Materials and methods
[bookmark: _Hlk41071433]Protein expression and purification.
[bookmark: _Hlk12720210]The full-length cDNA of human α1 (Gene name: ATP1A1, GenBank accession number: BAA00061.1) was subcloned into pCAG with N-terminal FLAG tag, β1 (Gene name: ATP1B1, GenBank accession number: CAA27385.1) into pCAG with C-terminal Strep tag and no tag γ2 (Gene name: FXYD2 ,GenBank accession number: AAG37906.1) into pCAG vector. For protein expression, α1, β1 and γ2 were co-expressed in HEK 293F cells (Invitrogen) which were cultured in SMM 293T-II medium (Sino Biological Inc.) at 37 °C under 5% CO2 in a Multitron-Pro shaker (Infors, 130 rpm). To transfect one liter of cells, 3 mg of polyethylenimines (PEIs) (Polysciences), 0.5 mg of the α1 plasmid, 0.5 mg of the β1 plasmid and 0.5 mg of the γ2 plasmid were preincubated with 50 mL fresh medium for 15 mins and added into cell culture whose cell density reached 2.0×106/ml. After 48 hours of transfection, cells were harvested by centrifugation at 3800×g for 10 mins and resuspended in a buffer containing 25 mM Tris (pH 8.0), 3mM MgCl2 and 150 mM NaCl or 100mM KCl for E1 or E2 state respectively, mixture of three protease inhibitors, aprotinin (1.3 μg/ml, AMRESCO), pepstatin (0.7 μg/ml, AMRESCO) and leupeptin (5 μg/ml, AMRESCO).

For protein purification, after incubating with 1.5% (w/v) n-dodecyl β-d-maltoside (DDM, Anatrace) supplemented with 0.1% (w/v) cholesteryl hemisuccinate Tris salt (Anatrace) at 4 °C for 2 hours, cells were centrifugated at 18,000×g for 1 hour to remove cell debris. The supernatant was loaded onto anti-FLAG M2 affinity resin (Sigma). The resin was washed with the wash buffer containing 25 mM Tris (pH 8.0), 3mM MgCl2,150 mM NaCl or 100 mM KCl, 0.04% GDN (w/v), following by protein eluted with wash buffer plus 0.2 mg/mL FLAG peptide. Then the protein complex was subjected to size-exclusion chromatography (Superose 6 Increase 10/300 GL, GE Healthcare) in buffer containing 25 mM Tris (pH 8.0), 3mM MgCl2,150 mM NaCl or 100 mM KCl and 0.02% GDN. The peak fractions were collected and concentrated for EM analysis.

Cryo-EM sample preparation and data acquisition
The purified hNKA (α1β1γ2 complex) was concentrated to ~ 9 mg/mL and incubated with 1 mM ATP analogue (adenosine 5’-O-(3-thio) triphosphate, ATPγS) in Na+ buffer 1 hours for E1·3Na·ATP state, absence of ATPγS for E1·3Na and in K+ buffer for E2·[2K] respectively, before being applied to the grids. Aliquots (3.3 μL) of the protein complex were placed on glow-discharged holey carbon grids (Quantifoil Au R1.2/1.3). The grids were blotted for 3s or 3.5 s and flash-frozen in liquid ethane cooled by liquid nitrogen with Vitrobot (Mark IV, Thermo Fisher Scientific). The cryo grids were transferred to a Titan Krios operating at 300 kV equipped with Gatan K3 Summit detector and GIF Quantum energy filter. Movie stacks were automatically collected using AutoEMation1, with a slit width of 20 eV on the energy filter and a defocus range from -1.2 µm to -2.2 µm in super-resolution mode at a nominal magnification of 81,000×. Each stack was exposed for 2.56 s with an exposure time of 0.08 s per frame, resulting in a total of 32 frames per stack. The total dose rate was approximately 50 e-/Å2 for each stack. The stacks were motion corrected with MotionCor22 and binned 2-fold, resulting in a pixel size of 1.087 Å/pixel. Meanwhile, dose weighting was performed3. The defocus values were estimated with Gctf4.

Data processing
Particles were automatically picked from manually selected micrographs using Relion 35-8. After 2D classification, good particles were selected and generated an initial 3D reference, then subjected to the global angular searching 3D classification using the initial model with only one class. For each of the last several iterations of the global angular searching 3D classification, a local angular searching 3D classification was performed, during which the particles were classified into 4 classes. Non-redundant good particles were selected from the local angular searching 3D classification. Then, these selected particles were subjected to multi-reference 3D classification, local defocus correction, 3D auto-refinement and post-processing.  
The 2D classification, 3D classification and 3D auto-refinement were performed with Relion 3. The resolution was estimated with the gold-standard Fourier shell correlation 0.143 criterion9 with high-resolution noise substitution10.

Model building and structure refinement
The atomic models of the hNKA were built based on the corresponding cryo-EM maps. A Chainsaw11 model of the hNKA was first obtained using the previous structure of the sodium-potasium pump (PDB ID: 3KDP) as a template, which were further manually built in Coot12. Each residue was manually checked with the chemical properties considered during model building. Structure real space refinement was performed with Phenix13 with secondary structure and geometry restraints to prevent structure overfitting. To monitor the overfitting of the model, the model was refined against one of the two independent half maps from the gold-standard 3D refinement approach. Then, the refined model was tested against the other map. Statistics associated with data collection, 3D reconstruction and model refinement can be found in Table S1.
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Supplementary Fig. 1 | A simplified Post-Albers cycle for NKA. Previously determined structures are available for three reaction intermediates (black boxes). Red boxes mark structures for E1·3Na·ATP, E1·3Na and E2·[2K] are described in this study. The cycle marked in red lines represent the physiological mode, and black dotted lines represent the unphysiological mode. Pi, inorganic phosphate. E1P/E2P indicate the phosphoenzyme intermediates. Brackets represent occluded states, and cyt and ext are short form for intracellular and extracellular, respectively.
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Supplementary Fig. 2 | Cryo-EM analysis of the hNKA complex. a, SEC purification of hNKA in the presence of 0.02% GDN and 0.001% cholesteryl hemisuccinate (CHS). Left, SEC chromatogram; Right, SEC fractions were subjected to SDS–PAGE and visualized by Coomassie blue staining. b, Gold standard FSC curve of the overall structure of E1·3Na·ATP (blue), E1·3Na (orange) and E2·[2K] (green), respectively. c is for E1·3Na·ATP, d is for E1·3Na and e is for E1·[2K]. ⅰ, Euler angle distribution in the final 3D reconstruction. ⅱ, Local resolution map for the 3D reconstruction of whole map. ⅲ, FSC curve of the refined model versus the whole structure that it is refined against (black); of the model refined against the first half map versus the same map (red); and of the model refined against the first half map versus the second half map (green). The small difference between the red and green curves indicates that the refinement of the atomic coordinates did not suffer from overfitting. 
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Supplementary Fig. 3 |Cryo-EM data processing. a, Representative motion-corrected micrograph and 2D class averages. The scale bar in 2D class averages (right images) is 10 nm. The raw images are similar for all three samples; E1·3Na·ATP is shown. b, Flow chart of Cryo-EM data processing, please see the ‘Data Processing’ in Methods section for details.
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[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Supplementary Fig. 4 | Cryo-EM density maps. a, Cryo-EM density map for ATPγS binding in the N domain pocket shown at threshold of 6 σ. b, Cryo-EM density map of the only TM helix of β1-subunit shown at threshold of 6 σ. c, Cryo-EM density map of the only TM helix of γ2-subunit shown at threshold of 4 σ. d, Cryo-EM density maps for the TM helices of α-subunit shown at threshold of 6 σ.
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Supplementary Fig. 5 | Structural comparison between the E1·3Na and the E1·3Na·ATP state of hNKA and the E1~P·[3Na]·ADP state of pig NKA. a, The open cytoplasmic headpiece are shown in E1·3Na and E1·3Na·ATP, while the closed cytoplasmic headpiece is shown in pig NKA E1~P·[3Na]·ADP. b, The conformation of the M1e is nearly identical between the E1·3Na and the E1·3Na·ATP state. However, location of bound Na+ is different between the E1·3Na and the E1·3Na·ATP state. c, Compared with E1~P·[3Na]·ADP, the M1e of the E1·3Na·ATP state shifts towards the extracellular side for about 5 Å.
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Supplementary Fig. 6 | Conformational changes between the E1·3Na and E1·3Na·ATP state.
[bookmark: OLE_LINK100]a, Pivot role of Arg692 in P domain. Arg692 of P domain interacts with Glu512 of N domain in both E1·3Na and E1·3Na·ATP states. Arg692 also interact with ATP in E1·3Na·ATP states, which pivot N domain tilt. b, The position of Mg2+ changes between E1·3Na and E1·3Na·ATP states, and the surrounding 376DKTGTLT motif (black arrow) change slightly, which is connected to M4 through Pβ1, Pα1, Pβ0; and interact with Pβ6-Pα8, Pβ7-M5 loops near M5. c, The different positions of sodium ions in E1·3Na caused M5 to be broken (black arrow).
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[bookmark: OLE_LINK77][bookmark: OLE_LINK83][bookmark: _Hlk70520088][bookmark: _Hlk70520068]Supplementary Fig. 7 | Structural comparison between hNKA in E2·[2K] and pig NKA in E2·[2K]·Pi. a, Superposition between human E2·[2K] (blue to yellow) and pig E2·[2K]·Pi (gray), which are no difference. b, Disposition of the transmembrane helices of E2·[2K] and E2·[2K]·Pi viewed from the cytosolic side, approximately perpendicular to the membrane. c, d, Details around the phosphorylation site (c) and the hallmark 219TGES motif in the A domain (d) is highlighted, and the MgF4 as an analogue of inorganic phosphate (Pi) is represented by spheres.
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[bookmark: _Hlk70342484][bookmark: OLE_LINK103][bookmark: OLE_LINK104]Supplementary Fig. 8 | Structural comparison between hNKA in E1·3Na·ATP and E2·[2K] state. a, The α subunit of hNKA E1·3Na·ATP (blue to magenta) is superimposed to the E2·[2K] (wheat) state with the PN domain (598-710 residues) and M1-M7 helices. b, Disposition of the transmembrane helices viewed from the cytosolic side, approximately perpendicular to the membrane. c, The 219TGES motif of A domain has largely movement to expose the conserved phosphorylation site.
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Supplementary Fig. 9 | Structural comparison of SERCA in E1 state. The crystal structure of SERCA in E1·Mg2+ (PDB code: 3W5B), in comparison with those of SERCA in E1·ATP·2Ca2+ (PDB code: 1T5S) and E1P·ADP·2Ca2+ (PDB code: 1T5T). Models are aligned with the M7-M10 helices. Asterisks indicate the position in A domain, which is interacted with N domain by ATP or ADP inducing conformational changes.
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[bookmark: OLE_LINK105][bookmark: OLE_LINK102][bookmark: OLE_LINK106]Supplementary Figure 10 |Sequence alignment of the NKA. α subunit of four human isoforms, pig isoform1 and shark isoform1. The hallmark motifs and the gate residue are shown by black boxed. Phosphorylation site is indicated by yellow cycle. Various colors are used to distinguish the cytoplasmic domain (A, light blue; P, light green; N, light pink). Gene and protein ID are as follows: AT1A1_human (Genebank: BAA00061.1), AT1A2_human (Genebank: AAA51797.1), AT1A3_human (Genebank: AAA51798.1), AT1A4_human (Genebank: AAQ07964.1), AT1A1_pig (Genebank: CAA27576.1), AT1A1_shark (Genebank: AJ781093.1).
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Supplementary Figure 11 | Cluster analysis of NKA structures. Paired RMSD was computed for all of 34 structures of NKA, according to which a heatmap was generated, revealing two major groups that represent the E1 and the E2 conformation, respectively. The E2 conformation has two subgroups: E2·P (including 15 structures) and E2·Pi (including 14 structures). The E1 conformation also contains two subgroups: E1>E1P (including 3 structures) and a subgroup consisting of the E1·3Na·ATP and the E1·3Na state reported in current work. The color codes correspond to RMSD (unit: Angstrom).
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[bookmark: OLE_LINK101][bookmark: OLE_LINK108][bookmark: OLE_LINK109]Supplementary Figure 12 | A model for the cytoplasmic gate control of NKA. Schematic drawings of the cytosolic gate mechanism suggested from the present study of hNKA. The model is depicted almost with the same colours as in Fig. 1a. The three cytosolic domain A, P and N are coloured by marine, pink and blue. The M1 sliding door linked with A domain also colour in marine. NKA has an inward open K+/Na+-exchanging pathway in E1 state. ATP binding induces slightly N domain tilt and Na+ binding sites changes, but the cytoplasmic gate remains open. After the ATP hydrolysis and phosphoryl transfer reaction, the rearrangement of three cytosolic domains forms a close cytoplasmic headpiece. The movement and rotation of the A domain pull up the M1 helix after phosphorylation, to close the cytoplasmic gate.














Supplementary Table 1 | Summary of data collection and model statistics for hNKA
	Dataset
	E1·3Na·ATP
	E1·3Na
	E2·[2K]

	Ligands
	
	
	

	Na+
	150mM
	150mM
	－

	K+
	－
	－
	100mM

	Mg2+
	3mM
	3mM
	3mM

	ATPγS
	1mM
	－
	－

	Data collection
	

	EM equipment
	Titan Krios (Thermo Fisher Scientific)

	Voltage (kV) 
	300

	Detector
	Gatan K3 Summit

	Energy filter
	Gatan GIF Quantum, 20 eV slit

	Pixel size (Å) 
	1.087

	Electron dose (e-/Å2) 
	50

	Defocus range (μm)
	-1.2 ~ -2.2

	Sample
	E1·ATP·3Na
	E1·3Na
	E2·[2K]

	PDB code
	7E21
	7E1Z
	7E20

	EMDB code
	EMD-30949
	EMD-30947
	EMD-30948

	Number of collected micrographs
	2,304
	3,758
	3,940

	Number of selected micrographs
	1,902
	3,079
	3,588

	3D Reconstruction
	
	
	

	Software
	Relion 3.0

	Number of used particles
	218,652
	140,363
	372,093

	Resolution (Å) 
	3.1 
	3.4 
	3.1 

	Symmetry
	C1

	Map sharpening B-factor (Å2)
	-150

	Refinement
	

	Software
	Phenix

	Cell dimensions
	

	a=b=c (Å)
	217.4

	α=β=γ (˚)
	90

	Model composition
	

	Protein residues
	1,310
	1,310
	1,324

	Side chains assigned
	1,310
	1,310
	1,324

	Sugar
	3
	3
	3

	ATPγS
	1
	0
	0

	Phospholipid
	4
	4
	4

	Cholesterol hemisuccinate
	7
	7
	7

	Na
	4
	4
	0

	K
	0
	0
	3

	Mg
	1
	1
	2

	Water
	0
	4
	0

	R.m.s deviations
	
	
	

	Bonds length (Å)
	0.006 
	0.007 
	0.006 

	Bonds Angle (˚)
	0.951
	0.908
	0.814

	Ramachandran plot statistics (%)
	
	
	

	Preferred
	91.56
	91.87
	93.85

	Allowed
	8.05
	8.05
	6.15

	Outlier
	0.38
	0.08
	0.00 




Supplementary Movie 1
The structural morph between the closed and open gate conformation of the NKA complex.
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a. cytosolic headpiece location between the E1 state of NKA
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Extended Data Figure 9 |

a. cytosolic headpiece location between the E1 state of NKA
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Extended Data Figure 10 |Sequence alighment.

FEHIEE 45 . E334, TGES loop,




image12.JPG
=
o

.|ll
o N H» O O

4hqj

e |E1~P
v E1
E1-3Na

E1-3Na-ATP E1
5aw6

5aw5

S5aw4

S5aw3

5avz

Savw

S5avu

= |E2P
5avs

2zxe

5a

3a3y

3kdp

E2-[2k]

dres E2
4xe5

3n23

4hyt

4ret

7d92

7ddf .
" E2-Pi
7ddk

7ddh

7ddi

7ddj

7d93

7d94

7ddI

Extended Data Figure 11 | Cluster analysis of NKA structures. Paired RMSD was computed for
all of 34 structures of NKA, according to which a heatmap was generated, revealing two major
groups that represent the E1 and the E2 conformation, respectively. The E2 conformation has two
subgroups: E2-P (including 15 structures) and E2-P1 (including 14 structures). The E1 conformation
also contains two subgroups: EI>EIP (including 3 structures) and a subgroup consisting of the
E1-3Na-ATP and the E1:3Na state reported in current work. The color codes correspond to RMSD

(unit: Angstrom).
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Extended Data Figure 12 | A model for the cytoplasmic gate control of NKA. Schematic
drawings of the cytosolic gate mechanism suggested from the present study of hNKA. The
model 1s depicted almost with the same colours as in Fig. 1a. The three cytosolic domain A, P
and N are coloured by deep blue, light pink and light blue. The M1 sliding door linked with A
domain also colour 1n deep blue. NKA has an inward open K*/Na"-exchanging pathway in E1
state. ATP binding induces slightly N domain tilt and Na™ binding sites changes, but the
cytoplasmic gate remains open. After the ATP hydrolysis and phosphoryl transfer reaction, the
rearrangement of three cytosolic domains forms a close cytoplasmic headpiece. The
movement and rotation of the A domain pull up the M1 helix after phosphorylation, to close

the cytoplasmic gate.
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Extended Data Figure 1 | A simplified Post-Albers cycle for NKA.

Previously determined structures are available for three reaction intermediates (black
boxes).

Red boxes mark structures for E1-3Na-ATP, E1:3Na and E2-[2K] are described in this study.
The cycle marked in red lines represent the physiological mode, and black dotted lines
represent the unphysiological mode.

Pi, inorganic phosphate.

E1P/E2P indicate the phosphoenzyme intermediates.

Brackets represent occluded states, and cyt and ext are short for intracellular and
extracellular, respectively.
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Extended Data Figure 2 | Cryo-EM analysis of the hNKA complex.
a SEC purification of hNKA in the presence of 0.02% GDN and 0.001% cholesteryl hemisuccinate (CHS).
Left, SEC chromatogram; Right, SEC fractions were subjected to SDS—PAGE and visualized by Coomassie blue staining.
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Extended Data Figure 3 |Cryo-EM data processing.
a Representative motion-corrected micrograph and 2D class averages.
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E1:-ATP:-3Na state conformation.

ended Data Figure 4 | Examples of cryo-EM density maps of hNKA in
maps for ATPyS binding in the N domain pocket

maps of the only TM helix of B-subunit

maps of the only TM helix of y2-subunit

maps around each TM helix of a-subunit.
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