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Supplementary Discussion 1 - Data pre- and post-processing

1.1 Pulse source-time correction for the acoustic traces

Since our acoustics monitoring system is not synchronized with the ultrasound pulsing system,

there is a voltage threshold detection system to trigger the recording, but it does not provide the

precise source time as detailed below.

A given transducer 𝑖 will be sending ultrasonic pulses during the experiment. The pulse is first

generated externally, sent through the transducer, and then picked up by the automatic acoustic

monitoring system. When the amplitude of the pulse exceeds a given detection threshold at any

receiver, the system then records 512 samples before and 3584 samples after the detection time for

every single transducer in our array.

To align our observations at the precise source time, we look at the trace recordings of the

pulsing channel 𝑖. Taking the very first pulse recording 𝑃 𝑖0 as a reference, we then compute the time

delay Δ𝜏𝑖𝑚 between the 𝑚-th pulse signal of the 𝑖-th transducer 𝑃 𝑖𝑚 with 𝑃 𝑖0 in the Fourier domain.

We then subtract this time delay from the trace 𝑠 𝑖 , 𝑗𝑚 , which is the 𝑚-th trace recorded by the 𝑗-th

transducer after a pulse sent by the 𝑖-th transducer.
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1.2 Bimodal distribution correction on 𝜂

Our initial 𝜂 measurements displayed a remarkable bimodal distribution (Figure S1) that would

not go away upon averaging over sensor combinations of similar geometries. In fact the bimodal

spread of the data remains when stacking measurements with different pulsing transducers which

fire in fast succession. We therefore conclude that it reflects a physical change in the medium.

The system in charge of enforcing the displacement control on our sample works in discrete

increments, and most likely oscillates around the desired displacement in such increments. This

induces discrete, high-frequency (compared to the acoustic measurement period 𝑇𝜂) changes in

the medium that create the bimodal distribution. We therefore correct this effect by dividing the

measurement points 𝜂(𝑡𝑖) between an upper and lower band (𝜂𝑈 and 𝜂𝐿, as seen in Supplementary

Figure S1, top), interpolating each of these sets on the set of all measurement times 𝑡𝑖 , and taking

the average of both bands. Since both the upper and lower band are essentially the same shifted

curve with additional independent noise, averaging both bands results in a final signal noise that

is significantly lower than that of the difference between the two bands (compare Supplementary

Figure S1, middle and bottom).

1.3 Geometrical apparent velocity change correction on 𝜂

Our experiments involve applying 𝜖 = 10−5 of uniaxial strain upon our sample during certain

periods. This, in turn, leads to small amounts of deformation within the sample, and therefore

changes in the traveled path length for the waves. Since we are only interested in measuring

changes in relative velocity due to material changes as opposed to geometrical changes, we remove

these apparent velocity changes from the uniaxial strain phases. We do so by assuming that the

sample undergoes a basic Poisson effect with a Poisson coefficient 𝜈 = 0.2 [Peksa et al., 2015], and

then compute the associated relative change in path length 𝑟𝑘 = 𝑙1
𝑘
/𝑙0
𝑘
, where 𝑙0 is the path length

before deformation and 𝑙1 after deformation, for a given sensor combination 𝑘 due to the changes

in relative positions between the sensors in the deformed configuration. Finally, we obtain the

apparent deformation-induced relative velocity change 𝜂
𝐴𝑝𝑝

𝑘
= 1 − 𝑟𝑘 , which we then subtract from

the 𝜂 measurements obtained while uniaxial strain is being applied so that only the 𝜂 induced by
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changes in the medium are left in our observations. Incidentally, we almost always have 𝜂𝐴𝑝𝑝 ≪ 𝜂,

so that this correction only has a very limited impact on the data. This effect is of constant amplitude

for a given strain level and, given that our system is displacement-controlled, has no impact on the

shape of the transients. However, it could in principle alter the amplitude of the classical effect,

but only does so by a comparatively small amount in practice, since the largest apparent velocity

change would be within the range of 10−3 %, compared to the 10−2 % of the classical effect.

Supplementary Discussion 2 - Estimation of 𝛼

The model presented in this paper is a two-component model, with 𝛽 and 𝛿 varying for each sensor

combination, to which we add a time-linear component 𝛼 with identical amplitude for all sensor

combinations that accounts for a temperature drift.

To obtain a value for the coefficient 𝛼, it is initially considered a free parameter in a three-

component inversion, along with 𝛽 and 𝛿, after which we select one 𝛼̄ as the average value of

these inverted 𝛼. We then take this value 𝛼̄ and fix it for all sensor combinations before further

inverting for 𝛽 and 𝛿 as free parameters, resulting in our two-parameter model. We invert each set

of parameters (𝛼, 𝛽, 𝛿) for the coefficients of a transverse anisotropy law 𝑢 cos2(𝜃) + 𝑣. The inverted

parameters along with their anisotropy law fit are depicted in Supplementary Figure S2, while the

coefficients obtained from the anisotropy law fit are recorded in Supplementary Table S1.

Supplementary Table S1 shows that the values of 𝑢 and 𝑣 for the classical effect, and 𝑣 for the

nonclassical effect, are essentially identical for both the fixed and variable 𝛼 models. One difference

is in the values of 𝑢 for the nonclassical effect, where the value for a variable 𝛼 is twice that of when

𝛼 is fixed in advance. We nonetheless argue that this does not call into question the soundness of

treating the 𝛼 coefficient like a fixed temperature correction. First, there is no argument in favor

of treating the temperature effects as being anisotropic, and the spread of the computed values of

𝛼 support that conclusion. Second, small changes in the value of 𝛼 will have a disproportionate

influence on the value of 𝛿 for the corresponding sensor combination, as the inverted value of 𝛿 is

mostly determined by the 𝜂 measurements right after a stress change, i.e. when the slope is highest,

and therefore the tradeoff between 𝛼 and 𝛿 is most important. For all these reasons, we conclude
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that using the fixed 𝛼 model as a temperature correction is a robust approach. Moreover, it does

not alter our conclusions, since the values of 𝑢 are still significantly different between the classical

and nonclassical effects in both scenarios, hinting towards different mechanisms from which the

respective effects originate.

Supplementary Discussion 3 - Uncertainty quantification on the

anisotropy fits

Carrying out the fitting procedure for a given sensor combination 𝑘 yields optimums 𝛽𝑘 and 𝛿𝑘 .

We compute the lower (resp. upper) bound 𝛽𝑘
𝑚𝑖𝑛

(resp. 𝛽𝑘𝑚𝑎𝑥) of the 95 % confidence interval for

𝛽𝑘 as follows: we first compute the residuals 𝑟𝛽𝑘 for the optimum value 𝛽𝑘 . We then compute the

residuals 𝑟𝛽𝑘
𝑖

for a test value 𝛽𝑘
𝑖
< 𝛽𝑘 (resp. 𝛽𝑘

𝑖
> 𝛽𝑘). Using an F-test with a 95 % confidence level,

we then test whether 𝑟𝛽𝑘
𝑖

is significantly different from the reference residual 𝑟𝛽𝑘 . If the difference is

not significant, this means that 𝛽𝑘
𝑖

is as good a fit for our data as 𝛽𝑘 , and 𝛽𝑘
𝑖

can therefore be included

in the confidence interval; however, if the residuals are significantly different, this means that 𝛽𝑘
𝑖

no

longer fits the data equally well as 𝛽𝑘 , and is therefore outside of the confidence interval. Finally,

repeating this process allows us to find the lower (resp. upper) bound of our confidence interval

for 𝛽𝑘 , and we can then reiterate for 𝛿𝑘 .

Supplementary Discussion 4 - Alternative 10-component model:

fitting stress states individually

To challenge our 2-component model, we attempted to fit our data using a 10-component model

where the classical and nonclassical effects were described with different parameters for each

different stress state, on top of a freely varying linear trend parameter 𝛼. The model is as follows

(see also Supplementary Figure S3):

𝜂(𝑡;𝜃) = 𝛼𝐿(𝑡) +
5∑
𝑖=1

𝛽𝑖(𝜃)𝐶𝑖(𝑡) +
4∑
𝑖=1

𝛿𝑖(𝜃)𝑅𝑖(𝑡) (1)
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Just like we do for our other models, we invert each set of parameters (𝛼, 𝛽1 , ..., 𝛿4) for the

coefficients of a transverse anisotropy law 𝑢 cos2(𝜃) + 𝑣. We display the computed parameters and

the anisotropy fits in Supplementary Figure S4, and record the obtained anisotropy fit coefficients

in Supplementary Table S1, along with those of our model with a variable 𝛼.

The table shows for the classical component that the only significant values are obtained for

𝛽2 and 𝛽4, corresponding to the times when the sample is under static uniaxial strain (see Supple-

mentary Figure S3), while when the sample is under hydrostatic compression only, the classical

components are virtually null. This further confirms that the classical effect is related to the stress

state of the sample and is a static effect, thereby justifying the shape of the classical component as

used in the main paper.

For the nonclassical effects, we note that with the exception of the value of 𝑢 for 𝛿4, the obtained

anisotropy parameters are remarkably similar for each transient, also lending strength to the as-

sumed shape of our transient component 𝑅(𝑡) in our main 2-parameter model. The values of the

intercepts 𝑣 are also within the same range as the ones for our 2-parameter model, and the 𝑢 coeffi-

cients, although larger than for the 2-parameter model, are of the same order of magnitude as in the

3-parameter model, and still significantly different from the 𝑢 values for the classical component.

Also worth noting is the fact that the inversions for 𝛼 for the 3-component and 10-component

models are also remarkably similar, so that the tradeoff discussion between the nonclassical com-

ponent and the linear trend component can apply to both.

Although 10 components can naturally better capture the finer variations within our data, doing

so does not provide any additional insights and still supports the observation of the much simpler

2-component model, that the anisotropy of the classical and nonclassical effects are significantly

different. The nonclassical effect is significant for all propagation directions and less anisotropic than

the classical effect while the latter one almost vanishes in the horizontal direction. The 10-parameter

inversion thus adds unnecessary complexity to the analysis and we present the 2-component model

in the main text.
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Supplementary Discussion 5 - Expected anisotropy of the classical

effect

We can theoretically derive the anisotropic load-induced relative velocity changes in classically

nonlinear elastic materials, i.e. where the nonlinearity is described using the Murnaghan coefficients

[Murnaghan, 1937], using the applied stress 𝜎, the Lamé parameters and the third-order elastic

constants 𝑙, 𝑚 and 𝑛.

We define our classically-induced relative velocity change as follows:

𝜂𝐶(𝜃; 𝜎) =
𝑉𝑃(𝜃; 𝜎) −𝑉𝑃𝑟𝑒 𝑓

𝑉𝑃𝑟𝑒 𝑓
(2)

where 𝜌𝑉2
𝑃𝑟𝑒 𝑓

= 𝜆 + 2𝜇 is the P-wave velocity before the load is applied, and 𝑉𝑃(𝜃; 𝜎) is the

load- and angle-dependent absolute P-wave velocity under the uniaxial stress. In the next steps, we

omit the explicit dependence on 𝜎 for clarity. We can express 𝑉𝑃(𝜃) as a function of 𝑉𝑃∥ , which is

the velocity along the principal stress direction, and 𝐴𝑃(𝜃), which is a load-dependent anisotropy

coefficient, in the following way [Johnson and Rasolofosaon, 1996]:

𝑉𝑃(𝜃) = (1 − 𝐴𝑃(𝜃))𝑉𝑃∥

Reinjecting these terms in Equation 2, we finally get an expression of the form

𝜂𝐶(𝜃) = 𝑢 cos2(𝜃) + 𝑣 (3)

where, with 𝐾 = 𝜆 + 2
3𝜇 being the bulk compressibility modulus, we have

𝑢 = 𝜎𝑎𝐶
√

1 + 𝜎𝑏𝐶 𝑣 = (1 − 𝜎𝑎𝐶)
√

1 + 𝜎𝑏𝐶 − 1 (4)

𝑎𝐶 =
2𝜆 + 5𝜇 + 2𝑚

2𝜇(𝜆 + 2𝜇) 𝑏𝐶 =
2𝑙 + 𝜆 + 𝜆+𝜇

𝜇 (4𝑚 + 4𝜆 + 10𝜇)
3𝐾(𝜆 + 2𝜇) (5)

(6)
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which gives us the final expression for the load-induced anisotropic change in relative velocity. This

theoretical expression is only valid for small values of stress, which is our case here, as well as in

the case of a purely uniaxial load.

This derivation matches our observations in several qualitative aspects. First, we note that, in

these expressions, 𝜂𝐶 depends on the sign of the applied strain via the applied stress 𝜎, and we have

𝜂𝐶 = 𝑓 (Δ𝜀𝑛). Second, the dependence of 𝜂𝐶 as a linear function of cos2(𝜃) matches the measured

anisotropy of 𝛽(𝜃). However, due to a lack of proper values for the third-order elastic constants

𝑙, 𝑚 and 𝑛 for Bentheimer sandstone, we could not quantitatively estimate the match between our

measured classical effect and this theoretical derivation.
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Supplementary Figure S1: Bimodal distribution correction of the 𝜂 measurements An example of
a set of uncorrected 𝜂 measurements with the distinct upper and lower bands (top), the difference
between the upper and lower bands (middle), and the corrected 𝜂𝐶 obtained by averaging both
bands (bottom). Note how, in the uncorrected version, both bands exhibit the same low-frequency
variations (e.g. around 16 000 and 27 500), and how the width between the two bands is essentially
constant throughout the whole experiment.
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Supplementary Figure S2: Anisotropy fit results for the 3-component model Dots are for values
obtained looking at direct P-wave arrivals, stars with reflected P-wave arrivals. See main manuscript
for more details on the inversion process.
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Supplementary Figure S3: Individual components for the 10-component model We have five
individual step components for the classical effect, and four individual components for the transient
effect
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Supplementary Figure S4: Anisotropy fit results for the 10-component model Uncertainties on
the individual parameter values were not computed for this model.

Coefficients (× 10−2 %)
Model 𝑢 𝜎𝑢 𝑣 𝜎𝑣

Fixed 𝛼

𝛽 4.07 0.39 0.45 0.05
𝛿 0.72 0.35 2.27 0.07
Variable 𝛼

𝛼 0.86 0.11 1.39 0.03
𝛽 4.18 0.39 0.44 0.06
𝛿 1.46 0.37 2.16 0.08

Coefficients (× 10−2 %)
Model 𝑢 𝜎𝑢 𝑣 𝜎𝑣

Individual fits
𝛼 0.60 0.19 1.56 0.04
𝛽1 0.10 0.02 0.04 0.01
𝛽2 4.38 0.40 0.05 0.06
𝛽3 −0.32 0.10 0.53 0.03
𝛽4 4.36 0.39 0.09 0.06
𝛽5 0.09 0.21 0.46 0.04
𝛿1 2.05 0.40 2.18 0.09
𝛿2 1.87 0.34 2.10 0.07
𝛿3 1.67 0.36 1.52 0.07
𝛿4 0.66 0.27 1.85 0.07

Supplementary Table S1: Anisotropy fit coefficients for each model Coefficients 𝑢 and 𝑣 and their
respective standard errors resulting from the anisotropy law fit 𝛾 = 𝑢 cos2(𝜃)+𝑣 for each parameter
𝛾 and for our different models
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