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Climate Data  30 

 31 

The climate data presented in Figs. S1 and S2 is from the Chokurdakh weather station (WMO 32 

21946) at 30 km distance from the study sites. We retrieved climate data (daily temperature 33 

and precipitation) for the station for the study period from http://www.pogodaiklimat.ru 34 

(accessed 28 November 2022 17:00 CET) and then aggregated the variables to monthly and 35 

annual measures (mean temperature, precipitation sum). In addition, we calculated summary 36 

statistics (mean temperature, precipitation sum) for each year based on the following 37 

hydrological seasons. Autumn of the previous year: September, October and November of the 38 

preceding year (snow fall). Winter: December of the preceding year, as well as January and 39 

February of the current year. Spring: March, April and May of the current year. Summer: June, 40 

July and August of the current year.  41 

http://www.pogodaiklimat.ru/
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   42 

Determination of site boundaries 43 

 44 

We determined the exact boundaries for each site based on the minimum shared extent of the 45 

drone imagery available for all surveys above each site location. We reduced this minimum 46 

shared extent by a further buffer of 50 m (“high” and “med”) and 60 m (“low) to ensure the 47 

resulting cropped area had a consistent overlap of at least five individual drone images 48 

throughout the area. This allowed us to avoid edge effects and artefacts in the final drone 49 

mosaics and digital surface models generated by low image density. Corner point coordinates 50 

of the resulting site boundaries are provided in Table S1.  51 

 52 

Geolocation and accuracy assessment 53 

 54 

We followed the procedure for time-series alignment in the absence of ground control points 55 

recommended by the software manufacturer Pix4D (https://support.pix4d.com/hc/en-56 

us/articles/204373409, last accessed 12 July 2024). As such we designated the 2021 survey 57 

for each site as the reference project as high-precision dGNSS geolocation was available for 58 

these. We then co-aligned all preceding years using a minimum of five manual tie-points in 59 

Pix4D.  60 

 61 

To assess the accuracy of our alignments, we exported the RGB mosaics from Pix4D at their 62 

native resolution (see Table S2) and marked an additional five control points in each mosaic. 63 

We then calculated the absolute distance of each control point to their corresponding 64 

reference point in the 2021 mosaic. The mean distance for all control points to their 65 

corresponding reference point did not exceed 48 cm in any survey (Fig. S6). This distance is 66 

equivalent to three-times the ground sampling distance of the aggregated products (12 cm) 67 

used in the subsequent analysis. We believe that this represents a realistically achievable 68 

accuracy given the constraints of our methods and data quality of the early drone surveys.   69 

 70 

Training annotations & accuracy assessment 71 

 72 

We generated the manual annotations based on the RGB drone imagery in QGIS v. 3.36.2 73 

(QGIS Development Team 2024). We started using a systematic approach, and then added 74 

additional training annotations in areas where the classification by thresholding performed 75 

badly, optimising the classifier iteratively. To this end, we first placed a regular grid (50 m x 50 76 

m cells) over the area of interest of each site (origin = centre point) and then selected 6 random 77 

cells from the grid. In these cells we annotated one whole pond (class “water”) and one area 78 

containing other surfaces (class “other”) of varying sizes. Sometimes these randomly chosen 79 

cells did not contain any ponds. In such cases, we still annotated a polygon in the “other” class 80 

in this cell and then sampled another cell at random where we annotated both “water” and 81 

“other”. Finally, we iteratively added additional polygons in areas where the classifier 82 

performed badly following visual inspection.  83 

 84 

The resulting site- and year-specific training datasets were not balanced between the two 85 

surface cover classes (“water” and “other”), neither in terms of polygons per class, nor in terms 86 

https://support.pix4d.com/hc/en-us/articles/204373409
https://support.pix4d.com/hc/en-us/articles/204373409
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of the number of pixels per class (Table S3). Despite the unbalanced sample, we decided to 87 

determine the optimal BCC threshold for each site-year combination based on the overall 88 

accuracy of predictions using all annotated pixels (Table S4) rather than, for example, 89 

maximising sensitivity and specificity, as this approach yielded the best results based on visual 90 

inspection of the resulting surface water maps. To allow for a meaningful comparison of the 91 

classification accuracies amongst the site-year combinations, we further obtained a 92 

standardised random subsample of 10000 pixels per class for each site-year combination. We 93 

then split this sample into 8 random groups of 1250 pixels per class - the approximate number 94 

of pixels in an average-sized pond - and carried out a “leave-one-out” accuracy assessment 95 

to test for the robustness of the accuracy estimates in respect to the sample. Here, we 96 

calculated the mean accuracy, sensitivity and specificity of the surface water classifications 97 

for all possible combinations of seven groups while withholding one group. The results of this 98 

analysis indicate a very good performance of the classifications, exceeding 90% in all cases, 99 

except for the two 2018 surveys for the high and medium sites, which had an accuracy of 87% 100 

(Table S4).  101 

 102 

Surface water trend and climate analysis  103 

 104 

We tested for trends in the surface water for each site using ordinary least squares regression 105 

(OLS). We conducted these analyses in R, fitting the simple linear models using  the lm() 106 

function. For each time-series, we fitted a model with the calendar year as predictor and the 107 

surface water proportion as the response variable. As OLS can be highly sensitive to outliers 108 

we also fitted the same models excluding the surface water proportions from 2017. Based on 109 

the initial visual assessments of the data, we did not suspect any trends to be present in the 110 

time-series. However, as surface water trends are commonly reported in the literature, we 111 

believe that this is part of the analysis and might nonetheless be of interest to the reader. 112 

Estimated model coefficients are shown in Table S6, S7, S8, S9, S10 and S11. 113 

 114 

To test for potential climatic drivers of landscape surface water area, we calculated the 115 

correlation coefficients (Pearson's r) between the surface water area and the seasonal climatic 116 

variables derived from the climate data (see section “Climate Data” above). We did not detect 117 

any significant correlations (Table S12). However, the time-series are very short and contain 118 

very few observations. We therefore urge the reader to take caution when interpreting the 119 

resulting correlation coefficients and associated p-values.  120 

 121 
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Tables 126 

 127 

Table S1: Coordinates for the corner points of the three study sites (CRS: EPSG 4326).  128 

 129 

Site Corner Point Latitude Longitude 

high 

Point 1 70.8305 147.4711 

Point 2 70.8340 147.4712 

Point 3 70.8340 147.4848 

Point 4 70.8304 147.4847 

med 

Point 1 70.8314 147.4888 

Point 2 70.8357 147.4889 

Point 3 70.8357 147.5014 

Point 4 70.8314 147.5012 

low 

Point 1 70.8274 147.4573 

Point 2 70.8294 147.4574 

Point 3 70.8313 147.4637 

Point 4 70.8313 147.4680 

Point 5 70.8294 147.4705 

Point 6 70.8274 147.4675 

 130 

(section continued on next page)131 
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Table S2: Meta data for the drone surveys. Columns indicate the study site, name of processed mosaic (cbh = cloudberry hill site, tlb = drained thaw lake bed site, rdg = ridge 

site), associated flights dates and take-off times, drone and sensor types, geolocation methods, average ground sampling distance (GSD) in the point cloud (in cm), whether 

image normalisation was applied during pre-processing, as well as weather conditions (where known). 

   

Site Mosaic ID Flight Date(s) Take Off Drone Sensor Geolocation GSD (cm) 
Image Pre-

Processing 
Weather 

high 

cbh_2014 2014-08-10 12:40 eBee Classic SenseFly S110 RGB Ordinary GPS 4.36 - Unknown. 

cbh_2016 

2016-08-12 17:06 

eBee Classic SenseFly S110 RGB Ordinary GPS 3.02 Yes 

No clouds 

2016-08-12 17:35 Partially cloudy. 

2016-08-18 10:36 Broken cloud, gusty, light winds. 

2016-08-18 11:12 Cloudy, light winds with gusts. 

cbh_2017 2017-07-16 18:00 eBee Classic SenseFly S110 RGB Ordinary GPS 4.14 - Overcast, variable, broken cloud, wind 5.1-6.2 m/s. 

cbh_2018 2018-07-20 09:30 eBee Classic SenseFly S110 RGB Ordinary GPS 2.99 - 
Cloud cover, cirrus, sometimes direct sun, strong winds at take 

off (8.7-9.2 m/s). 

cbh_2019 2019-07-12 12:08 eBee Classic SenseFly S110 RGB Ordinary GPS 3.77 - Very light cirrus cover / haze, low sun. 

cbh_2019_b 2019-07-23 10:04 eBee Classic SODA Ordinary GPS 2.53 - Unknown. 

cbh_2020 2020-07-24 18:10 eBee X SODA PPK 2.46 - 
Obscured sun (haze/smoke from fires), light shadows wind 3 

m/s. 

cbh_2021 2021-07-19 14:44 eBee X SODA PPK 1.82 - Very little/no clouds wind 2.5 m/s. 

med 

tlb_2014 2014-07-21 16:15 eBee Classic SenseFly S110 RGB Ordinary GPS 3.98 - 
Overcast, low cloud with some breaks, but appears to be 

steady over site. 

tlb_2016 
2016-08-12 17:06 

eBee Classic SenseFly S110 RGB Ordinary GPS 3.02 
- No clouds. 

2016-08-18 11:12 - Broken cloud. 

tlb_2017 2017-07-13 16:05 eBee Classic SenseFly S110 RGB Ordinary GPS 3.54 - Overcast, sun sometimes obscured, wind 7.8-8.3 m/s. 

tlb_2018 2018-07-16 16:07 eBee Classic SenseFly S110 RGB Ordinary GPS 3.03 - Overcast, wind 4.7 m/s, gusts 7.1 m/s. 

tlb_2019_a 2019-07-11 NA eBee Classic SenseFly S110 RGB Ordinary GPS 3.77 - Unknown. 

tlb_2019_b 2019-07-17 NA eBee Classic SenseFly S110 RGB Ordinary GPS 3.38 - Overcast, broken clouds. 

tlb_2019_c 2019-07-23 NA eBee Classic SODA Ordinary GPS 2.53 - Overcast, broken clouds. 

tlb_2020 2020-07-24 17:25 eBee X SODA PPK 2.45 - Clear Sky above working area, Wind 3.5 m/s. 

tlb_2021 2021-07-19 13:53 eBee X SODA PPK 2.00 - Unknown. 

low 

rdg_2014 2014-07-23 17:15 eBee Classic SenseFly S110 RGB Ordinary GPS 4.15 - Clear sky, otherwise unknown. 

rdg_2017_b 2017-07-16 NA eBee Classic SenseFly S110 RGB Ordinary GPS 3.13 Yes Mostly cloudy, but some sunny spots in between. 

rdg_2018 
2018-07-15 13:50 

eBee Classic SenseFly S110 RGB Ordinary GPS 2.59 Yes Unknown. 
2018-07-15 14:50 

rdg_2019_a 2019-07-12 NA eBee Classic SenseFly S110 RGB Ordinary GPS 3.37 - Light cloud, cirrus, inferred from accompanying photographs. 

rdg_2020 2020-07-24 16:20 eBee X SODA PPK 2.22 - 
Obscured sun (haze/smoke from fires), light shadows wind 2 

m/s. 

rdg_2021 2021-07-19 15:40 eBee X SODA PPK 2.04 - 
No clouds, some wind (around 3 m/s ? - based on other flights 

from same day). 
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Table S3:  Overview of the training annotations, for each site-year combination (Mosaic ID), including 

the number of annotated polygons in each class (“other” and “water”) and the number of pixels in all 

polygons combined.  

 

Site Mosaic ID 
Number of polygons  Number of pixels 

other water  other water 

high 

cbh_2014 25 17  244909 47958 

cbh_2016 10  9  137182 30952 

cbh_2017  6  9    63151 61465 

cbh_2018 10  8  197400 22509 

cbh_2019  7  7  172343 30762 

cbh_2019_b  9  7  147093 13077 

cbh_2020  6  6    90717 12944 

cbh_2021  7  7  159549 24018 

medium 

 

tlb_2014  6  7    86887 22983 

tlb_2016  6  7  146462 12715 

tlb_2017  6  6    97944 27373 

tlb_2018  8  6  122126 10428 

tlb_2019_a 10  8  203771 16344 

tlb_2019_b  7  7  128885 26310 

tlb_2019_c  6  5  101922 23957 

tlb_2020  6  6    72247 19986 

tlb_2021  7  6  201113 16151 

low 

rdg_2014  6  -  598757 - 

rdg_2017_b  6  1  522567   1160 

rdg_2018  6  -  645656 - 

rdg_2019_a  6  -  464478 - 

rdg_2020  6  -  307134 - 

rdg_2021  6   -  503990 - 
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Table S4: Classification thresholds for the surface water detection and associated accuracy, sensitivity 

and specificity values based on the annotated training data for each RGB drone mosaic. A blue 

chromatic coordinate (BCC) threshold of 1.00 indicates that no water was present in the drone mosaic, 

for these mosaics accuracy information is not available (NA). Accuracy, sensitivity and specificity values 

are given twice, once for all training pixels available (not balanced between classes) and for a 

standardised sample of 10000 pixels per class. The latter sample was further split into 8 groups and 

accuracy, sensitivity and specificity were determined as the mean values using leave-one-out validation 

on the 8 groups. For further details, see section “Training annotations & accuracy assessment” above.   
 

Site Mosaic ID 
BCC 

threshold 

Accuracy 

(all) 

Sensitivity 

(all) 

Specificity 

(all) 

Mean 

Accuracy 

(sample) 

Std. Err. 

Accuracy 

(sample) 

Mean 

Sensitivity 

(sample) 

Mean 

Specificity 

(sample) 

high 

cbh_2014 0.38 0.98 0.90 1.00 0.95 0.00010 0.89 1.00 

cbh_2016 0.39 0.96 0.91 0.97 0.94 0.00008 0.90 0.97 

cbh_2017 0.34 0.98 0.97 1.00 0.98 0.00003 0.97 1.00 

cbh_2018 0.38 0.97 0.75 0.99 0.87 0.00013 0.75 0.99 

cbh_2019 0.41 0.97 0.85 1.00 0.93 0.00003 0.85 1.00 

cbh_2019_b 0.42 0.99 0.88 1.00 0.94 0.00006 0.88 1.00 

cbh_2020 0.40 0.98 0.86 1.00 0.93 0.00010 0.86 1.00 

cbh_2021 0.41 0.96 0.77 0.99 0.88 0.00005 0.77 0.99 

med 

tlb_2014 0.41 0.99 0.97 1.00 0.99 0.00005 0.98 1.00 

tlb_2016 0.43 0.99 0.92 0.99 0.96 0.00004 0.92 0.99 

tlb_2017 0.40 0.99 0.98 0.99 0.99 0.00005 0.98 0.99 

tlb_2018 0.41 0.98 0.74 1.00 0.87 0.00011 0.74 1.00 

tlb_2019_a 0.44 0.99 0.91 1.00 0.96 0.00005 0.91 1.00 

tlb_2019_b 0.41 0.98 0.92 0.99 0.96 0.00005 0.92 0.99 

tlb_2019_c 0.40 0.99 0.95 1.00 0.97 0.00007 0.95 1.00 

tlb_2020 0.42 0.99 0.97 1.00 0.98 0.00003 0.97 1.00 

tlb_2021 0.40 1.00 0.97 1.00 0.98 0.00002 0.97 1.00 

low 

rdg_2014 1.00 - - - - - - - 

rdg_2017_b 0.36 1.00 0.97 1.00 - - - - 

rdg_2018 1.00 - - - - - - - 

rdg_2019_a 1.00 - - - - - - - 

rdg_2020 1.00 - - - - - - - 

rdg_2021 1.00 - - - - - - - 
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Table S5: Surface water area (m2) and surface water proportion (%) for each classified drone mosaic.  

 

Site Mosaic ID Calendar Year Surface Water Area (m2) Surface Water Proportion (%) 

high 

cbh_2014 2014 7746   4 

cbh_2016 2016 4498   2 

cbh_2017 2017 36644 19 

cbh_2018 2018 8106   4 

cbh_2019 2019 2820   1 

cbh_2019_b 2019 3203   2 

cbh_2020 2020 4079   2 

cbh_2021 2021 3769   2 

med 

tlb_2014 2014 1682   1 

tlb_2016 2016 1080   0 

tlb_2017 2017 7204   3 

tlb_2018 2018 1864   1 

tlb_2019_a 2019 998   0 

tlb_2019_b 2019 1573   1 

tlb_2019_c 2019 1334   1 

tlb_2020 2020 1159   1 

tlb_2021 2021 1060   0 

low 

rdg_2014 2014         0   0 

rdg_2017_b 2017       19   0 

rdg_2018 2018         0   0 

rdg_2019_a 2019         0   0 

rdg_2020 2020         0   0 

rdg_2021 2021         0   0 
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Table S6: We found no significant trend in the surface water proportion time-series of the high site 

including all surveyed years between 2014 and 2021. The table shows the statistics for the model 

coefficients (intercept and year predictor).  

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept 14.558 20.118  0.724 0.497 

Year  -0.007   0.010 -0.721 0.498 

 

 

Table S7: We found no significant trend in the surface water proportion (%) time-series of the medium 

site including all surveyed years between 2014 and 2021. The table shows the statistics for the OLS 

model intercept and year predictor of the time-series. 

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept  2.202 3.133  0.703 0.505 

Year -0.001 0.002 -0.700 0.507 

 

Table S8: We found no significant trend in the surface water proportion (%) time-series of the low site 

including all surveyed years between 2014 and 2021. The table shows the statistics for the OLS model 

intercept and year predictor of the time-series. 

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept 0.009 0.018  0.474 0.660 

Year 0.000 0.000 -0.473 0.661 

 

 

 

Table S9: We found no significant trend in the surface water proportion (%) time-series of the high site 

including all surveyed years between 2014 and 2021, except the outlier year 2017. The table shows 

the statistics for the OLS model intercept and year predictor of the time-series. 

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept   5.706 3.184  1.792 0.133 

Year  -0.003 0.002 -1.785 0.134 

 

Table S10: We found no significant trend in the surface water proportion time-series of the medium 

site including all surveyed years between 2014 and 2021, except the outlier year 2017. The table 

shows the statistics for the OLS model intercept and year predictor of the time-series. 

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept 0.577 0.498  1.159 0.291 

Year 0.000 0.000 -1.146 0.295 

 

Table S11: We found no significant trend in the surface water proportion (%) time-series of the low site 

including all surveyed years between 2014 and 2021, except the outlier year 2017. The table shows 

the statistics for the OLS model intercept and year predictor of the time-series.  

 

Term Parameter Estimate Std.error t-Statistic p.value 

Intercept 0.009 0.018 0.474 0.660 

Year 0.000 0.000 -0.473 0.661 
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Table S12: Correlations (Pearson’s r) between the water area and climate variables were not significant 

for all climate variable and site combinations tested. Climate variables are named as follows: 

“temp_*_mean” indicates mean temperatures across a season  (*), “precip_*_sum” indicate 

precipitation sums across a season (*). Seasons are indicated by the  respective initial letters of the 

months included. Winter and autumn included months from the preceding years - See Supplementary 

Methods - Climate Data for details. In addition to the seasonal variables, we also tested the mean 

temperature and precipitation sums of the calendar year (“annual”). We did not test correlations for the 

low site, as water was only detected there in 2017.  

 

Site Climate Variable Pearson’s r p-value 

high 

temp_jja_mean -0.72 0.068 

precip_son_sum 0.56 0.187 

temp_son_mean 0.46 0.302 

temp_mam_mean 0.44 0.322 

precip_jja_sum -0.41 0.363 

precip_dfj_sum 0.34 0.462 

precip_mam_sum 0.13 0.783 

precip_annual_sum -0.12 0.794 

temp_annual_mean 0.07 0.877 

temp_djf_mean 0.06 0.893 

medium 

temp_jja_mean -0.7 0.081 

precip_son_sum 0.51 0.239 

temp_son_mean 0.49 0.267 

temp_mam_mean 0.47 0.282 

precip_jja_sum -0.38 0.395 

precip_dfj_sum 0.28 0.540 

precip_annual_sum -0.16 0.739 

precip_mam_sum 0.08 0.864 

temp_annual_mean 0.07 0.881 

temp_djf_mean 0.02 0.972 
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Figures 

 
Figure S1: The variation in mean summer temperature (June-August - red line) and cumulative 

precipitation in autumn of the previous year (September-November - blue bars) for the time-period of 

our study (2014-2021). Data from the Chokurdakh Weather Station, 30 km distance from our study 

sites for the time-period 1956-2021 (source: http://www.pogodaiklimat.ru/). See Supplementary 

Methods - Climate Data for further details.  

 

 

 

http://www.pogodaiklimat.ru/weather.php
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Figure S2: The variation in mean summer temperature (June-August - red line) and cumulative 

precipitation in autumn of the previous year (September-November - blue bars) during the time-period 

of our study (2014-2021) do not appear to be unusual compared to previous decades. Data from the 

Chokurdakh Weather Station, 30 km distance from our study sites for the time-period 1956-2021 

(source: http://www.pogodaiklimat.ru/). See Supplementary Methods - Climate Data for further details.  

 

http://www.pogodaiklimat.ru/weather.php
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Figure S3: Ponds were short-lived and strongly fluctuated in size independent on the study 

site. The majority of ponds occurred for less than six years in the time-series (a) and individual ponds 

showed a high variability in their surface area across the time-series (b), the results were similar 

between the time-series of the two sites (medium = light blue, high = pink). Histograms of the 

detected pond-presence in each time-series (a). Here, the dark blue lines and annotations indicate 

the proportional split between those ponds present less than six years and those present 

“continuously” for six or more years (allowing for one year of failed detection). Histograms of the 

coefficient of variation (CV) for the pond area across each time-series are shown in (b). CV values for 

each pond time series were calculated excluding the extreme outlier year 2017. Here, the dark blue 

lines and annotations indicate the mean CV value of all ponds at the given site. In (a) and (b), we only 

show pond-time series where the pond occurred in more than three years (our threshold of detection), 

as no ponds fulfilled that condition at the “low” site, no data is shown for this site. 
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Figure S4: Thermokarst as a driver of pond change was proportionally more common at the 

medium site (light blue) than at the high site (pink). Histograms for the surface mean drop in 

surface elevation across to the land area lost (2014 vs 2021) for all pond time-series at the given 

study site. See also Fig. 3 in the main manuscript.  

 

 
Figure S5: Vegetation colonisation as a driver of pond change was proportionally more 

common at the medium site (light blue) than at the high site (pink). Histograms of the mean gain 

in surface elevation across the land area gained (2014 vs 2021) for all pond time-series. See also Fig. 

4 in the main manuscript.  
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Figure S6: Mean geolocation accuracies of the final drone mosaics relative to the 2021 reference 

mosaic within each time-series do not exceed 46 cm (three times the raster resolution of 12 cm). 

Panels show the mean (points) as well as minimum and maximum (error bars) distances of five 

independent control points in each mosaic relative to their counterparts in the 2021 reference mosaic 

of the respective time-series. See also the “Geolocation” section in the Supplementary Methods 

above.  
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Figure S7: Schematic of the diagrams for the detection of the drivers of pond change. a) For the 

thermokarst detection, we calculated the mean drop in surface elevation (volume change) across the 

pond area gained (i.e., pond expansion - shown in hatched red) between 2014 and 2021. b) For the 

vegetation colonisation detection, we calculated the mean gain in surface elevation  (volume change) 

across the pond area lost (i.e., pond shrinking - shown in hatched green) between 2014 and 2021.  


