References
1.Nauck, M. A., Quast, D. R., Wefers, J. & Meier, J. J. GLP-1 receptor agonists in the treatment of type 2 diabetes - state-of-the-art. Mol Metab 46, 101102, doi:10.1016/j.molmet.2020.101102 (2021).
2.Saponaro, C. et al. The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release. Cell reports 28, 1447–1454.e1444, doi:10.1016/j.celrep.2019.07.009 (2019).
3.Zhou, J. Y. et al. Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol 861, 172594, doi:10.1016/j.ejphar.2019.172594 (2019).
4.Davies, M. J. et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. Jama 314, 687–699, doi:10.1001/jama.2015.9676 (2015).
5.Flint, A., Kapitza, C., Hindsberger, C. & Zdravkovic, M. The once-daily human glucagon-like peptide-1 (GLP-1) analog liraglutide improves postprandial glucose levels in type 2 diabetes patients. Adv Ther 28, 213–226, doi:10.1007/s12325-010-0110-x (2011).
6.le Roux, C. W. et al. 3 years of liraglutide versus placebo for type 2 diabetes risk reduction and weight management in individuals with prediabetes: a randomised, double-blind trial. Lancet (London, England) 389, 1399–1409, doi:10.1016/S0140-6736(17)30069-7 (2017).
7.Zaborska, K. E. et al. Liraglutide increases islet Ca(2+) oscillation frequency and insulin secretion by activating hyperpolarization-activated cyclic nucleotide-gated channels. Diabetes, obesity & metabolism 24, 1741–1752, doi:10.1111/dom.14747 (2022).
8.Pi-Sunyer, X. et al. A Randomized, Controlled Trial of 3.0 mg of Liraglutide in Weight Management. N Engl J Med 373, 11–22, doi:10.1056/NEJMoa1411892 (2015).
9.Garvey, W. T. et al. Efficacy and Safety of Liraglutide 3.0 mg in Individuals With Overweight or Obesity and Type 2 Diabetes Treated With Basal Insulin: The SCALE Insulin Randomized Controlled Trial. Diabetes Care, doi:10.2337/dc19-1745 (2020).
10.Adams, J. M. et al. Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor-Expressing Glutamatergic Neurons. Diabetes 67, 1538–1548, doi:10.2337/db17-1385 (2018).
11.Beiroa, D. et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63, 3346–3358, doi:10.2337/db14-0302 (2014).
12.Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. Journal of Clinical Investigation 124, 4473–4488, doi:10.1172/JCI75276 (2014).
13.Sisley, S. et al. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. The Journal of Clinical Investigation 124, 2456–2463, doi:10.1172/JCI72434 (2014).
14.Timper, K. et al. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metab, doi:10.1016/j.cmet.2020.05.001 (2020).
15.Imbernon, M. et al. Tanycytes control hypothalamic liraglutide uptake and its anti-obesity actions. Cell Metab 34, 1054–1063 e1057, doi:10.1016/j.cmet.2022.06.002 (2022).
16.Sandoval, D. a., Bagnol, D., Woods, S. C., D'Alessio, D. a. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054, doi:10.2337/db07-1824 (2008).
17.Tuduri, E. et al. Acute but not chronic activation of brain glucagon-like peptide-1 receptors enhances glucose-stimulated insulin secretion in mice. Diabetes, obesity & metabolism 17, 789–799, doi:10.1111/dom.12488 (2015).
18.Montaner, M. et al. A neuronal circuit driven by GLP-1 in the olfactory bulb regulates insulin secretion. Nature Communications 15, 6941, doi:10.1038/s41467-024-51076-4 (2024).
19.Secher, A. et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest 124, 4473–4488, doi:10.1172/JCI75276 (2014).
20.Hill, J. W. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab 11, 286–297, doi:10.1016/j.cmet.2010.03.002 (2010).
21.Ramirez, S. et al. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control. Cell Metab 25, 1390–1399 e1396, doi:10.1016/j.cmet.2017.05.010 (2017).
22.Lhomme, T. et al. Tanycytic networks mediate energy balance by feeding lactate to glucose-insensitive POMC neurons. J Clin Invest 131, doi:10.1172/jci140521 (2021).
23.Gervais, M., Labouèbe, G., Picard, A., Thorens, B. & Croizier, S. EphrinB1 modulates glutamatergic inputs into POMC-expressing progenitors and controls glucose homeostasis. PLoS biology 18, e3000680, doi:10.1371/journal.pbio.3000680 (2020).
24.Saponaro, C. et al. The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release. Cell Rep 28, 1447–1454 e1444, doi:10.1016/j.celrep.2019.07.009 (2019).
25.Capozzi, M. E. et al. Glucagon lowers glycemia when beta-cells are active. JCI Insight 5, doi:10.1172/jci.insight.129954 (2019).
26.Chambers, A. P. et al. The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metab 25, 927–934 e923, doi:10.1016/j.cmet.2017.02.008 (2017).
27.Rouille, Y., Kantengwa, S., Irminger, J. C. & Halban, P. A. Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon-like peptide 1. J Biol Chem 272, 32810–32816, doi:10.1074/jbc.272.52.32810 (1997).
28.Rouille, Y., Westermark, G., Martin, S. K. & Steiner, D. F. Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1-6 cells. Proceedings of the National Academy of Sciences of the United States of America 91, 3242–3246, doi:10.1073/pnas.91.8.3242 (1994).
29.Zhu, L. et al. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, doi:10.1172/jci.insight.127994 (2019).
30.Piro, S. et al. Chronic exposure to GLP-1 increases GLP-1 synthesis and release in a pancreatic alpha cell line (alpha-TC1): evidence of a direct effect of GLP-1 on pancreatic alpha cells. PloS one 9, e90093, doi:10.1371/journal.pone.0090093 (2014).
31.Matsumoto, S. et al. Effects of liraglutide on postprandial insulin and glucagon responses in Japanese patients with type 2 diabetes. J Clin Biochem Nutr 53, 68–72, doi:10.3164/jcbn.13-14 (2013).
32.Vilsboll, T. et al. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus. Diabet Med 25, 152–156, doi:10.1111/j.1464-5491.2007.02333.x (2008).
33.Salehi, M., Aulinger, B., Prigeon, R. L. & D'Alessio, D. A. Effect of endogenous GLP-1 on insulin secretion in type 2 diabetes. Diabetes 59, 1330–1337, doi:10.2337/db09-1253 (2010).
34.Jones, B., Bloom, S. R., Buenaventura, T., Tomas, A. & Rutter, G. A. Control of insulin secretion by GLP-1. Peptides 100, 75–84, doi:10.1016/j.peptides.2017.12.013 (2018).
35.Muller, T. D. et al. Glucagon-like peptide 1 (GLP-1). Mol Metab 30, 72–130, doi:10.1016/j.molmet.2019.09.010 (2019).
36.Ungewiss, J., Gericke, S. & Boriss, H. Determination of the Plasma Protein Binding of Liraglutide Using the EScalate(*) Equilibrium Shift Assay. J Pharm Sci 108, 1309–1314, doi:10.1016/j.xphs.2018.10.018 (2019).
37.Shigeto, M. et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest 125, 4714–4728, doi:10.1172/JCI81975 (2015).
38.Oduori, O. S. et al. Gs/Gq signaling switch in β cells defines incretin effectiveness in diabetes. The Journal of Clinical Investigation 130, 6639–6655, doi:10.1172/JCI140046 (2020).
39.Bertram, R., Sherman, A. & Satin, L. S. Electrical bursting, calcium oscillations, and synchronization of pancreatic islets. Adv Exp Med Biol 654, 261–279, doi:10.1007/978-90-481-3271-3_12 (2010).
40.Jones, B. et al. In vivo and in vitro characterization of GL0034, a novel long-acting glucagon-like peptide-1 receptor agonist. Diabetes, Obesity and Metabolism 24, 2090–2101, doi:https://doi.org/10.1111/dom.14794 (2022).
41.Ren, L. et al. Novel GLP-1 Analog Supaglutide Stimulates Insulin Secretion in Mouse and Human Islet Beta-Cells and Improves Glucose Homeostasis in Diabetic Mice. Frontiers in Physiology 10, doi:10.3389/fphys.2019.00930 (2019).
42.Saponaro, C. et al. Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets. Diabetes 69, 902–914, doi:10.2337/db19-0888 (2020).
43.Capozzi, M. E. et al. beta Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4, doi:10.1172/jci.insight.126742 (2019).
44.Holter, M. M., Saikia, M. & Cummings, B. P. Alpha-cell paracrine signaling in the regulation of beta-cell insulin secretion. Front Endocrinol (Lausanne) 13, 934775, doi:10.3389/fendo.2022.934775 (2022).
45.Svendsen, B. et al. Insulin Secretion Depends on Intra-islet Glucagon Signaling. Cell reports 25, 1127–1134 e1122, doi:10.1016/j.celrep.2018.10.018 (2018).
46.Kahn, S. E., Cooper, M. E. & Del Prato, S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet (London, England) 383, 1068–1083, doi:10.1016/S0140-6736(13)62154-6 (2014).
47.Shigeto, M., Katsura, M., Matsuda, M., Ohkuma, S. & Kaku, K. Low, but physiological, concentration of GLP-1 stimulates insulin secretion independent of the cAMP-dependent protein kinase pathway. J Pharmacol Sci 108, 274–279, doi:10.1254/jphs.08090fp (2008).
48.Rickels, M. R., Mueller, R., Markmann, J. F. & Naji, A. Effect of Glucagon-Like Peptide-1 on β- and α-Cell Function in Isolated Islet and Whole Pancreas Transplant Recipients. The Journal of Clinical Endocrinology & Metabolism 94, 181–189, doi:10.1210/jc.2008-1806 (2009).
49.Fridolf, T. & Ahrén, B. GLP-1(7–36)amide-stimulated insulin secretion in rat islets is sodium-dependent. Biochemical and Biophysical Research Communications 179, 701–706, doi:https://doi.org/10.1016/0006-291X(91)91429-G (1991).
50.Hansen, L., Deacon, C. F., Orskov, C. & Holst, J. J. Glucagon-like peptide-1-(7–36)amide is transformed to glucagon-like peptide-1-(9–36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140, 5356–5363, doi:10.1210/endo.140.11.7143 (1999).
51.Bugliani, M. et al. DPP-4 is expressed in human pancreatic beta cells and its direct inhibition improves beta cell function and survival in type 2 diabetes. Mol Cell Endocrinol 473, 186–193, doi:10.1016/j.mce.2018.01.019 (2018).
52.Shah, P. et al. The DPP-4 inhibitor linagliptin restores beta-cell function and survival in human isolated islets through GLP-1 stabilization. The Journal of clinical endocrinology and metabolism 98, E1163-1172, doi:10.1210/jc.2013-1029 (2013).
53.Gandasi, N. R. et al. GLP-1 metabolite GLP-1(9–36) is a systemic inhibitor of mouse and human pancreatic islet glucagon secretion. Diabetologia 67, 528–546, doi:10.1007/s00125-023-06060-w (2024).
54.Elahi, D. et al. GLP-1 (9–36) amide, cleavage product of GLP-1 (7–36) amide, is a glucoregulatory peptide. Obesity (Silver Spring) 16, 1501–1509, doi:10.1038/oby.2008.229 (2008).
55.Millar, P. et al. Metabolic and neuroprotective effects of dapagliflozin and liraglutide in diabetic mice. The Journal of endocrinology 234, 255–267, doi:10.1530/JOE-17-0263 (2017).
56.Duquenne, M. et al. Tanycytic transcytosis inhibition disrupts energy balance, glucose homeostasis and cognitive function in male mice. Molecular Metabolism 87, 101996, doi:https://doi.org/10.1016/j.molmet.2024.101996 (2024).
57.Fransson, L. et al. Liraglutide counteracts obesity and glucose intolerance in a mouse model of glucocorticoid-induced metabolic syndrome. Diabetol Metab Syndr 6, 3, doi:10.1186/1758-5996-6-3 (2014).
58.Shirakawa, J. et al. Effects of liraglutide on beta-cell-specific glucokinase-deficient neonatal mice. Endocrinology 153, 3066–3075, doi:10.1210/en.2012-1165 (2012).
59.Kim, J. H. et al. Effects of Glucagon-Like Peptide-1 Analogue and Fibroblast Growth Factor 21 Combination on the Atherosclerosis-Related Process in a Type 2 Diabetes Mouse Model. Endocrinol Metab (Seoul) 36, 157–170, doi:10.3803/EnM.2020.781 (2021).
60.Nogueiras, R. et al. Direct control of peripheral lipid deposition by CNS GLP-1 receptor signaling is mediated by the sympathetic nervous system and blunted in diet-induced obesity. The Journal of neuroscience: the official journal of the Society for Neuroscience 29, 5916–5925, doi:10.1523/JNEUROSCI.5977-08.2009 (2009).
61.Sisley, S. et al. Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. J Clin Invest 124, 2456–2463, doi:10.1172/JCI72434 (2014).
62.Thorens, B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes, obesity & metabolism 13 Suppl 1, 82–88, doi:10.1111/j.1463-1326.2011.01453.x (2011).
63.Breit, S., Kupferberg, A., Rogler, G. & Hasler, G. Vagus Nerve as Modulator of the Brain–Gut Axis in Psychiatric and Inflammatory Disorders. Frontiers in Psychiatry 9, doi:10.3389/fpsyt.2018.00044 (2018).
64.Kume, S. et al. Hypothalamic AMP-Activated Protein Kinase Regulates Biphasic Insulin Secretion from Pancreatic beta Cells during Fasting and in Type 2 Diabetes. EBioMedicine 13, 168–180, doi:10.1016/j.ebiom.2016.10.038 (2016).
65.Seoane-Collazo, P. et al. Hypothalamic-autonomic control of energy homeostasis. Endocrine 50, 276–291, doi:10.1007/s12020-015-0658-y (2015).
66.Kwon, E. et al. Optogenetic stimulation of the liver-projecting melanocortinergic pathway promotes hepatic glucose production. Nat Commun 11, 6295, doi:10.1038/s41467-020-20160-w (2020).
67.Sandoval, D. A., Bagnol, D., Woods, S. C., D'Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054, doi:10.2337/db07-1824 (2008).
68.Hughey, C. C., Wasserman, D. H., Lee-Young, R. S. & Lantier, L. Approach to assessing determinants of glucose homeostasis in the conscious mouse. Mamm Genome 25, 522–538, doi:10.1007/s00335-014-9533-z (2014).
69.Sala-Rabanal, M. et al. Intestinal absorption of glucose in mice as determined by positron emission tomography. J Physiol 596, 2473–2489, doi:10.1113/jp275934 (2018).
70.Knauf, C., Abot, A., Wemelle, E. & Cani, P. D. Targeting the Enteric Nervous System to Treat Metabolic Disorders? "Enterosynes" as Therapeutic Gut Factors. Neuroendocrinology 110, 139–146, doi:10.1159/000500602 (2020).
71.Mazzuoli, G. & Schemann, M. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PloS one 7, e39887, doi:10.1371/journal.pone.0039887 (2012).
72.Borgmann, D. et al. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab, doi:10.1016/j.cmet.2021.05.002 (2021).
73.Defronzo, R. A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795, doi:10.2337/db09-9028 (2009).
74.Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846, doi:10.1038/nature05482 (2006).
75.Unger, R. H. & Orci, L. Paracrinology of islets and the paracrinopathy of diabetes. Proceedings of the National Academy of Sciences of the United States of America 107, 16009–16012, doi:10.1073/pnas.1006639107 (2010).
76.Kahn, S. E. et al. Quantification of the relationship between insulin sensitivity and beta-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 42, 1663–1672, doi:10.2337/diab.42.11.1663 (1993).
77.Talchai, C., Xuan, S., Lin, H. V., Sussel, L. & Accili, D. Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 150, 1223–1234, doi:10.1016/j.cell.2012.07.029 (2012).
78.Nasteska, D. & Hodson, D. J. The role of beta cell heterogeneity in islet function and insulin release. J Mol Endocrinol 61, R43-R60, doi:10.1530/JME-18-0011 (2018).
79.Dorrell, C. et al. Human islets contain four distinct subtypes of beta cells. Nat Commun 7, 11756, doi:10.1038/ncomms11756 (2016).
80.Jones, B. et al. In vivo and in vitro characterization of GL0034, a novel long-acting glucagon-like peptide-1 receptor agonist. Diabetes, obesity & metabolism 24, 2090–2101, doi:10.1111/dom.14794 (2022).
81.Ren, L. et al. Novel GLP-1 Analog Supaglutide Stimulates Insulin Secretion in Mouse and Human Islet Beta-Cells and Improves Glucose Homeostasis in Diabetic Mice. Front Physiol 10, 930, doi:10.3389/fphys.2019.00930 (2019).
82.Peyot, M. L. et al. Glucagon-like peptide-1 induced signaling and insulin secretion do not drive fuel and energy metabolism in primary rodent pancreatic beta-cells. PloS one 4, e6221, doi:10.1371/journal.pone.0006221 (2009).
83.Holst, J. J. The physiology of glucagon-like peptide 1. Physiological reviews 87, 1409–1439, doi:10.1152/physrev.00034.2006 (2007).
84.Widmann, C., Dolci, W. & Thorens, B. Agonist-induced internalization and recycling of the glucagon-like peptide-1 receptor in transfected fibroblasts and in insulinomas. Biochem J 310 (Pt 1), 203–214, doi:10.1042/bj3100203 (1995).
85.Jones, B. et al. Targeting GLP-1 receptor trafficking to improve agonist efficacy. Nat Commun 9, 1602, doi:10.1038/s41467-018-03941-2 (2018).
86.He, Z. et al. Direct and indirect effects of liraglutide on hypothalamic POMC and NPY/AgRP neurons - Implications for energy balance and glucose control. Mol Metab 28, 120–134, doi:10.1016/j.molmet.2019.07.008 (2019).
87.Duquenne, M. et al. Leptin brain entry via a tanycytic LepR-EGFR shuttle controls lipid metabolism and pancreas function. Nat Metab 3, 1071–1090, doi:10.1038/s42255-021-00432-5 (2021).
88.Bryant, M. G. et al. Measurement of gut hormonal peptides in biopsies from human stomach and proximal small intestine. Gut 24, 114–119, doi:10.1136/gut.24.2.114 (1983).
89.Wen, J., Phillips, S. F., Sarr, M. G., Kost, L. J. & Holst, J. J. PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon. Am J Physiol 269, G945-952, doi:10.1152/ajpgi.1995.269.6.G945 (1995).
90.Halim, M. A. et al. Glucagon-Like Peptide-1 Inhibits Prandial Gastrointestinal Motility Through Myenteric Neuronal Mechanisms in Humans. The Journal of clinical endocrinology and metabolism 103, 575–585, doi:10.1210/jc.2017-02006 (2018).
91.Rotondo, A., Amato, A., Lentini, L., Baldassano, S. & Mule, F. Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice. Peptides 32, 60–64, doi:10.1016/j.peptides.2010.09.028 (2011).
92.Liu, J. et al. Liver-derived fibroblast growth factor 21 mediates effects of glucagon-like peptide-1 in attenuating hepatic glucose output. EBioMedicine 41, 73–84, doi:10.1016/j.ebiom.2019.02.037 (2019).
93.Jin, T. & Weng, J. Hepatic functions of GLP-1 and its based drugs: current disputes and perspectives. American journal of physiology. Endocrinology and metabolism 311, E620-627, doi:10.1152/ajpendo.00069.2016 (2016).
94.Henquin, J. C., Dufrane, D. & Nenquin, M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55, 3470–3477, doi:10.2337/db06-0868 (2006).
95.Bonner, C. et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nature medicine 21, 512–517, doi:10.1038/nm.3828 (2015).
96.Slezak, M. et al. Relevance of exocytotic glutamate release from retinal glia. Neuron 74, 504–516, doi:10.1016/j.neuron.2012.03.027 (2012).
97.Peitz, M., Pfannkuche, K., Rajewsky, K. & Edenhofer, F. Ability of the hydrophobic FGF and basic TAT peptides to promote cellular uptake of recombinant Cre recombinase: a tool for efficient genetic engineering of mammalian genomes. Proceedings of the National Academy of Sciences of the United States of America 99, 4489–4494, doi:10.1073/pnas.032068699 (2002).
98.Abot, A. et al. Identification of new enterosynes using prebiotics: roles of bioactive lipids and mu-opioid receptor signalling in humans and mice. Gut 70, 1078–1087, doi:10.1136/gutjnl-2019-320230 (2021).
****p < 0.0001 for all comparisons. Data presented as means ± SEM. Statistics: One- or Two-way ANOVA with Tukey's post hoc tests.