K. & Chung, G.-S. Fast and reversible hydrogen sensing properties of Pd-capped
6 Mg ultra-thin films modified by hydrophobic alumina substrates. *Sensors and Actuators B: Chemical* **242**, 450-460 (2017). <https://doi.org/https://doi.org/10.1016/j.snb.2016.11.078>

8 18 Rajoua, K., Baklouti, L. & Favier, F. Electronic and Mechanical Antagonist Effects in
9 Resistive Hydrogen Sensors Based on Pd@Au Core–Shell Nanoparticle Assemblies
10 Prepared by Langmuir–Blodgett. *The Journal of Physical Chemistry C* **119**, 10130-10139
11 (2015). <https://doi.org/10.1021/acs.jpcc.5b01636>

12 19 Zeng, X. Q. *et al.* Hydrogen Gas Sensing with Networks of Ultrasmall Palladium Nanowires
13 Formed on Filtration Membranes. *Nano Letters* **11**, 262-268 (2011).
14 <https://doi.org/10.1021/nl103682s>

15 20 Gao, M., Cho, M., Han, H.-J., Jung, Y. S. & Park, I. Palladium-Decorated Silicon Nanomesh
16 Fabricated by Nanosphere Lithography for High Performance, Room Temperature
17 Hydrogen Sensing. *Small* **14**, 1703691 (2018). <https://doi.org/10.1002/smll.201703691>

18 21 Shim, Y.-S. *et al.* Nanogap-controlled Pd coating for hydrogen sensitive switches and
19 hydrogen sensors. *Sensors and Actuators B: Chemical* **255**, 1841-1848 (2018).
20 <https://doi.org/https://doi.org/10.1016/j.snb.2017.08.198>

21 22 Chen, W. P. *et al.* Extraordinary room-temperature hydrogen sensing capabilities of porous
22 bulk Pt–TiO₂ nanocomposite ceramics. *International Journal of Hydrogen Energy* **41**, 3307-
23 3312 (2016). <https://doi.org/https://doi.org/10.1016/j.ijhydene.2015.12.151>

24 23 Chen, R., Ruan, X., Liu, W. & Stefanini, C. A reliable and fast hydrogen gas leakage
25 detector based on irreversible cracking of decorated palladium nanolayer upon aligned
26 polymer fibers. *International Journal of Hydrogen Energy* **40**, 746-751 (2015).
27 <https://doi.org/https://doi.org/10.1016/j.ijhydene.2014.11.026>

28 24 Lim, S. H. *et al.* Flexible Palladium-Based H₂ Sensor with Fast Response and Low Leakage
29 Detection by Nanoimprint Lithography. *ACS Applied Materials & Interfaces* **5**, 7274-7281
30 (2013). <https://doi.org/10.1021/am401624r>

31 25 Chung, M. G. *et al.* Flexible hydrogen sensors using graphene with palladium nanoparticle
32 decoration. *Sensors and Actuators B: Chemical* **169**, 387-392 (2012).
33 <https://doi.org/https://doi.org/10.1016/j.snb.2012.05.031>

34 26 Lee, J., Shim, W., Lee, E., Noh, J.-S. & Lee, W. Highly Mobile Palladium Thin Films on an
35 Elastomeric Substrate: Nanogap-Based Hydrogen Gas Sensors. *Angewandte Chemie
36 International Edition* **50**, 5301-5305 (2011). <https://doi.org/10.1002/anie.201100054>

37 27 Kiefer, T., Villanueva, L. G., Fargier, F., Favier, F. & Brugger, J. Fast and robust hydrogen
38 sensors based on discontinuous palladium films on polyimide, fabricated on a wafer scale.
39 *Nanotechnology* **21**, 505501 (2010). <https://doi.org/10.1088/0957-4484/21/50/505501>

40 28 Villanueva, L. G. *et al.* Highly ordered palladium nanodot patterns for full concentration
41 range hydrogen sensing. *Nanoscale* **4**, 1964-1967 (2012).
42 <https://doi.org/10.1039/C2NR11983H>

43 29 Behzadi pour, G. & Fekri aval, L. Highly sensitive work function hydrogen gas sensor based
44 on PdNPs/SiO₂/Si structure at room temperature. *Results in Physics* **7**, 1993-1999 (2017).
45 <https://doi.org/https://doi.org/10.1016/j.rinp.2017.06.026>

1 30 Han, M., Jung, D. & Lee, G. S. Palladium-nanoparticle-coated carbon nanotube gas sensor.
2 *Chemical Physics Letters* **610-611**, 261-266 (2014).
3 <https://doi.org:https://doi.org/10.1016/j.cplett.2014.07.053>

4 31 Ai, B. *Glancing angle deposition*, <http://ailabcqu.com/GLAD?_l=en>
5 32 Sartorius, S. *Surface area*, <<https://www.mathworks.com/matlabcentral/fileexchange/62992-surface-area>> (2024).
6

7 33 Wang, Y., Yang, F., Zhang, Z. & Zhao, Y. Performance of Transparent Metallic Thin Films.
8 *The Journal of Physical Chemistry C* **125**, 16334-16342 (2021).
9 <https://doi.org:10.1021/acs.jpcc.1c04832>

10 34 Lacy, F. Developing a theoretical relationship between electrical resistivity, temperature,
11 and film thickness for conductors. *Nanoscale Research Letters* **6**, 636 (2011).
12 <https://doi.org:10.1186/1556-276x-6-636>

13