References
1.Duwalage, K. I., Burkett, E., White, G., Wong, A. & Thompson, M. H. Forecasting daily counts of patient presentations in Australian emergency departments using statistical models with time-varying predictors. Emerg. Med. Australas. 32, 618–625 (2020).
2.Jilani, T. et al. Short and Long term predictions of hospital emergency department attendances. Int. J. Med. Inf. 129, 167–174 (2019).
3.McAllan, F. J., Egerton-Warburton, D., O’Reilly, G., Weiland, T. J. & Jelinek, G. A. Planning for the future: Modelling daily emergency departmentpresentations in an Australian capital city. Emerg. Med. Australas. 31 (5), 750–755 (2019).
4.Marcilio, I., Hajat, S. & Gouveia, N. Forecasting daily emergency department visits using calendar variables and ambient temperature readings. Acad. Emerg. Med. 20 (8), 769–777 (2013).
5.Boyle, J. et al. Predicting emergency department admissions. Emerg. Med. J. 29 (5), 358–365 (2012).
6.Calegari, R. et al. Forecasting daily volume and acuity of patients in the emergency department. Comput. Math. Methods Med. https://doi.org/10.1155/2016/ (2016). 38632 68.
7.Zha, W. T. et al. Effects of meteorological factors on the incidence of mumps and models for prediction, China. BMC Infect Dis. ; 20 BMC Infect Dis. (2020). 10.1186/s12879-020-05180-7
8.Yang, J. et al. Predicting pulmonary tuberculosis incidence in China using Baidu search index: an ARIMAX model approach. ENVIRON. HEALTH PREV. 10.1265/ehpm.23-00141 (2023). 28 ENVIRON HEALTH PREV.
9.Zhang, G. P. Time series forecasting using a hybrid ARIMA and neural network model. J. Neurocomputing. 50, 159–175 (2003).
10.Fei, Y. & Li, W. Q. Improve artificial neural network for medical analysis, diagnosis and prediction. J. J. Crit. Care. 40, 293 (2017).
11.Khaldi, R., Afia, A. E. & Chiheb, R. (eds) Impact of multi step forecasting strategies on recurrent neural networks performance for short and long horizons. In: Proceedings of the 4th International Conference on Big Data and Internet of Things. (2019).
12.Huang, D. & Wu, Z. Forecasting outpatient visits using empirical mode decomposition coupled with back-propagation artificial neural networks optimized by particle swarm optimization. PLoS ONE. (2017). https://doi.org/10.1371/journ al. pone. 01725 39.
13.Kumar, R. L. et al. Recurrent neural network and reinforcement learning model for COVID-19 prediction. Front. Public. Health. 9, 744100 (2021).
14.Liu, L., Ma, D., Azar, A. T. & Zhu, Q. Neural computing enhanced parameter estimation for multi–input and multi–output total non–linear dynamic models. Entropy (Basel). 22, 510 (2020).
15.Khodadadi, V. et al. Prediction of Biceps Muscle Electromyogram Signal Using a NARX Neural Network. J Med Signals Sens. ; 13 J Med Signals Sens. (2023). 10.4103/jmss.jmss_3_22
16.Suplino, L. O., de Melo, G. C., Umemura, G. S. & Forner–Cordero, A. Elbow movement estimation based on EMG with NARX neural networks. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2020, 3767–3770 (2020).
17.Gullhav, A., Christiansen, M., Nygreen, B. & RES HEALTH CARE. Block scheduling at magnetic resonance imaging labs OPER. ; 18 52–64. (2018). 10.1016/j.orhc.2017.08.001
A
18.Wessells, K. R. et al. Assessment of Dietary Intake and Nutrient Gaps, and Development of Food-Based Recommendations, among Pregnant and Lactating Women in Zinder, Niger: An Optifood Linear Programming Analysis. Nutrients 11 (1). 10.3390/nu11010072 (2019).
A
19.Kim, J. H., Kim, W. C. & Kim, J. A practical solution to improve the nutritional balance of Korean dine-out menus using linear programming. PUBLIC. HEALTH NUTR. 22 (6), 957–966. 10.1017/S1368980018004032 (2019).
20.Alaini, R., Rajikan, R. & Elias, S. M. Diet optimization using linear programming to develop low cost cancer prevention food plan for selected adults in Kuala Lumpur, Malaysia. BMC Public. Health. 19 (Suppl 4), 546. 10.1186/s12889-019-6872-4 (2019).
A
21.Bekele, T. H. et al. Developing feasible healthy diets for Ethiopian women of reproductive age: a linear goal programming approach. PUBLIC. HEALTH NUTR. 26 (10), 2096–2107. 10.1017/S1368980023001374 (2023).
A
221.Verly-Jr, E. et al. Planning dietary improvements without additional costs for low-income individuals in Brazil: linear programming optimization as a tool for public policy in nutrition and health. Nutr. J. 18 (1), 40. 10.1186/s12937-019-0466-y) (2019).
23.Sarvestani, S. E. et al. Forecasting blood demand for different blood groups in Shiraz using auto regressive integrated moving average (ARIMA) and artificial neural network (ANN) and a hybrid approaches. Sci. Rep. 12 (1), 22031. 10.1038/s41598-022-26461-y (2022).
24.Langdon, R., Docherty, P. D., Chiew, Y. S., Möller, K. & Chase, J. G. Use of basis functions within a non-linear autoregressive model of pulmonary mechanics. Biomed. Signal. Process. Control. 27, 44–50. 10.1016/j.bspc.2016.01 (2016).
25.Langdon, R., Docherty, P. D., Chiew, Y. S. & Chase, J. G. Extrapolation of a non-linear autoregressive model of pulmonary mechanics. Math. Biosci. 284, 32–39. 10.1016/j.mbs.2016.08.001 (2017).
26.Guo, Y. et al. Prediction of hepatitis E using machine learning models. PLoS ONE. 15, e237750. 10.1371/journal.pone.0237750 (2020).
27.Xu, P. et al. A new approach for reconstruction of imfs of decomposition and ensemblemodel for forecasting crude oil prices. Math. Probl. Eng. 2020, 1325071. 10.1155/2020/1325071 (2020).
28.Gao, W., Aamir, M., Shabri, A. B., Dewan, R. & Aslam, A. Forecasting crude oil price using Kalman filter based on the reconstruction of modes of decomposition ensemble model. IEEE Access. 7, 149908–149925. 10.1109/ACCESS.2019.2946992) (2019).