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Supplementary Discussion 1 - Data pre- and post-processing

1.1 Pulse source-time correction for the acoustic traces

Since our acoustics monitoring system is not synchronized with the ultrasound pulsing system,
there is a voltage threshold detection system to trigger the recording, but it does not provide the
precise source time as detailed below.

A given transducer i will be sending ultrasonic pulses during the experiment. The pulse is first
generated externally, sent through the transducer, and then picked up by the automatic acoustic
monitoring system. When the amplitude of the pulse exceeds a given detection threshold at any
receiver, the system then records 512 samples before and 3584 samples after the detection time for
every single transducer in our array.

To align our observations at the precise source time, we look at the trace recordings of the
pulsing channel i. Taking the very first pulse recording P} as a reference, we then compute the time
delay A1, between the m-th pulse signal of the i-th transducer P, with Pé in the Fourier domain.
We then subtract this time delay from the trace s', j,;, which is the m-th trace recorded by the j-th

transducer after a pulse sent by the i-th transducer.



1.2 Bimodal distribution correction on 7

Our initial 1 measurements displayed a remarkable bimodal distribution (Figure S1) that would
not go away upon averaging over sensor combinations of similar geometries. In fact the bimodal
spread of the data remains when stacking measurements with different pulsing transducers which
fire in fast succession. We therefore conclude that it reflects a physical change in the medium.

The system in charge of enforcing the displacement control on our sample works in discrete
increments, and most likely oscillates around the desired displacement in such increments. This
induces discrete, high-frequency (compared to the acoustic measurement period T;) changes in
the medium that create the bimodal distribution. We therefore correct this effect by dividing the
measurement points 7(t;) between an upper and lower band (n and n%, as seen in Supplementary
Figure S1, top), interpolating each of these sets on the set of all measurement times ¢;, and taking
the average of both bands. Since both the upper and lower band are essentially the same shifted
curve with additional independent noise, averaging both bands results in a final signal noise that
is significantly lower than that of the difference between the two bands (compare Supplementary

Figure S1, middle and bottom).

1.3 Geometrical apparent velocity change correction on 1

Our experiments involve applying € = 10~ of uniaxial strain upon our sample during certain
periods. This, in turn, leads to small amounts of deformation within the sample, and therefore
changes in the traveled path length for the waves. Since we are only interested in measuring
changes in relative velocity due to material changes as opposed to geometrical changes, we remove
these apparent velocity changes from the uniaxial strain phases. We do so by assuming that the
sample undergoes a basic Poisson effect with a Poisson coefficient v = 0.2 [Peksa et al., 2015], and
then compute the associated relative change in path length r; = l;/ 19, where [° is the path length
before deformation and /! after deformation, for a given sensor combination k due to the changes
in relative positions between the sensors in the deformed configuration. Finally, we obtain the
apparent deformation-induced relative velocity change n?p P =1 - r;, which we then subtract from

the n measurements obtained while uniaxial strain is being applied so that only the 1 induced by



changes in the medium are left in our observations. Incidentally, we almost always have 1P < 1,
so that this correction only has a very limited impact on the data. This effect is of constant amplitude
for a given strain level and, given that our system is displacement-controlled, has no impact on the
shape of the transients. However, it could in principle alter the amplitude of the classical effect,
but only does so by a comparatively small amount in practice, since the largest apparent velocity

change would be within the range of 1073 %, compared to the 1072 % of the classical effect.

Supplementary Discussion 2 - Estimation of «

The model presented in this paper is a two-component model, with f and 6 varying for each sensor
combination, to which we add a time-linear component a with identical amplitude for all sensor
combinations that accounts for a temperature drift.

To obtain a value for the coefficient ¢, it is initially considered a free parameter in a three-
component inversion, along with g and 6, after which we select one & as the average value of
these inverted a. We then take this value & and fix it for all sensor combinations before further
inverting for f and 6 as free parameters, resulting in our two-parameter model. We invert each set
of parameters (a, 8, ) for the coefficients of a transverse anisotropy law u cos?(9) + v. The inverted
parameters along with their anisotropy law fit are depicted in Supplementary Figure S2, while the
coefficients obtained from the anisotropy law fit are recorded in Supplementary Table S1.

Supplementary Table S1 shows that the values of u and v for the classical effect, and v for the
nonclassical effect, are essentially identical for both the fixed and variable @ models. One difference
is in the values of u for the nonclassical effect, where the value for a variable « is twice that of when
a is fixed in advance. We nonetheless argue that this does not call into question the soundness of
treating the a coefficient like a fixed temperature correction. First, there is no argument in favor
of treating the temperature effects as being anisotropic, and the spread of the computed values of
a support that conclusion. Second, small changes in the value of @ will have a disproportionate
influence on the value of 6 for the corresponding sensor combination, as the inverted value of 0 is
mostly determined by the 11 measurements right after a stress change, i.e. when the slope is highest,

and therefore the tradeoff between a and 6 is most important. For all these reasons, we conclude



that using the fixed @ model as a temperature correction is a robust approach. Moreover, it does
not alter our conclusions, since the values of u are still significantly different between the classical
and nonclassical effects in both scenarios, hinting towards different mechanisms from which the

respective effects originate.

Supplementary Discussion 3 - Uncertainty quantification on the
anisotropy fits

Carrying out the fitting procedure for a given sensor combination k yields optimums g and 6.
We compute the lower (resp. upper) bound :BI;; i (resp. Bk .x) of the 95% confidence interval for
B as follows: we first compute the residuals rgr for the optimum value B¥. We then compute the
residuals gk for a test value ‘Bi‘ < BF (resp. ﬁf > BF). Using an F-test with a 95 % confidence level,
we then test whether gk is significantly different from the reference residual 74 If the difference is
not significant, this means that ﬁf is as good a fit for our data as ¥, and g 5‘ can therefore be included
in the confidence interval; however, if the residuals are significantly different, this means that ﬁf no
longer fits the data equally well as ¥, and is therefore outside of the confidence interval. Finally,
repeating this process allows us to find the lower (resp. upper) bound of our confidence interval

for g k and we can then reiterate for o*.

Supplementary Discussion 4 - Alternative 10-component model:
fitting stress states individually

To challenge our 2-component model, we attempted to fit our data using a 10-component model
where the classical and nonclassical effects were described with different parameters for each
different stress state, on top of a freely varying linear trend parameter a. The model is as follows

(see also Supplementary Figure S3):

5 4
N(t;0) = aL(t) + ) Bi(O)Ci(H) + Y 6i(O)Ri(¢) (1)
i=1 i=1



Just like we do for our other models, we invert each set of parameters («, 1, ..., 04) for the
coefficients of a transverse anisotropy law u cos?(6) + v. We display the computed parameters and
the anisotropy fits in Supplementary Figure S4, and record the obtained anisotropy fit coefficients
in Supplementary Table S1, along with those of our model with a variable a.

The table shows for the classical component that the only significant values are obtained for
B2 and B4, corresponding to the times when the sample is under static uniaxial strain (see Supple-
mentary Figure S3), while when the sample is under hydrostatic compression only, the classical
components are virtually null. This further confirms that the classical effect is related to the stress
state of the sample and is a static effect, thereby justifying the shape of the classical component as
used in the main paper.

For the nonclassical effects, we note that with the exception of the value of u for 04, the obtained
anisotropy parameters are remarkably similar for each transient, also lending strength to the as-
sumed shape of our transient component R(#) in our main 2-parameter model. The values of the
intercepts v are also within the same range as the ones for our 2-parameter model, and the u coeffi-
cients, although larger than for the 2-parameter model, are of the same order of magnitude as in the
3-parameter model, and still significantly different from the u values for the classical component.

Also worth noting is the fact that the inversions for « for the 3-component and 10-component
models are also remarkably similar, so that the tradeoff discussion between the nonclassical com-
ponent and the linear trend component can apply to both.

Although 10 components can naturally better capture the finer variations within our data, doing
so does not provide any additional insights and still supports the observation of the much simpler
2-component model, that the anisotropy of the classical and nonclassical effects are significantly
different. The nonclassical effect is significant for all propagation directions and less anisotropic than
the classical effect while the latter one almost vanishes in the horizontal direction. The 10-parameter
inversion thus adds unnecessary complexity to the analysis and we present the 2-component model

in the main text.



Supplementary Discussion 5 - Expected anisotropy of the classical

effect

We can theoretically derive the anisotropic load-induced relative velocity changes in classically
nonlinear elastic materials, i.e. where the nonlinearity is described using the Murnaghan coefficients
[Murnaghan, 1937], using the applied stress o, the Lamé parameters and the third-order elastic
constants [, m and n.

We define our classically-induced relative velocity change as follows:

Vp(0;0) - Vp

nc(6;0) = 7 i )

ref

where pVﬁyﬁf = A + 2y is the P-wave velocity before the load is applied, and Vp(0;0) is the
load- and angle-dependent absolute P-wave velocity under the uniaxial stress. In the next steps, we
omit the explicit dependence on ¢ for clarity. We can express Vp(0) as a function of Vp,, which is
the velocity along the principal stress direction, and Ap(0), which is a load-dependent anisotropy
coefficient, in the following way [Johnson and Rasolofosaon, 1996]:

Vp(0) = (1 - Ap(0))Vp,

Reinjecting these terms in Equation 2, we finally get an expression of the form

nc(0) = ucos?(0) +v (3)

where, with K = A + £ being the bulk compressibility modulus, we have

u=0&lc\/1+0bc v:(l—oac) 1+0bc-1 (4)
20+ 5u+2m . _21+A+%(4m+4A+10H) 5

1€ 2 + 20 €= 3K(A + 24)
(6)



which gives us the final expression for the load-induced anisotropic change in relative velocity. This
theoretical expression is only valid for small values of stress, which is our case here, as well as in
the case of a purely uniaxial load.

This derivation matches our observations in several qualitative aspects. First, we note that, in
these expressions, 17c depends on the sign of the applied strain via the applied stress ¢, and we have
nc = f(Ag,). Second, the dependence of 7¢ as a linear function of cos?(6) matches the measured
anisotropy of f(6). However, due to a lack of proper values for the third-order elastic constants
I, m and n for Bentheimer sandstone, we could not quantitatively estimate the match between our

measured classical effect and this theoretical derivation.
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Supplementary Figure S1: Bimodal distribution correction of the 7 measurements An example of
a set of uncorrected 1 measurements with the distinct upper and lower bands (top), the difference
between the upper and lower bands (middle), and the corrected n“ obtained by averaging both
bands (bottom). Note how, in the uncorrected version, both bands exhibit the same low-frequency
variations (e.g. around 16 000 and 27 500), and how the width between the two bands is essentially
constant throughout the whole experiment.
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Supplementary Figure S2: Anisotropy fit results for the 3-component model Dots are for values
obtained looking at direct P-wave arrivals, stars with reflected P-wave arrivals. See main manuscript
for more details on the inversion process.
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Supplementary Figure S3: Individual components for the 10-component model We have five
individual step components for the classical effect, and four individual components for the transient
effect
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Supplementary Figure S4: Anisotropy fit results for the 10-component model Uncertainties on
the individual parameter values were not computed for this model.

Coefficients (x 1072 %)

Coefficients (x 1072 %)

Model u oy v O Model u oy v O
Fixed o Individual fits
B 407 039 045 0.05 a 0.60 019 156 0.04
0 072 035 227 0.07 p1 0.10 0.02 0.04 0.01
Variabl B2 4.38 040 0.05 0.06
anapea B3 ~032 010 053 003
a 08 011 139 0.03 Ba 436 039 009 0.06
p 418 039 044  0.06 Bs 0.09 021 046 0.04
0 146 037 216 0.08 51 2.05 040 2.18  0.09
02 1.87 034 210 0.07
03 1.67 036 152 0.07
04 066 027 185 0.07

Supplementary Table S1: Anisotropy fit coefficients for each model Coefficients u and v and their
respective standard errors resulting from the anisotropy law fit y = u cos?(0) + v for each parameter
y and for our different models
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