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Methods

Climate Data

The climate data presented in Figs. S1 and S2 is from the Chokurdakh weather station (WMO
21946) at 30 km distance from the study sites. We retrieved climate data (daily temperature
and precipitation) for the station for the study period from http://www.pogodaiklimat.ru
(accessed 28 November 2022 17:00 CET) and then aggregated the variables to monthly and
annual measures (mean temperature, precipitation sum). In addition, we calculated summary
statistics (mean temperature, precipitation sum) for each year based on the following
hydrological seasons. Autumn of the previous year: September, October and November of the
preceding year (snow fall). Winter: December of the preceding year, as well as January and
February of the current year. Spring: March, April and May of the current year. Summer: June,
July and August of the current year.
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Determination of site boundaries

We determined the exact boundaries for each site based on the minimum shared extent of the
drone imagery available for all surveys above each site location. We reduced this minimum
shared extent by a further buffer of 50 m (“high” and “med”) and 60 m (“low) to ensure the
resulting cropped area had a consistent overlap of at least five individual drone images
throughout the area. This allowed us to avoid edge effects and artefacts in the final drone
mosaics and digital surface models generated by low image density. Corner point coordinates
of the resulting site boundaries are provided in Table S1.

Geolocation and accuracy assessment

We followed the procedure for time-series alignment in the absence of ground control points
recommended by the software manufacturer Pix4D (https://support.pix4d.com/hc/en-
us/articles/204373409, last accessed 12 July 2024). As such we designated the 2021 survey
for each site as the reference project as high-precision dGNSS geolocation was available for
these. We then co-aligned all preceding years using a minimum of five manual tie-points in
Pix4D.

To assess the accuracy of our alignments, we exported the RGB mosaics from Pix4D at their
native resolution (see Table S2) and marked an additional five control points in each mosaic.
We then calculated the absolute distance of each control point to their corresponding
reference point in the 2021 mosaic. The mean distance for all control points to their
corresponding reference point did not exceed 48 cm in any survey (Fig. S6). This distance is
equivalent to three-times the ground sampling distance of the aggregated products (12 cm)
used in the subsequent analysis. We believe that this represents a realistically achievable
accuracy given the constraints of our methods and data quality of the early drone surveys.

Training annotations & accuracy assessment

We generated the manual annotations based on the RGB drone imagery in QGIS v. 3.36.2
(QGIS Development Team 2024). We started using a systematic approach, and then added
additional training annotations in areas where the classification by thresholding performed
badly, optimising the classifier iteratively. To this end, we first placed a regular grid (50 m x 50
m cells) over the area of interest of each site (origin = centre point) and then selected 6 random
cells from the grid. In these cells we annotated one whole pond (class “water”) and one area
containing other surfaces (class “other”) of varying sizes. Sometimes these randomly chosen
cells did not contain any ponds. In such cases, we still annotated a polygon in the “other” class
in this cell and then sampled another cell at random where we annotated both “water” and
“other”. Finally, we iteratively added additional polygons in areas where the classifier
performed badly following visual inspection.

The resulting site- and year-specific training datasets were not balanced between the two
surface cover classes (“water” and “other”), neither in terms of polygons per class, nor in terms
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of the number of pixels per class (Table S3). Despite the unbalanced sample, we decided to
determine the optimal BCC threshold for each site-year combination based on the overall
accuracy of predictions using all annotated pixels (Table S4) rather than, for example,
maximising sensitivity and specificity, as this approach yielded the best results based on visual
inspection of the resulting surface water maps. To allow for a meaningful comparison of the
classification accuracies amongst the site-year combinations, we further obtained a
standardised random subsample of 10000 pixels per class for each site-year combination. We
then split this sample into 8 random groups of 1250 pixels per class - the approximate number
of pixels in an average-sized pond - and carried out a “leave-one-out” accuracy assessment
to test for the robustness of the accuracy estimates in respect to the sample. Here, we
calculated the mean accuracy, sensitivity and specificity of the surface water classifications
for all possible combinations of seven groups while withholding one group. The results of this
analysis indicate a very good performance of the classifications, exceeding 90% in all cases,
except for the two 2018 surveys for the high and medium sites, which had an accuracy of 87%
(Table S4).

Surface water trend and climate analysis

We tested for trends in the surface water for each site using ordinary least squares regression
(OLS). We conducted these analyses in R, fitting the simple linear models using the Im()
function. For each time-series, we fitted a model with the calendar year as predictor and the
surface water proportion as the response variable. As OLS can be highly sensitive to outliers
we also fitted the same models excluding the surface water proportions from 2017. Based on
the initial visual assessments of the data, we did not suspect any trends to be present in the
time-series. However, as surface water trends are commonly reported in the literature, we
believe that this is part of the analysis and might nonetheless be of interest to the reader.
Estimated model coefficients are shown in Table S6, S7, S8, S9, S10 and S11.

To test for potential climatic drivers of landscape surface water area, we calculated the
correlation coefficients (Pearson's r) between the surface water area and the seasonal climatic
variables derived from the climate data (see section “Climate Data” above). We did not detect
any significant correlations (Table S12). However, the time-series are very short and contain
very few observations. We therefore urge the reader to take caution when interpreting the
resulting correlation coefficients and associated p-values.

References
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126  Tables

127
128 Table S1: Coordinates for the corner points of the three study sites (CRS: EPSG 4326).
129

Site Corner Point Latitude Longitude
Point 1 70.8305 147.4711

high Point 2 70.8340 147.4712
9 Point 3 70.8340  147.4848
Point 4 70.8304 147.4847

Point 1 70.8314 147.4888

med Po?nt 2 70.8357 147.4889
Point 3 70.8357 147.5014

Point 4 70.8314 147.5012

Point 1 70.8274 147.4573

Point 2 70.8294 147.4574

low Po?nt 3 70.8313 147.4637
Point 4 70.8313 147.4680

Point 5 70.8294 147.4705

Point 6 70.8274 147.4675

130
131  (section continued on next page)



Table S2: Meta data for the drone surveys. Columns indicate the study site, name of processed mosaic (cbh = cloudberry hill site, tlb = drained thaw lake bed site, rdg = ridge
site), associated flights dates and take-off times, drone and sensor types, geolocation methods, average ground sampling distance (GSD) in the point cloud (in cm), whether
image normalisation was applied during pre-processing, as well as weather conditions (where known).

Image Pre-

Site Mosaic ID Flight Date(s) Take Off Drone Sensor Geolocation GSD (cm) . Weather
Processing
cbh_2014 2014-08-10 12:40 eBee Classic SenseFly S110 RGB  Ordinary GPS 4.36 - Unknown.
2016-08-12 17:06 No clouds
2016-08-12 17:35 . . Partially cloudy.
cbh_2016 eBee Classic SenseFly S110 RGB  Ordinary GPS 3.02 Yes . .
- 2016-08-18 10:36 Broken cloud, gusty, light winds.
2016-08-18 11:12 Cloudy, light winds with gusts.
cbh_2017 2017-07-16 18:00 eBee Classic SenseFly S110 RGB Ordinary GPS 4.14 - Overcast, variable, broken cloud, wind 5.1-6.2 m/s.
high . . . )
cbh_2018 2018-07-20  09:30 eBee Classic SenseFly S110 RGB Ordinary GPS 2.99 - Cloud cover, cirrus, sometimes direct sun, strong winds at take
off (8.7-9.2 m/s).
cbh_2019 2019-07-12 12:08 eBee Classic SenseFly S110 RGB  Ordinary GPS 3.77 - Very light cirrus cover / haze, low sun.
cbh_2019 b 2019-07-23 10:04 eBee Classic SODA Ordinary GPS 2.53 - Unknown.
cbh_2020 2020-07-24 1810 eBee X SODA PPK 246 i 25)550ured sun (haze/smoke from fires), light shadows wind 3
cbh_2021 2021-07-19 14:44 eBee X SODA PPK 1.82 - Very little/no clouds wind 2.5 m/s.
tib_2014 2014-07-21  16:15 eBee Classic SenseFly S110 RGB Ordinary GPS 3.98 - Overcast, low cloud with some breaks, but appears to be
steady over site.
2016-08-12 17:06 ) ) - No clouds.
tlb_2016 eBee Classic SenseFly S110 RGB  Ordinary GPS 3.02
- 2016-08-18 11:12 - Broken cloud.
tlb_2017 2017-07-13 16:05 eBee Classic SenseFly S110 RGB Ordinary GPS 3.54 - Overcast, sun sometimes obscured, wind 7.8-8.3 m/s.
med tlb_2018 2018-07-16 16:07 eBee Classic SenseFly S110 RGB Ordinary GPS 3.03 - Overcast, wind 4.7 m/s, gusts 7.1 m/s.
tlb_2019 a 2019-07-11 NA  eBee Classic SenseFly S110 RGB Ordinary GPS 3.77 - Unknown.
tlb_2019 b 2019-07-17 NA  eBee Classic SenseFly S110 RGB Ordinary GPS 3.38 - Overcast, broken clouds.
tlb_2019 c 2019-07-23 NA  eBee Classic SODA Ordinary GPS 2.53 - Overcast, broken clouds.
tlb_2020 2020-07-24 17:25 eBee X SODA PPK 2.45 - Clear Sky above working area, Wind 3.5 m/s.
tlb_2021 2021-07-19 13:53 eBee X SODA PPK 2.00 - Unknown.
rdg_2014 2014-07-23 17:15 eBee Classic SenseFly S110 RGB  Ordinary GPS 4.15 - Clear sky, otherwise unknown.
rdg_2017 b 2017-07-16 NA  eBee Classic SenseFly S110 RGB Ordinary GPS 3.13 Yes Mostly cloudy, but some sunny spots in between.
2018-07-15 13:50 ) )
rdg_2018 eBee Classic SenseFly S110 RGB  Ordinary GPS 2.59 Yes Unknown.
2018-07-15 14:50
low rdg_2019 a 2019-07-12 NA  eBee Classic SenseFly S110 RGB Ordinary GPS 3.37 - Light cloud, cirrus, inferred from accompanying photographs.
rdg_2020 2020-07-24 16:20 eBee X SODA PPK 292 ) 25)55cured sun (haze/smoke from fires), light shadows wind 2
. 7 _ 1
rdg_2021 2021-07-19 1540 eBee X SODA PPK 204 ) No clouds, some wind (around 3 m/s ? - based on other flights

from same day).




Table S3: Overview of the training annotations, for each site-year combination (Mosaic ID), including
the number of annotated polygons in each class (“other” and “water”) and the number of pixels in all
polygons combined.

Number of polygons Number of pixels
Site Mosaic ID
other water other water
cbh_2014 25 17 244909 47958
cbh_2016 10 9 137182 30952
cbh_2017 6 9 63151 61465
high cbh_2018 10 8 197400 22509
cbh_2019 7 7 172343 30762
cbh_2019 b 9 7 147093 13077
cbh_2020 6 6 90717 12944
cbh_2021 7 7 159549 24018
tlb_2014 6 7 86887 22983
tlb_2016 6 7 146462 12715
tlb_2017 6 6 97944 27373
medium tlb_2018 8 6 122126 10428
tlb_2019 a 10 8 203771 16344
tib_2019 b 7 7 128885 26310
tib_2019 ¢ 6 5 101922 23957
tlb_2020 6 6 72247 19986
tlb_2021 7 6 201113 16151
rdg_2014 6 - 598757 -
rdg_2017 b 6 1 522567 1160
low rdg_2018 6 645656 -
rdg_2019 a 6 - 464478 -
rdg_2020 6 - 307134 -
rdg_2021 6 - 503990 -




Table S4: Classification thresholds for the surface water detection and associated accuracy, sensitivity
and specificity values based on the annotated training data for each RGB drone mosaic. A blue
chromatic coordinate (BCC) threshold of 1.00 indicates that no water was present in the drone mosaic,
for these mosaics accuracy information is not available (NA). Accuracy, sensitivity and specificity values
are given twice, once for all training pixels available (not balanced between classes) and for a
standardised sample of 10000 pixels per class. The latter sample was further split into 8 groups and
accuracy, sensitivity and specificity were determined as the mean values using leave-one-out validation
on the 8 groups. For further details, see section “Training annotations & accuracy assessment” above.

Mean Std. Err. Mean Mean

BCC Accuracy  Sensitivity  Specificity Accuracy Accuracy Sensitivity Specificity

Site Mosaic ID

threshold @b (@b @h (sample) (sample) (sample) (sample)
cbh_2014 0.38 0.98 0.90 1.00 0.95 0.00010 0.89 1.00
cbh_2016 0.39 0.96 0.91 0.97 0.94 0.00008 0.90 0.97
cbh_2017 0.34 0.98 0.97 1.00 0.98 0.00003 0.97 1.00
high cbh_2018 0.38 0.97 0.75 0.99 0.87 0.00013 0.75 0.99
cbh_2019 0.41 0.97 0.85 1.00 0.93 0.00003 0.85 1.00
cbh_2019 b 0.42 0.99 0.88 1.00 0.94 0.00006 0.88 1.00
cbh_2020 0.40 0.98 0.86 1.00 0.93 0.00010 0.86 1.00
cbh_2021 0.41 0.96 0.77 0.99 0.88 0.00005 0.77 0.99
tib_2014 0.41 0.99 0.97 1.00 0.99 0.00005 0.98 1.00
tlb_2016 0.43 0.99 0.92 0.99 0.96 0.00004 0.92 0.99
tlb_2017 0.40 0.99 0.98 0.99 0.99 0.00005 0.98 0.99
tlb_2018 0.41 0.98 0.74 1.00 0.87 0.00011 0.74 1.00
med tlb_2019_a 0.44 0.99 0.91 1.00 0.96 0.00005 0.91 1.00
tlb_2019_b 0.41 0.98 0.92 0.99 0.96 0.00005 0.92 0.99
tlb_2019_c 0.40 0.99 0.95 1.00 0.97 0.00007 0.95 1.00
tlb_2020 0.42 0.99 0.97 1.00 0.98 0.00003 0.97 1.00
tlb_2021 0.40 1.00 0.97 1.00 0.98 0.00002 0.97 1.00
rdg_2014 1.00 - - - - - - -
rdg_2017_b 0.36 1.00 0.97 1.00 - - - -
low rdg_2018 1.00 - - - - - - -
rdg_2019_a 1.00 - - - - - - -
rdg_2020 1.00 - - - - - - -
rdg_2021 1.00 - - - - - - -




Table S5: Surface water area (m?) and surface water proportion (%) for each classified drone mosaic.

Site Mosaic ID Calendar Year Surface Water Area (m?) Surface Water Proportion (%)
cbh_2014 2014 7746 4
cbh_2016 2016 4498 2
cbh_2017 2017 36644 19

. cbh_2018 2018 8106 4

high cbh_2019 2019 2820 1
cbh_2019 b 2019 3203 2
cbh_2020 2020 4079 2
cbh_2021 2021 3769 2
tlb_2014 2014 1682 1
tlb_2016 2016 1080 0
tlb_2017 2017 7204 3
tlb_2018 2018 1864 1

med tib_2019_a 2019 998 0
tib_2019_b 2019 1573 1
tlb_2019_c 2019 1334 1
tlb_2020 2020 1159 1
tlb_2021 2021 1060 0
rdg_2014 2014 0 0
rdg_2017_b 2017 19 0

low rdg_2018 2018 0 0
rdg_2019_a 2019 0 0
rdg_2020 2020 0 0
rdg_2021 2021 0 0




Table S6: We found no significant trend in the surface water proportion time-series of the high site
including all surveyed years between 2014 and 2021. The table shows the statistics for the model
coefficients (intercept and year predictor).

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 14.558 20.118 0.724 0.497
Year -0.007 0.010 -0.721 0.498

Table S7: We found no significant trend in the surface water proportion (%) time-series of the medium
site including all surveyed years between 2014 and 2021. The table shows the statistics for the OLS
model intercept and year predictor of the time-series.

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 2.202 3.133 0.703 0.505
Year -0.001 0.002 -0.700 0.507

Table S8: We found no significant trend in the surface water proportion (%) time-series of the low site
including all surveyed years between 2014 and 2021. The table shows the statistics for the OLS model
intercept and year predictor of the time-series.

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 0.009 0.018 0.474 0.660
Year 0.000 0.000 -0.473 0.661

Table S9: We found no significant trend in the surface water proportion (%) time-series of the high site
including all surveyed years between 2014 and 2021, except the outlier year 2017. The table shows
the statistics for the OLS model intercept and year predictor of the time-series.

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 5.706 3.184 1.792 0.133
Year -0.003 0.002 -1.785 0.134

Table S10: We found no significant trend in the surface water proportion time-series of the medium
site including all surveyed years between 2014 and 2021, except the outlier year 2017. The table
shows the statistics for the OLS model intercept and year predictor of the time-series.

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 0.577 0.498 1.159 0.291
Year 0.000 0.000 -1.146 0.295

Table S11: We found no significant trend in the surface water proportion (%) time-series of the low site
including all surveyed years between 2014 and 2021, except the outlier year 2017. The table shows
the statistics for the OLS model intercept and year predictor of the time-series.

Term Parameter Estimate Std.error t-Statistic p.value
Intercept 0.009 0.018 0.474 0.660
Year 0.000 0.000 -0.473 0.661




Table S12: Correlations (Pearson’s r) between the water area and climate variables were not significant
for all climate variable and site combinations tested. Climate variables are named as follows:
“temp_* mean” indicates mean temperatures across a season (*), “precip_*_sum” indicate
precipitation sums across a season (*). Seasons are indicated by the respective initial letters of the
months included. Winter and autumn included months from the preceding years - See Supplementary
Methods - Climate Data for details. In addition to the seasonal variables, we also tested the mean
temperature and precipitation sums of the calendar year (“annual”). We did not test correlations for the
low site, as water was only detected there in 2017.

Site Climate Variable Pearson’sr p-value
temp_jja_mean -0.72 0.068
precip_son_sum 0.56 0.187
temp_son_mean 0.46 0.302
temp_mam_mean 0.44 0.322
high precip_jja_sum -0.41 0.363
precip_dfj_sum 0.34 0.462
precip_mam_sum 0.13 0.783
precip_annual_sum -0.12 0.794
temp_annual_mean 0.07 0.877
temp_djf_mean 0.06 0.893
temp_jja_mean -0.7 0.081
precip_son_sum 0.51 0.239
temp_son_mean 0.49 0.267
temp_mam_mean 0.47 0.282
. precip_jja_sum -0.38 0.395
medium precip_dfj_sum 0.28 0.540
precip_annual_sum -0.16 0.739
precip_mam_sum 0.08 0.864
temp_annual_mean 0.07 0.881
temp_djf_mean 0.02 0.972
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Figure S1: The variation in mean summer temperature (June-August - red line) and cumulative
precipitation in autumn of the previous year (September-November - blue bars) for the time-period of
our study (2014-2021). Data from the Chokurdakh Weather Station, 30 km distance from our study
sites for the time-period 1956-2021 (source: http://www.pogodaiklimat.ru/). See Supplementary
Methods - Climate Data for further details.
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Figure S2: The variation in mean summer temperature (June-August - red line) and cumulative
precipitation in autumn of the previous year (September-November - blue bars) during the time-period
of our study (2014-2021) do not appear to be unusual compared to previous decades. Data from the
Chokurdakh Weather Station, 30 km distance from our study sites for the time-period 1956-2021
(source: http://www.pogodaiklimat.ru/). See Supplementary Methods - Climate Data for further details.
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Figure S3: Ponds were short-lived and strongly fluctuated in size independent on the study
site. The majority of ponds occurred for less than six years in the time-series (a) and individual ponds
showed a high variability in their surface area across the time-series (b), the results were similar
between the time-series of the two sites (medium = light blue, high = pink). Histograms of the
detected pond-presence in each time-series (a). Here, the dark blue lines and annotations indicate
the proportional split between those ponds present less than six years and those present
“continuously” for six or more years (allowing for one year of failed detection). Histograms of the
coefficient of variation (CV) for the pond area across each time-series are shown in (b). CV values for
each pond time series were calculated excluding the extreme outlier year 2017. Here, the dark blue
lines and annotations indicate the mean CV value of all ponds at the given site. In (a) and (b), we only
show pond-time series where the pond occurred in more than three years (our threshold of detection),
as no ponds fulfilled that condition at the “low” site, no data is shown for this site.
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Figure S4: Thermokarst as a driver of pond change was proportionally more common at the
medium site (light blue) than at the high site (pink). Histograms for the surface mean drop in
surface elevation across to the land area lost (2014 vs 2021) for all pond time-series at the given
study site. See also Fig. 3 in the main manuscript.
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Figure S5: Vegetation colonisation as a driver of pond change was proportionally more
common at the medium site (light blue) than at the high site (pink). Histograms of the mean gain
in surface elevation across the land area gained (2014 vs 2021) for all pond time-series. See also Fig.
4 in the main manuscript.
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Figure S6: Mean geolocation accuracies of the final drone mosaics relative to the 2021 reference
mosaic within each time-series do not exceed 46 cm (three times the raster resolution of 12 cm).
Panels show the mean (points) as well as minimum and maximum (error bars) distances of five
independent control points in each mosaic relative to their counterparts in the 2021 reference mosaic
of the respective time-series. See also the “Geolocation” section in the Supplementary Methods
above.
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Figure S7: Schematic of the diagrams for the detection of the drivers of pond change. a) For the

thermokarst detection, we calculated the mean drop in surface elevation (volume change) across the

pond area gained (i.e., pond expansion - shown in hatched red) between 2014 and 2021. b) For the

vegetation colonisation detection, we calculated the mean gain in surface elevation (volume change)

across the pond area lost (i.e., pond shrinking - shown in hatched green) between 2014 and 2021.
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