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1  S1. State-of-the-art Pd-based H2 sensors
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Figure S1. State-of-the-art Pd-based hydrogen gas sensors’ sensing metrics. The response time
and LOD requirements for automotive' and environmental mornitoring® applications are
denoted in red and green lines, respectively.
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Table S1. Sensing metrics of electrical H> gas sensors operating at room temperature with either
response time < 30 s at 1 mbar (or 0.1 vol.%) Hz or LOD < 1000 ppm. n.a. = not addressed.

Device structure Response | Ambient LOD Sensor’s | Resistance | Ref.
time (s) | pressure | (ppm -if | hysteresis to
(too if not (mbar) not 'fre? poisoning
specified) specified) | Pehavior gases
Ce0/PdCo/ <0.8 1 40 ppb Yes Yes This
Teflon AF/PMMA work
CHA 85
Ceo/Teflon AF/ <0.36 1 100 ppt This
PdCo/Teflon AF work
CHA4s0
PMMA-coated Pd-Co 10.8 1 <0.01 Yes Yes 6
nanohole array
Hollow Pd nanotube 2.1 1 10 n.a. Yes 13
network (PVA@Pd8)
Pd-Ni alloy thin films tes=35 10 n.a. n.a. n.a 14
Palladium nanowire 13 1 1000 n.a. n.a 15
engineered
nanofiltration
Ultrasmall grained Pd 12 30 2.5 n.a. n.a 16
nanopattern
Pd-capped Mg film 6 10 1 n.a. n.a 17
Pd@Au core-shell 15 200 1000 n.a. n.a 18
nanoparticles
Networks of ~25 1 n.a. n.a. n.a 19
ultrasmall palladium
nanowires
Pd-decorated silicon tgo~ 10 1 50 n.a. n.a. 20
nanomesh
SiO2 nanorod coated- 17 10 10 n.a. n.a. 21
Pd
Pt-TiO2 10+5 1 30 n.a. n.a. 22
polyurethane@Pd 24 1 20 n.a. n.a. 23
Pd nanowires 25 1 50 n.a. n.a. 2
Pd NP/graphene 300 1 20 n.a. n.a. 2
PdNi Nanogap 0.5 20 500 n.a. n.a. 26
Discontinuous 5 40 5000 n.a. n.a. 27
palladium films on
Polyimide
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28

Pd nanorod 7 n.a. 1000 n.a. n.a.
Pd nanoparticles 1.2 10 10 n.a. n.a. 29
Pd nanoparticles 15 300 n.a. n.a. n.a. 30

coated Multi-Walled
Carbon Nano Tubes
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S2. SEM and EDS elemental mapping images
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Figure S2. (a) SEM images of 20 nm Ceo/5 nm PdCo CHAuso (hole diameter Dhoe = 350 + 5 nm)
at different magnifications. The estimated diameter of the PdCo particles on the surface is yparticle
=25.4 + 1.2 nm. (b) Energy-dispersive spectroscopy (EDS) elemental layered mapping. (c) EDS

line spectra along two lines denoted in (b). Counts are based on weight percentages.

Table S2. Weight % to atomic % conversion table

Map (Fig. S2b) Line 1 (Fig. S2c) Line 2 (Fig. S2c)
Elements
Wt. % At. % Wt. % At. % Wt. % At. %
C 79.5 7.15+0.11 9.28 £ 0.13
Pd 15.4 63 0.87+0.02 | 67.7+58 | 058+0.02 | 628+7.0
Co 5.1 37 0.24+0.02 | 333+£29 | 019+0.02 | 37.2+4.1
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S3. Hydrogen sensing characterization setups

FUMEHOOQOD
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Figure S3. Hy electrical sensing vacuum mode setup.

The vacuum mode set up is depicted in Figure S3. Different H2 gas pressure in the sensor
chamber can be prepared by recurringly diluting pure Hz gas or the gas mixture of 4% H» in N>
(Airgas) from chamber 1 (C1) to the sensor chamber by several gas valves (V1-V3). The H»
pressures are monitored by three independent pressure transducers (two PX409-USBH, Omega
and a Baratron, MKS). Finally, the chamber sensor is isolated to C1, and the gas inside the chamber
is pumped out using valve V4 to achieve the base pressure of ~5 x 10 mbar in the chamber. The
resistance of the sensors is recorded during the process using 4-point probe meaurement by a
Keithley 2635B current source. In order to further exploring the measurement at a lower H»
pressure, 4% or 100 ppm of H2 mixed gas in N2 balance can be used. In this case, we can prepare
a mixture gas with Hz pressure in sensor chamber down to 1 mbar, which is equivalent to partial
hydrogen pressure/concentration of 40 ppm or 100 ppb, respectively. In order to probe at lower H>
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1 concentrations (a few ppb or ppt level), we will need to utilize further diluted H, gas as the gas

2 source.
N2 or FUMEHOOD
Synthetic
air
Other 1 r@i
2
COM
Gas
ok D Blender
= = Keithley
Sensor o
chamber I
el ke
H2
== Gasline
—— Electronic cables
3 Figure S4. Hy electrical sensing flow mode setup.
4 In addition to the vacuum mode setup, the gas sensing measurement is also performed in

5 flow mode to mimic the leakage (Figure S4). 4% H> balance in N are further diluted with ultra-
6 high purity N2 gas to the targeted concentrations < 4 vol. % H> by a commercial gas blender (GB-
7 103, MCQ Instruments). The gas flow rate is kept constant at 400 ml/min or 400 sccm at 1 atm for
8 all measurements. The gas cell and gas outlet are placed inside a fume hood during the

9 measurement.
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1 S3. Sensing characteristics of PdCo thin films
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Figure S5. I-V characteristics of Ceo film.
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Figure S6. Desorption time tio of 5 nm PdCo and 20 nm Ceo/5 nm PdCo thin films.
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Figure S7. AFM images of 5 nm PdCo thin film on (a) a glass substrate, (b) a 50-nm Cgo-coated
glass subtrate, (¢) a 30-nm TAF-coated glass substrate and the corresponding histograms. (d) The
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S4. Sensing characteristics of CHAs on different Ceso thicknesses
b 100
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Figure S8. Sensing performances of Ceo/5 nm PdCo CHAus0 sensors with different Ceo
thicknesses. (a) Sorption dynamics in response to step wise decreasing Ha pressure from 105 to
0.7 mbar. (b) Release time tio extracted from (a). All measurements were performed in vacuum
mode at room temperature.

S11



Q
)
o
=
o
o

= with Cgy0n tc‘>p = with Cg, on top
= without Cg, on top " - 4L = without C4, on top
2 | " ~ -
3 —~ " X 3t . "
PR P o — <y . o .
o R S - = n
= had X 2 L5
5 ' <
O -1 r l am e
_ ' = with C4, on top 1} H
R=13790 i = without Cq, on top
-2 : : : 0.1 beu : : 0l . :
-2 -1 0 1 2 1 10 100 1 10 100
Voltage (V) Py, (mbar) Py, (mbar)

Figure S9. Sensing performances of 20 nm Ceo/5 nm PdCo CHAs00 sensors with and without
20 nm Ceo0n top. (a) I-V characteristics, (b) response time tgo and (c) sensitivity of the sensors in
response to step wise decreasing H> pressure from 100 to 1 mbar. All measurements were
performed in vacuum mode at room temperature.
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S5. CHAs with different etching time trie

S5.1. Morphology characterization and glancing angle deposition (GLACD) simulation

----- 125

(=——150s line 1

; , —— 150s line 2|

0 500 1000 1500 2000
Profile (nm)

5 20 nm C4y/5 nm PdCo CHA g5

-30 [—185sline 1
|——185s line 2

0 500 1000 1500 2000
Profile (nm)

Figure S10. (a)(c) Top-view AFM image of CHA150 and CHAgs and (b)(d) the corresponding
line profile along 2 lines denoted in (a)(c). The hole diameter Dnole is extracted from the middle
of the hole and is averaged from 4 holes as depicted in (d).

When etching time < 160 s (Fig. S10 a&b), a nanotriangle array was achieved instead of a nanohole
array due to the pronounced shadow effect from the big PS beads, resulting in a discontinuous
nano network. The hole diameters of all CHAs were extracted from AFM line profiles (similar to
CHA\1gs depicted in Fig. S10c&d) and summarized in Table S3. Dnole Was then used as input

parameters for GLACD simulation.!
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Figure S11. (a) Simulated hole array diagram and the bottleneck cross-section for each CHA¢
along (b) the x-axis and (d) the y-axis denoted in (a). (c) and (e) are the thicknesses of the PdCo
layer in (b) and (d) projected on a flat substrate.
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Figure S12. Comparison between GLACD simulation and data from AFM and SEM. (a)
Top-view and (b) side-view AFM images of CHAgs. (c) Top-view and (d) side-view of CHA1gs
from GLACD simulation. (e) Line profiles along (line 1) and across (line 2) the bottle-neck region.
(f) SEM images of 20 nm Ceo/5 nm PdCo CHA1gs at different magnifications. The estimated
diameter of PdCo grains on the surface is ypartice = 24.6 £ 1.2 mm. (g) Energy-dispersive
spectroscopy (EDS) elemental mapping. (h) EDS line spectra along (line 1) and across (line 2) the
bottle-neck region denoted in (f). Counts are based on weight percentages.
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S5.2. Surface-to-volume (SVR) ratio calculation
The morphology of each layer in CHAs was simulated using an in-house glancing angle
deposition simulation.®! The result of the simulation on the substrate for one unit cell is depicted
in Fig. S12¢ with a resolution of 173 x 100 pixels? For polystyrene (PS) monolayer with a bead
diameter of 500 nm, each pixel has a size of 5 x 5 nm?. The color bar represents the thickness t of
the deposited materials. The morphology of each layer can be illustrated as a 3D surface (Fig.
S12d), and its surface area is calculated using surfacearea function in MATLAB.? The total
surface area of PdCo layer can be calculated as
Total PdCo surface = Top surface area of PdCo + Top surface area of Ceo. (S1)
The volume of each layer is Viayer = 5 x 5 X t (nm?3), thus the volume of PdCo layer is
Vpdco = Viotal — Vcso, (S2)
Where Viotal is total volume of the device Ceo/PdCo and Vceo is volume of the Ceo layer only.
Finally, the surface-to-volume ratio is calculated as

SVR = Total PdCo surface/Vpdco. (S3)
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Table S3. Summary of all parameters of 20 nm Ceo/5 nm PdCo CHA,,, extracted from AFM
images and GLACD simulations.

Bottle- Surface
Etching Hole Bottle neck Crpss- Bottle- to .

: . -neck . sectional neck Resistance

time diameter width thickness area lenath volume
of PdCo 9 ratio

trRIE Dhole w thCo Abottleneck | SVR RV_:_/T;OUt Rwith TAF

S nm nm nm nm2 nm nm- Q Q
160 460 £ 3 40 2.00 1463.96 220 0.82 7062300 1889203
185 450 £ 4 50 2.46 1648.88 201 0.75 17744 15003
250 430+ 8 70 3.55 2011.55 160 0.66 2835 2430
300 404 + 2 96 4.92 2294.89 392 0.58 1503 1157
450 350t5 150 4.92 2540.55 450 0.50 1093 1350
600 297+ 6 203 4.92 2786.28 512 0.46 435 637
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S5.3. Resistivity model

6
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Figure S13. Resistivity model for 20 nm Ceo/5 nm PdCo CHA,,, . (a) Schematic of the infinite

two-dimensional hexagonal lattice of identical resistors Ro. (b)(c) Comparison between thickness-
dependent resistance and Lacy’s model (Ref. 7).

A hexagonal CHA structure can be considered as an infinite honeycomb resistor network
of identical unit resistors (Fig. S13a); and its resistance Rnn is directly proportional to the

elementary resistance Ro:

RNH = NRo, (84)
where the constant N is determined by
_ 3 (m (m 1-cos (mx+ny)
N = 413 f—TE f—TE 3—cos(x)—cos(y)—cos (x+y) dxdy' (85)

RnH, here, is calculated spaced; the origin (0,0) and a given lattice point (m,n) of a two-dimensional
hexagonal resistor network.3 Since the clip test’s pins using for 4-point-probe measurements are
equally spaced, N should be a constant and has the same value for all devices. The effective

resistance of the elementary resistor can be estimated by the following equation:

l

w.hpdco

Ry =p (S6)

with p is the resistivity of PdCo alloy; |, w, and hpqco are the length, width, and thickness of PdCo

layer (Table S2). Note that the value of the elementary resistance is determined solely by the

intersection of the narrowest (w) and thinnest bottleneck region (hpaco).®
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When the film thickness hpdco is smaller than the electronic mean free path in bulk Iy, the
resistivity p is no longer a constant equal to the bulk resistivity p,, but increases nonlinearly with
the decrease of film’s thickness. Lacy®* had developed a general model that demonstrates the

dependent of p on the film thickness, the surface roughness, and the grain boundary of the metallic

thin film:
_ CPo
p= kr(1-In (k") (S8)
in which
1 _ tpdco—M
k' = TR (S9)

In this model, c is a correction factor for the scattering from impurities in films (c > 1), and n is
a thickness correction factor that accounts for the scattering from the surfaces, grain boundaries
and surface roughness (1 < tpgco). Thus, Ryy can be calculated using Lacy’s model by

substituting equations (S6 — S9) into (S4):

R _ Nc L
(RvH) catcutated = tpdco—n,l_lnthCo‘") Po Wtpdaco
PITT 2lpuik

(S10)

Using the values in Table S2 with fixed ., = 20 nm and p, = 6.72 x 108 (Qm), the thickness-
dependent resistivities of CHA,,. (trie = 160 s to 300 s) are shown in Fig. S13b. The theoretical
model best fits experimental data when 7 = 1.5 nm and Nc = 9.0 for this regime. The small
mismatch here could be explained by (i) the complexity of the CHA structure with non-uniformed
film thickness and (ii) the assumption that the contribution of the triangle regions is negligible
compared to the bottle-neck regions. For trie > 300 S, tpac, remains unchanged, therefore Ryy
was plotted versus the cross-sectional area of the bottleneck region in Fig. S13c with 7 =0.9 nm
and Nc = 9.0. Here, a smaller fitting parameter 7 than the ultra-thin film regime was used indicating

that the scattering effects at the surface/grain boundaries/impurities is less serious in thicker films.
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Overall, the non-linear dependency of CHAs’ electrical resistance on the thickness or the

bottleneck size being observed in the experiment was explained through Lacy’s resistivity model.

S5.4. Sensing characteristics of CHAs with different etching time trie

6 6
a : b ;
41 : 2 </‘/ 4+ :
| > , .
2 2 l 4/ o 2 2 1 > A
- I - I —
£ ! £ 1 g o
~ | = =il ~ | _m
€ 0 —'-'-'-x-u-;;l—t““g‘: --—3::-:::- T 0 fos=smsms- ,,.,u-ie ..:f‘..’:.sh
O T A : o V‘;Q:‘;‘%;Ef; 1
b = f e | = v’"‘l
3 -2 " S5 -2F B
o A ? | without Teflon AF coating (@) 4/‘” | with Teflon AF coating
o | —8—CHA;5, —v—CHAyyq | 7B CHAgy  —v—CHAy
-4 [« : —e—CHA;3s —o—CHA,, -4+ : == 2:2;85 = = g:ﬁ:ﬁ
—A—CHA,5, —4—CHAgy —_ s
-6 - | : -6 . 5 .
-2 -1 0 1 2 -2 -1 0 1 2
Voltage (V) Voltage (V)

Figure S14. I-V characteristics of CHA . (a) without and (b) with TAF coating.
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Figure S15. Absorption times, desorption times and sensitivities of 20 nm Ceo/5 nm PdCo/(30

nm TAF) CHA, . measured in vacuum mode at room temperature.
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Figure S16. (a-b) Pd:Co composition-dependent and (c-d) PdCo thickness-dependent sensing
performances of 20 nm Ceo/PdCo CHA1gs.
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Figure S17. Sensing performances of 20 nm Ce¢/S nm PdCo/30 nm TAF CHAiss. (a)
Normalized absorption/desorption (left/right) kinetic of the sensor in response to varying H»
pressure from 100 to 1 mbar measured at 12.2 Hz sampling frequency. (b) AR/R response to
stepwise decreasing partial H» pressures of (top) 13880 — 7.2 ubar and (bottom) 4.32 — 0.144 ubar
measured at 8.4 Hz sampling frequency. All measurements were performed in vacuum mode at
room temperature.
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Figure S18. Controlled experiment of 20 nm Ceo/3nm TAF/5 nm PdCo/30 nm TAF CHAu1ss
sensor with pure N2. Top panel shows the sensor’s response to the corresponding step-wise N2
pressure pulses (from 0.1 to < 200 mbar) in the bottom panel. The experiment were performed in
vacuum mode at room temperature and at sampling frequency fsampling = 12.2 Hz.
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Figure S19. Measured power of the 20 nm Ceo/3nm TAF/5 nm PdCo0/30 nm TAF CHA4s0 Sensor.
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Figure S20. Sensing performances of 20 nm Ceo/3nm TAF/5 nm PdCo/30 nm TAF CHAus0
sensors. (a)(b)(c) AR/R responses of 3 sensors with the same device structure to stepwise

decreasing Ha pressures of ~100 to < 1 mbar (fsampling =

12.2 Hz). (d) Absorption time (tgo), (€)

desorption time (tio) and (f) sensitivity of the 3 sensors extracted from (a-c). All measurements
were performed in vacuum mode at room temperature. Note that the data presented in Fig. S20
d&e are identical with the ones shown in the main text Fig. 6b.
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Figure S21. Controlled experiment of 20 nm Ceo/3nm TAF/5 nm PdCo/30 nm TAF CHA4s0
sensor with pure N2. Top panel shows the sensor’s response to the corresponding step-wise N2
pressure pulses (from 0.1 to < 200 mbar) in the bottom panel. The experiment were performed in
vacuum mode at room temperature and at sampling frequency fsampling = 12.2 Hz.
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S6. Noise evaluation
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Figure S22. (left panel) Experimental current noise or resistance noise (defined as Al/I = AR/R)
versus acquisition time of the 20 nm Ceo/5 nm PdCo/30 nm TAF CHAsss at different sampling
frequency: (a) fsampiing = 8.4 Hz and (b) fsampling = 12.2 Hz. Al is the fluctuation of the electric
current around the equilibrium current, I. (right panel) Histogram plot of signal intensity. By
definition, the LOD is 3¢ with o is the standard deviation extracted from the Gaussian Fits. Thus,
at fsampling = 8.4 Hz, 36 = 0.012%; and at fsampiing = 12.2 Hz, 36 = 0.018%.
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1 S7. Interference gases and humidity tests
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Figure S23. Normalized resistance dynamics of 20 nm Ceo/5 nm PdCo/TAF/PMMA CHAuso
sensor under the influence of interference gases extracted from Figure 6¢. Pulses #1-3 and #9-11

are 2% Ho, and pulses #4-8 are a mixture of 2% H and (a) 5% CO> or (b) 5% CHj or (c) 0.2%
Co.
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Figure S24. Time-resolved AR/R response of the 20 nm Ceo/5 nm PdCo/TAF/PMMA CHAu4so to
10 pulses of 2% H» with relative humidities (RH) of 0%, measured after the RH test.
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1  S8. Pressure transducer’s reaction time
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Figure S25. Reaction time of the pressure transducers while (a) loading and (b) unloading H in
the sensor chamber.
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