
Supplementary1

Deep Learning Models2

LSTMAttention3

Long short-term memory (LSTM) models incorporating attention mechanisms (LSTMAttention) have been developed to4

enhance the ability to capture sequential dependencies in time-series data by assigning varying levels of importance to different5

time points1. The attention mechanism, originally introduced in the Transformer model for natural language processing (NLP)6

tasks by Vaswani et al.2, has been successfully adapted for temporal data modelling, allowing for improved efficiency in7

sequence learning.8

The LSTMAttention model is designed with stacked layers that extract both short- and long-range temporal dependencies.9

A key feature is its self-attention mechanism, which dynamically adjusts the relevance of time steps within the sequence. This10

enables the model to prioritise important time points without processing data sequentially, as required by conventional recurrent11

neural networks (RNNs). Additionally, multi-head attention mechanisms allow the model to learn various data relationships in12

parallel, increasing both computational efficiency and the ability to model complex patterns in sequential data. The architecture13

consists of several stacked layers, each integrating self-attention and feed-forward neural networks. Positional encodings help14

the model maintain temporal context, while residual connections enhance stability and training efficiency.15

In the adaptation of the Transformer model for time-series applications, the model is composed only of the encoder16

component of the original model. The encoder is formed of six identical blocks, each of which contains a multi-head self-17

attention sub-layer followed by a feed-forward network. Using self-attention layers enables faster computation and improves18

the model’s ability to learn long-range temporal dependencies1. The feed-forward network takes the form of a pointwise, fully19

connected layer with each of the six blocks having its own trainable weights and biases. Around each of the sub-layers is a20

residual connection that allows that layer to be skipped if its inclusion in the model does not improve training. Between each21

sub-layer there is a batch normalisation layer. Following the six model blocks, there is a linear transformation then a softmax22

activation function to output the class predictions. Prior to being processed by the model, input data is projected into a vector23

space, and positional encodings are incorporated to retain sequence information.24

Multivariate Long Short Term Memory Fully Convolutional Networks25

Multivariate Long Short-Term Memory Fully Convolutional Networks (MLSTM-FCNs) are an advanced deep learning26

framework designed for multivariate time series analysis. This architecture integrates two complementary neural network27

models: Fully Convolutional Networks (FCNs), known for their proficiency in spatial feature extraction, and Long Short-Term28

Memory (LSTM) networks, which are adept at capturing long-range dependencies in sequential data3. By combining these29

components, MLSTM-FCNs can process complex temporal patterns while maintaining a structured understanding of variable30

interactions across time4. These models have been successfully applied across various domains, including earthquake detection31

and healthcare, particularly in arrhythmia classification5, 6.32
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Figure S1. LSTM-FCN model structure. Adapted from Karim et al.4.

The FCN module is formed of three convolutional layers with progressively smaller kernel sizes (to extract both fine-grained33

and high-level temporal features. Convolutional filters slide across the input sequence to capture local patterns and create34

feature maps. Between each layer is a layer of batch normalisation and a ReLU activation function. Then the output of35

the FCN is put through a global average pooling layer, which reduces dimensionality while preserving critical information.36

In parallel, the LSTM component processes the input data by first passing it through a dimension shuffle layer, which37

transposes the temporal dimension (Figure S1). This transformation ensures that the LSTM receives a multivariate time-series38

representation with a single time step, significantly improving training speed. The outputs from both the FCN and LSTM39

branches are concatenated, enabling the model to leverage both sequential and spatial information. A final softmax layer40

provides classification probabilities.41

Residual Network42

Residual Network (ResNet) is a deep neural network architecture that is widely used in time-series analysis. Originally43

introduced by He et al. for image recognition, ResNet has since been adapted to various machine learning domains, including44

time-series classification, signal processing, and speech recognition7–10. The adaptability of ResNet models makes them45

particularly valuable for MTS data, where dependencies across different variables and time steps must be effectively modelled.46

Their defining feature is the introduction of residual connections—also called shortcut or skip connections—which mitigate the47

vanishing gradient problem and enable deeper networks to be trained effectively. In essence, if certain layers do not contribute48

meaningfully to the learning process, the residual connections allow the network to return to simpler representations, similar to49

an ensemble of shallower models within the deep structure.50

This ResNet model for time-series classification consists of multiple stacked residual blocks, each containing several51

convolutional layers3 (Figure S2). ResNet is composed of three blocks, each of which consists of three convolutional layers52

that apply one-dimensional filters to capture temporal dependencies at different scales. Between each of the layers batch53
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Figure S2. ResNet model structure. Adapted from Wang et al.3.

normalisation and a GeLU activation function are applied to stabilise training. Across each block lies a residual connection in54

which the original input of the block is added to the transformed output before passing through another activation function. In55

the first of the three blocks, each convolutional layer has 64 one-dimensional filters with kernel length of 7, 5 and 3 for the first,56

second and third layers, respectively. Using different filter lengths enables temporal information to be extracted at differing57

degrees of granularity. The remaining two blocks are identical to the first except that each convolutional layer has 128 filters58

instead of 64. After the three blocks, there is a global average pooling layer which aggregates information across all time steps.59

Finally there is a softmax layer to obtain the final classification labels.60

InceptionTime61

InceptionTime is a DL architecture designed for time-series classification (TSC) tasks by He et al.7.It is an adaptation of62

the Inception model which was designed for image recognition11. InceptionTime extends the concept to sequential data by63

incorporating multiple parallel convolutions. This design allows the model to efficiently capture both short-term fluctuations64

and long-range dependencies within MTS data12. The InceptionTime model has repeatedly outperformed other CNN-based DL65

architectures in several applications including detecting cardiovascular abnormalities and classifying ECGs and classifying brain66

activity13–15. The architecture has consistently outperformed conventional CNN-based models across various TSC benchmarks,67

reinforcing its status as a state-of-the-art framework for sequential data analysis.68

The structure is composed of six "inception modules" that are arranged into two identical blocks that each contain three69

modules (Figure S3). Each block has a residual connection across the top to improve gradient flow and improve model stability70

during training 7. After the two blocks, there is a global average pooling layer followed by a fully connected softmax layer71

to predict class labels. Between each of the modules is a batch normalisation and GeLU activation function. Each inception72

module consists of multiple convolutional layers operating in parallel, each with a distinct kernel size. This parallel structure73

enables the model to extract features at different temporal granularities, ensuring both local and global patterns are learned74

effectively. Following the inception blocks, a global average pooling layer aggregates extracted features before passing them75

through a softmax layer for final classification.76

The inception modules are composed of multiple parallel convolutional filters of varying lengths that are concatenated77

to form the output (Figure S4). Firstly, the data passes through a bottleneck layer which reduces the dimensionality of the78
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Figure S3. InceptionTime model architecture Adapted from Fawaz et al.12.

Figure S4. Inception module structure. Adapted from Fawaz et al.12. The input MTS is processed to form the output MTS
that reflects temporal patterns in the data.

data and also computational complexity. The bottleneck layer is a 1D convolutional layer with kernel size 1 and filter length79

32. Following the bottleneck layer there are three parallel convolutional layers with kernel sizes 10, 20 and 40 with filter80

size 32. The convolutional layers are designed to be able to pick up on short-, mid- and long- term temporal dependencies in81

the data, meaning that InceptionTime is appropriate for sparse temporal data11. Depthwise separable convolutions are used82

which factorise the standard convolution into a depthwise convolution followed by a pointwise convolution. There is a further83

additional layer that runs in parallel to the bottleneck and convolutions that consists of a max pooling layer with window size 484

then the output is passed through a bottleneck layer. The results from each convolutional layer as well as this additional layer85

are concatenated to produce the output of the inception module.86

Simulated data87

Input data88

The simulated cohort data, denoted as X ∈ RN×M×T , represents 100,000 individuals followed for 16 years. This cohort size,89

approximately half that of the DANLIFE cohort which comprises of 207,445 individuals, allows for effective model testing,90

with results expected to scale to larger sizes. The synthetic data was generated to simulate the dynamics of longitudinal variables91

based on the structure and relationships observed in the DANLIFE dataset. The DANLIFE dataset used by Davis et al. is92

composed of 5 variables used as covariates, namely the age of the mother at first birth, the age of the participant’s mother,93
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parental origin, parental diabetes and the fitted trajectory group based upon adverse childhood experiences (ACEs), all of which94

are stationary16. The relationships between the six variables were simulated using a Direct Acyclic Graph (DAG) in R with the95

simcausal package (v0.5.4)17.96

The first three variables of the simulated (parental ethnicity, parental diabetic status, and maternal age at birth) are stationary,97

and the definitions are adopted from Davies et al.16. The age of the participant’s mother is not simulated in the synthetic98

data. Baseline variables were modelled as categorical distributions with probabilities derived from the observed distributions99

in the DANLIFE dataset. Parental origin (European or non-European) is randomly assigned to match the distribution in the100

DANLIFE cohort where 98.6% of people had parents of European origin. Maternal age is divided into three categories and is101

also randomly assigned to the population according to the distribution in the DANLIFE data because there was no observed102

correlation of maternal age with parental origin. Therefore, 4% of the simulated population had mothers aged under 20 years103

old at the time of their birth, 75% had mothers between the ages of 20 and 30 years and the remainder had mothers older than104

30 years old. Parental diabetic status is assigned to individuals depending on their parental origin because a correlation was105

observed in the DANLIFE data, meaning that 10% of individuals with European parental origin and 40% of individuals with106

non-European parental origin had parents with diabetes.107

In the DANLIFE cohort, ACEs are represented by a single categorical variable that classifies individuals into trajectory108

groups based on three distinct ACE categories: Loss, Dynamic, and Socioeconomic Status (SES)18. To better capture temporal109

dependencies and the relative timing of exposures, we replaced this static variable with three time series, each representing the110

annual count of ACE events within its respective category. To model the temporal evolution of these ACE exposures, we used111

zero-inflated Poisson (ZIP) regression, which accounts for overdispersion and the presence of excess zeros (i.e., individuals112

without ACE events in a given year). Each ACE time series was influenced by its past values as well as each individual’s values113

of the stationary covariates, including parental origin, maternal age category, and parental diabetes status. Exploratory analysis114

revealed that Dynamic ACE exposures were significantly influenced by the concurrent values of both Loss and SES, while no115

such dependencies were found in the reverse direction. That is, an increase in Loss or SES events in a given year was associated116

with a higher likelihood of Dynamic events occurring in the same year, but changes in Dynamic did not significantly impact117

subsequent Loss or SES. We incorporated this dependency structure into the DAG to reflect the underlying causal mechanisms.118

The ZIP distribution was fitted to the variables in the DANLIFE cohort and the resulting coefficients were used to simulate the119

time-dependent variables in the simulated cohort. The coefficients of the ZIP distributions can be found in the github repository.120

The DAG explicitly modelled the recursive nature of ACE exposures, where each time-dependent variable (Xt) was121

influenced by its prior value (Xt−1), stationary covariates, and, in the case of Dynamic, concurrent values of Loss and SES.122

To prevent unrealistic values, exposure counts were capped at predefined thresholds when computing the next time step,123

corresponding to the 99.5th percentile of the observed data (Loss = 1, SES = 1, Dynamic = 2). SES was further constrained to a124

maximum value of 3, consistent with its construction in the DANLIFE dataset. By incorporating these temporal dependencies125

and interactions into the simulation, our approach ensured that both the direct and cumulative effects of ACE exposures were126
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Table S1. Distribution Differences Between DANLIFE and Synthetic Datasets Across Time-Independent Variables.
This table presents the percentages (%) of individuals within each of the different groups for the three categorical
time-independent variables, comparing the DANLIFE and synthetic datasets. The population size of the DANLIFE cohort used
here is 207,445 and the simulated cohort has 100,000 individuals. Variable definitions are taken from Davies et al.16.

Parental Origin Mother’s age at time of
birth (years)

Parental diabetes DANLIFE (%) Synthetic (%)

European < 20 No 3.51 3.55
European < 20 Yes 0.32 0.41
European 20–30 No 67.37 66.47
European 20–30 Yes 6.90 7.66
European > 30 No 17.66 18.46
European > 30 Yes 2.85 2.06

Non-European < 20 No 0.10 0.03
Non-European < 20 Yes 0.03 0.03
Non-European 20–30 No 0.60 0.63
Non-European 20–30 Yes 0.36 0.39
Non-European > 30 No 0.13 0.17
Non-European > 30 Yes 0.17 0.14

appropriately captured. This framework allowed us to examine not only the individual trajectories of Loss, Dynamic, and SES127

over time but also their interplay with baseline characteristics, thereby enhancing the robustness and credibility of the study.128

Comparison of Synthetic and DANLIFE cohorts129

Here we present statistical summaries showing how closely aligned the synthetic data is with the DANLIFE dataset. Table S1130

shows the percentages of individuals that fall within each subpopulation in the two datasets according to the values of their131

time-independent variables (parental origin, mother’s age at birth and parental diabetes). The percentages of individuals in132

each group are very similar in both datasets, with none of the percentages differing by more than 1 percent. Therefore, the133

composition of the cohorts is very similar across the stationary variables and the dependencies in the DANLIFE cohort between134

these variables has been closely approximated. This implies that, at least in terms of the time-independent variables, the two135

datasets are very similar.136

The time-dependent variables (SES, Loss, Dynamic) are compared in Figure S5, which presents a statistical analysis of137

these variables between the DANLIFE and synthetic cohorts. The Dynamic variable is closely aligned in terms of its mean,138

standard deviation, skewness and kurtosis values across the entire time period. This demonstrates that the simulation of the139

Dynamic ACE closely matches the variable in the DANLIFE cohort. The Loss variable also has very similar mean and standard140

deviation values, but there are slight differences in skewness and kurtosis values with the DANLIFE data demonstrating a141

decline across the time period whilst the simulated data is more consistent. Finally, the SES variables have similar skewness and142

kurtosis values, but there is a greater difference in the mean and the standard deviation values with the synthetic data showing143

an increase over time whilst the DANLIFE cohort exhibits a decline. Despite these small differences, the closeness of these144

values overall means that these variables are similar enough to capture the patterns present in the DANLIFE data whilst also145

prioritising interpretability and the simplicity of the representation.146
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Figure S5. Comparison Between Time-Dependent Variables in the DANLIFE and Synthetic Datasets. The plots show
the mean, standard deviation (SD), skewness, and kurtosis over time for the three different time-dependent variables (Dynamic,
Loss and SES), with distinct lines representing the DANLIFE and synthetic datasets. Each plot is colour-coded by variable and
uses different line types to distinguish between the datasets. The x-axis represents the year, while the y-axis varies according to
the measure being plotted.
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Outcome147

Multiple binary outcomes (y ∈ [0,1]N) were simulated to represent key life course patterns (LCPs). The outcomes fall into148

four groups: periods, repeats, order, and timing, which capture different life course patterns. Each group contains multiple149

simulated scenarios that fall into that category to allow an in-depth exploration of the capability of deep learning (DL) models150

to learn each life course pattern. The output is binary and designed to correspond to whether an individual is hospitalised with151

DANLIFE, following the lead of Davies et al.16. The different LCPs are identified as follows:152

• Period: Represents critical and sensitive periods, where outcomes depend on events occurring during certain life stages.153

• Repeats: Positive outcomes occur when events repeat consecutively over several years.154

• Order: Examines the sequence of events, where an exposure event must precede another for a positive outcome.155

• Timing: Focuses on the proximity of events, where multiple exposures occurring close together trigger an outcome.156

Rules governing each LCP scenario are detailed in Table 1 in the main text, with percentages of positive outcomes157

closely matching the 2.58% observed in the real DANLIFE cohort16. This low prevalence is typical in medical outcomes158

and helps ensure realistic testing conditions. To minimise complexity and understand how the models perform in simple159

representative scenarios, the rules initially only encompass one or two of the temporal variables. In reality, it is likely that the160

underlying biological and societal mechanisms that give rise to negative health outcomes are considerably more complex than161

the relationships within this analysis. However, the LCPs are the most simplistic formulations of the hypothesised pathways162

and consequently can be used in conjunction to form more complex and realistic inter-dependencies between the variables.163

To reflect real-world unpredictability, noise was added by randomly flipping the outcomes of 10% of individuals with164

both positive and negative outcomes in the training set (but not in the test set). This ensures that model performance can be165

accurately assessed on unseen data without overfitting to noisy training data. The cohort was divided into training and testing166

sets to provide a fair comparison across models.167

Experimental setup168

Data Preparation169

Before training the DL models, the dataset was preprocessed by normalising the ordinal categorical variables, which ensured that170

all feature values were on a comparable scale. All data were normalised using the MinMaxScaler from the scikit-learn171

package, which was fitted to the training set and then the transform is applied to both training and testing sets. This is not required172

and therefore, omitted for the XGBoost and logistic regression (LR) models. Normalisation was chosen over standardisation173

due to the non-normal distribution of the data.174
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Hyperparameter Optimisation Process175

Each of the six models was fitted individually to every LCP from Table 1 in the main text. The models were trained using176

tsai, xgboost, scikit-learn and optuna, and cross-validation was performed to assess model performance19–21.177

Specifically, we used stratified 2-fold cross-validation to ensure robustness of parameter choice and generalisability of the178

results. The training dataset is split into 2 folds and within each trial the model is trained and validated 2 times, each time a179

different fold is used as the validation set and the remaining data as the train set. The validation set acts as a test set to assess180

model performance without using the unseen test set. For 200 trial parameter sets, the model performance, measured with181

average precision (AP), is averaged across the 2 runs and the final hyperparameter values are chosen as the values from the trial182

that maximised this value. Each model was fitted to the data three times each time using a different random seed for training183

and the resulting F1, area under the precision-recall curve (AUPRC), area under the receiver operating characteristic curve184

(AUROC) and Brier scores are the average values across the three runs.185

Logistic Regression186

The LR model was trained using a 2D flattened form of the data. The parameter C was optimised from a set of predefined187

values [10−5,10−4,0.001, . . . ,105], with the value that maximised the AUPRC score on the validation set selected. In contrast188

to the DL models, the LR model search space was explored using gridsearch as only a single parameter was optimised. L1189

regularisation was used in order to reduce overfitting, and class balancing addressed the imbalanced nature of the dataset. The190

LR model was written in the scikit-learn package version 1.5.122.191

XGBoost192

XGBoost was coded using the xgboost package version 2.1.020. The model formulation used the log-loss objective function,193

and data was flattened to a 2D matrix for input into the model. A range of model hyperparameters were selected using the194

Tree-structured Parzen Estimator (TPE) sampler and the final parameter values were chosen to maximise the AUPRC score. Key195

parameters optimised include ‘max_depth‘, ‘eta‘, ‘subsample‘, and others (see Table S2 below). Early stopping was employed196

to stop training early when an optimum value had been reached. The model also incorporated L1 and L2 regularisation to197

prevent overfitting. To address class imbalance, the model weights were scaled in accordance with the class distribution.198

DL Models199

All DL models (ResNet, InceptionTime, MLSTM-FCN, and LSTMAttention) were implemented and trained using the tsai200

python package version 0.3.919, with corresponding architectures ResNetPlus, InceptionTimePlus, MLSTM-FCNPlus,201

LSTMAttention, respectively. Each model has a different selection of hyperparameters that govern the model structure202

and allow it to be adjusted to suit the specific data (Table S3). In addition to the model-specific hyperparameters, further203

hyperparameters that govern the training process were selected. These include the learning rate that determines the step size in204

optimisation, the batch size that is the number of data points used within each iteration and the number of epochs which is the205

number of complete passes through the dataset. Hyperparameters were optimised using the optuna package version 3.6.1206
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Table S2. Hyperparameter tuning search space for XGB. The model parameters that were optimised during
hyperparameter optimisation and their corresponding search spaces.

Model Parameter Variable Search Space

XGB Subsample ratio of columns when con-
structing each tree

colsample_bytree (0.6, 1.0)

Learning rate eta (0.01, 0.3)
Early stopping patience patience [5, 10]
Minimum loss reduction gamma (0.0, 5.0)
Maximum depth of a tree max_depth integer between 3 and 10
Minimum sum of instance weight re-
quired in child

min_child_weight integer between 1 and 10

Number of trees n_estimators integer between 100 and 1000
L1 regularisation term on weights reg_alpha (0.0, 1.0)
L2 regularisation term on weights reg_lambda (0.0, 3.0)
Subsample ratio of the training instances subsample (0.5, 1.0)

framework21, using a Median Pruner to monitors the performance at each epoch and terminate the trial if the performance207

is deemed suboptimal. This ensures that computational resources are focused on the most promising hyperparameter config-208

urations. The optimisation procedure is formed of multiple trials that each test the model performance for a different set of209

hyperparameters which are selected from a feature space using the TPE sampler. The Adam optimiser was used along with a210

maximum of 50 training epochs. These models were tuned using dropout and weight decay (L1/L2 regularisation) to prevent211

overfitting. We also utilised early stopping to halt model training early if the validation performance did not improve over212

a set number of epochs. Each model utilised the focal loss function to address class imbalance, which weights the minority213

class (positive outputs) and more difficult samples greater when calculating the loss to prioritise finding true positives over true214

negatives. ResNet, LSTMAttention and InceptionTime used GeLU activations, while MLSTM-FCN used ReLU.215
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Table S3. Hyperparameter tuning search space for DL models. The model parameters that were optimised during
hyperparameter optimisation and their corresponding search spaces. The parameters listed under “All DL models" were
optimised for all DL models in addition to the model-specific parameters.

Model Parameter Variable Search Space

All DL models Maximum learning rate lr_max (1e-4, 1e-1)
Batch size batch_size [64, 128, 256]
Early stopping patience patience [5, 10]
Weight decay wd (0.0, 1e-2)
Focal loss alpha parameter alpha (0.1, 0.5)
Focal loss gamma parameter gamma (1.01, 3)

MLSTM-FCN Dropout rate in cells cell_dropout (0.0, 0.4)
Number of convolutional layers conv_layers [[256, 512, 256], [128, 256, 256],

[64, 128, 64], [128, 256, 128]]
Dropout rate in fully connected layer fc_dropout (0.0, 0.4)
Number of features in the LSTM hidden
state

hidden_size [60, 80, 100, 120]

Kernel size for each of the convolutional
layers

kss [[5, 5, 5], [7, 7, 7], [3, 5, 7], [7, 5, 3],
[3, 5, 3]]

Dropout rate in RNN layers rnn_dropout (0.0, 0.9)
Number of RNN layers rnn_layers [1, 2, 3]

ResNet Dropout rate in fully connected layer fc_dropout (0.0, 0.4)
Kernel size for each convolutional layer kss [[5, 5, 5], [7, 7, 7], [3, 5, 7], [7, 5, 3],

[3, 5, 3]]
Number of feature maps nf [32, 64, 128]

InceptionTime Dropout rate in convolutional layer conv_dropout (0.0, 0.4)
Dropout rate in fully connected layer fc_dropout (0.0, 0.4)
Kernel sizes for convolutions ks [20, 30, 40, 50]
Number of filters per inception block nf [16, 32, 64, 128]

LSTMAttention Dimension of the feedforward network
model

d_ff [256, 512, 1024, 2048]

Dropout rate in encoder encoder_dropout (0.0, 0.4)
Number of sub-layers in the encoder encoder_layers [2, 3, 4]
Dropout rate in fully connected layer fc_dropout (0.0, 0.4)
Number of features in the hidden state hidden_size [64, 128, 256]
Number of parallel attention heads in
self-attention

n_heads [8, 12, 16]

Dropout rate in RNN layers rnn_dropout (0.0, 0.4)
Number of RNN layers rnn_layers [1, 2]

Calibration216

After cross-validation and hyperparameter tuning, the training data is stratified split into two groups, 90% of the data is used to217

train the final model and the remaining 10% is used to conduct early stopping. Once the final model had been trained then then218

each of the models was calibrated to improve suitability for risk analysis. The DL models were calibrated using a temperature219

scaling approach using the quantile method, using the tsai package version 0.3.9. The same calibration method was used for220

the XGB and LR models which was the sigmoid approach coded in the scikit-learn package. Then the final threshold for221
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the model metrics and confusion matrix was selected as the value that maximised the F1-score which balances precision and222

recall.223

Evaluation Metrics224

We evaluated model performance on the test set, using F1, AUROC, AUPRC, and Brier score. These metrics, particularly225

AUPRC and F1, help assess performance on imbalanced datasets. AUROC measures the trade-off between true positive rate226

(TPR) and false positive rate (FPR), giving insight into overall classification performance23. AUPRC focuses on precision and227

recall, ideal for datasets with rare positive outcomes. The F1 score also seeks to provide an overview of precision and recall228

performance at a given threshold. The Brier score, calculated as the mean squared error between predicted and actual outcomes,229

was used to measure calibration. The term calibration describes the level of concordance between the model predictions and the230

actual observed outcomes, and it is imperative to consider this score particularly in risk modelling. By using these metrics, we231

ensure a comprehensive evaluation of model performance across all simulated LCPs. Additionally the AP score which is an232

approximation of AUPRC was used to determine the best parameters in the tuning process.233

Explainability234

SHAP (SHapley Additive exPlanations) is an XAI method that allows us to explore both local and global feature contributions,235

enabling us to understand both individual predictions and overall feature contributions. SHAP is a method based on cooperative236

game theory that assigns each feature an importance value for a particular prediction by calculating Shapley values. Shapley237

values are derived by considering all possible combinations of features and the marginal contribution of each feature to the238

model’s output. In this study, SHAP values were computed using the shap package version 0.46.0 for the ML models used in239

our analysis24. For the DL models, we computed SHAP values using the Gradient SHAP method, which is particularly suited240

for DL models. The SHAP analysis was performed on the entire test set samples.241

Further Model Performance & Explainability Results242

Table S4. Evaluation metrics measuring model performance within four LCPs; period, repeats, order and timing.
Metric values for all models and LCPs for a calibrated model with a threshold of 0.5, averaged over the three random seeds.
Note the F1 score is threshold-dependent and therefore differs from the table in the main text where the threshold has been
selected to optimise the F1 scores. The metrics displayed are sensitivity (recall), specificity, precision, F1 score, accuracy, NPV
(negative predicted value), AUPRC (area under the precision-recall curve), AUROC (area under the ROC curve) and brier score.
LR = logistic regression, XGB = XGBoost, MLF = MLSTM-FCN, IT = InceptionTime, LSTMA = LSTMAttention.

Model Sensitivity Specificity Precision F1 Accuracy NPV AUPRC AUROC Brier

Period
1 LR 99.66 100.00 100.00 99.83 99.99 99.99 100.00 100.00 0.07

1 XGB 99.94 99.99 99.78 99.86 99.99 100.00 100.00 100.00 0.03
1 MLF 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 4.10

1 IT 99.94 99.81 94.13 96.94 99.81 100.00 99.99 100.00 0.25

1 ResNet 95.00 100.00 100.00 97.32 99.85 99.85 99.94 99.95 0.12
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Table S4, continued.

Model Sensitivity Specificity Precision F1 Accuracy NPV AUPRC AUROC Brier

1 LSTMA 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 1.05

2 LR 89.04 100.00 100.00 94.15 99.75 99.75 99.96 100.00 0.25

2 XGB 99.78 100.00 99.93 99.85 99.99 99.99 100.00 100.00 0.02

2 MLF 99.19 99.98 99.28 99.23 99.97 99.98 99.93 100.00 0.03

2 IT 99.04 100.00 99.93 99.48 99.98 99.98 99.84 99.92 0.06

2 ResNet 99.85 99.90 96.24 97.95 99.90 100.00 99.95 100.00 0.09

2 LSTMA 100.00 99.99 99.78 99.89 100.00 100.00 100.00 100.00 0.01

3 LR 64.29 99.98 98.05 77.62 99.38 99.39 89.26 99.69 0.50

3 XGB 95.83 99.97 98.17 96.99 99.90 99.93 99.22 99.97 0.12

3 MLF 96.92 98.61 75.85 79.91 98.58 99.95 95.47 99.88 1.17

3 IT 95.34 99.87 92.97 94.04 99.80 99.92 97.65 99.97 0.21

3 ResNet 96.92 99.99 99.19 98.04 99.94 99.95 99.73 99.99 0.06
3 LSTMA 97.72 99.97 98.51 98.11 99.94 99.96 99.89 100.00 0.06

Repeat
1 LR 13.31 99.76 49.64 20.98 98.23 98.46 36.87 97.53 1.40

1 XGB 91.12 99.76 87.09 89.06 99.61 99.84 95.81 99.92 0.33

1 MLF 98.77 99.99 99.62 99.19 99.97 99.98 99.87 99.99 0.05

1 IT 97.54 99.15 77.60 83.81 99.12 99.96 98.68 99.97 3.93

1 ResNet 99.91 99.88 94.28 96.93 99.89 100.00 99.38 99.99 0.10

1 LSTMA 100.00 100.00 99.81 99.91 100.00 100.00 100.00 100.00 0.02

2 LR 27.37 99.83 68.82 39.16 98.83 99.00 51.52 98.23 0.92

2 XGB 99.76 99.97 97.85 98.80 99.97 100.00 99.98 100.00 0.04

2 MLF 96.35 100.00 100.00 98.13 99.95 99.95 99.99 100.00 0.06

2 IT 96.23 100.00 100.00 98.06 99.95 99.95 99.84 99.99 0.06

2 ResNet 99.76 99.95 96.74 98.22 99.95 100.00 99.95 100.00 0.05

2 LSTMA 99.64 100.00 99.88 99.76 99.99 99.99 100.00 100.00 0.01

3 LR 14.23 99.80 48.36 21.78 98.69 98.88 30.78 95.91 1.08

3 XGB 99.10 99.96 96.87 97.97 99.95 99.99 99.68 100.00 0.05
3 MLF 85.26 99.99 99.54 90.99 99.80 99.81 98.67 99.95 0.14

3 IT 66.15 97.37 35.49 40.29 96.96 99.54 97.06 99.92 1.37

3 ResNet 94.87 99.95 96.42 95.40 99.88 99.93 98.45 99.39 0.10

3 LSTMA 99.36 99.85 90.17 94.45 99.84 99.99 97.15 99.97 0.14

Order
1 LR 16.09 99.09 51.55 24.53 94.37 95.14 44.93 95.67 4.20

1 XGB 99.91 99.61 93.96 96.85 99.63 99.99 98.20 99.93 0.37

1 MLF 99.27 99.66 94.68 96.92 99.64 99.96 99.39 99.63 2.64

1 IT 100.00 99.89 98.17 99.07 99.89 100.00 99.99 100.00 2.48
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Table S4, continued.

Model Sensitivity Specificity Precision F1 Accuracy NPV AUPRC AUROC Brier

1 ResNet 99.74 99.97 99.45 99.59 99.95 99.98 99.95 100.00 0.07
1 LSTMA 95.28 99.96 99.27 97.14 99.69 99.72 99.80 99.99 0.20

2 LR 7.49 99.62 28.21 11.84 97.79 98.16 24.72 95.94 1.77

2 XGB 84.85 99.71 85.57 85.21 99.42 99.69 90.63 99.79 0.47

2 MLF 91.67 99.94 97.03 94.20 99.78 99.83 97.50 99.44 0.20

2 IT 98.06 99.98 98.89 98.48 99.94 99.96 99.84 99.99 0.05

2 ResNet 95.54 99.96 97.96 96.68 99.87 99.91 98.97 99.82 0.16

2 LSTMA 99.58 99.95 97.71 98.63 99.95 99.99 99.96 100.00 0.04

3 LR 2.59 99.80 19.62 4.57 98.06 98.24 17.12 93.75 1.70

3 XGB 90.46 99.84 91.32 90.88 99.67 99.83 94.34 99.88 0.35

3 MLF 96.20 100.00 99.81 97.97 99.93 99.93 98.89 99.37 0.08

3 IT 99.63 99.98 99.00 99.31 99.98 99.99 99.98 100.00 0.02

3 ResNet 99.07 99.99 99.26 99.16 99.97 99.98 99.79 99.92 0.03

3 LSTMA 99.81 99.99 99.36 99.59 99.98 100.00 99.90 99.99 0.01

Timing
1 LR 7.54 99.63 38.97 12.62 96.78 97.12 26.59 93.47 2.67

1 XGB 99.84 99.97 99.09 99.46 99.97 99.99 99.99 100.00 0.06

1 MLF 55.52 100.00 100.00 67.65 98.62 98.60 99.95 100.00 0.83

1 IT 99.57 99.99 99.73 99.65 99.98 99.99 99.99 100.00 0.07

1 ResNet 77.49 100.00 100.00 84.17 99.30 99.29 100.00 100.00 0.43

1 LSTMA 100.00 99.99 99.79 99.89 99.99 100.00 100.00 100.00 0.01

2 LR 6.79 99.88 39.59 11.49 98.85 98.97 21.15 95.76 0.99

2 XGB 91.70 99.96 96.51 94.04 99.87 99.91 98.71 99.98 0.16

2 MLF 94.12 99.99 98.91 96.45 99.92 99.93 99.40 99.99 0.06
2 IT 97.89 99.46 70.49 80.79 99.44 99.98 98.68 99.95 0.42

2 ResNet 94.42 99.97 97.77 95.95 99.91 99.94 99.70 99.99 0.08

2 LSTMA 94.72 97.90 68.36 71.24 97.86 99.94 75.01 99.47 1.81

3 LR 19.40 99.51 50.36 28.00 97.51 97.97 44.87 98.17 1.83

3 XGB 89.53 99.94 97.46 93.33 99.68 99.73 98.15 99.92 0.31

3 MLF 95.20 99.97 98.91 97.00 99.85 99.88 99.21 99.84 0.16

3 IT 99.20 99.97 99.01 99.10 99.96 99.98 99.80 99.97 0.04
3 ResNet 98.73 99.97 99.00 98.86 99.94 99.97 99.67 99.99 0.06

3 LSTMA 98.93 4.54 2.59 5.05 6.90 99.40 59.82 97.54 25.05
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Figure S6. Predictive performance of models for each of the four LCPs (Period, Repeats, Order and Timing). Model
performance, measured by AUC scores, shown for each of the three patterns that fall within each LCP. All the AUC scores that
resulted in each of the three different seeds used to control model training and hyperparameter optimisation are shown. Boxes
show the interquartile range, midpoints depict the median values and whiskers show the minimum and maximum values
excluding outliers. LR = logistic regression, XGB = XGBoost, MLF = MLSTM-FCN, IT = InceptionTime, LSTMA =
LSTMAttention.
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Figure S7. SHAP Beeswarm Plots for LCP Period3. The top panel illustrates SHAP values marginalised over time for each
feature, grouped by model, with features ordered by mean absolute SHAP values. The bottom panel visualises SHAP values
marginalised over features for each age, also grouped by model. Feature values are colour-coded, ranging from low ("Low") to
high ("High"). LR = logistic regression, XGB = XGBoost, MLF = MLSTM-FCN, IT = InceptionTime, LSTMA =
LSTMAttention.
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Figure S8. SHAP Comparison for Individuals for LCP Timing1. This figure compares SHAP values for two individuals,
one positive for the outcome of interest and one negative. The top row includes individual feature heatmaps and SHAP values
marginalised over features. The bottom two rows depict the individual-level SHAP values marginalised over time for each
individual split by model. SHAP values are shown on a consistent scale across all plots, with colour gradients indicating
magnitude and direction (blue to red). LR = logistic regression, XGB = XGBoost, MLF = MLSTM-FCN, IT = InceptionTime,
LSTMA = LSTMAttention.
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Figure S9. SHAP Comparison for Individuals for LCP Order3. This figure compares SHAP values for two individuals,
one positive for the outcome of interest and one negative. The top row includes individual feature heatmaps and SHAP values
marginalised over features. The bottom two rows depict the individual-level SHAP values marginalised over time for each
individual split by model. SHAP values are shown on a consistent scale across all plots, with colour gradients indicating
magnitude and direction (blue to red). LR = logistic regression, XGB = XGBoost, MLF = MLSTM-FCN, IT = InceptionTime,
LSTMA = LSTMAttention.
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