
A Preliminaries and Related Works

A.1 Preliminaries on Molecular Dynamics
Molecular dynamics (MD) simulations predict how every atom in a molecular system moves over time, which is determined
by the interatomic interactions following Newton’s second law. Such a molecular system includes small molecules [1, 2],
proteins [3, 4, 5], polymers [6], crystals [7], and protein-ligand complexes [8, 9]. Typically, an MD simulation is composed of
two main steps, i.e., (1) the energy and force calculation and (2) integration of the equations of motion governed by Newton’s
second law of motion, using the initial conditions and forces calculated in step (1). As the initial condition, the initial positions
and velocities are given for all the particles (e.g., atoms) in the molecular system; the MD simulation repeats the two steps to
get a trajectory. Such MD simulations can be used to calculate the equilibrium and transport properties of molecules, materials,
and biomolecular systems [10].

In such an MD simulation, one key factor is estimating the forces on each atom. The function that gives the energy of a
molecular system as a function of its structure (and forces via the gradient of the energy with respect to those atomic coordinates)
is referred to as a potential energy surface (PES). In general, MD simulations integrate the equations of motion using a PES
from one of two sources: (1) Classical MD using the force fields, which are parameterized equations that approximate the true
PES, and are less costly to evaluate, allowing for the treatment of larger systems and longer timesteps. (2) ab-inito MD (which
calculates the energy of a molecular system via electronic structure methods, e.g., DFT) provide more accurate PES, but are
limited in the system size and timesteps that are practically accessible due to the cost of evaluating the PES at a given point.

A.2 Related Works
SE(3)-Equivariant Representation for Small Molecules and Proteins. The molecular systems are indeed a set of atoms
located in the 3D Euclidean space. From a machine learning point of view, the representation function or encoding function
of such molecular systems needs to be group-symmetric, i.e., the representation needs to be equivariant when we rotate or
translate the whole system. Such symmetry is called the SE(3)-equivariance. Recently works [11, 12] on molecules has
provided a unified way of equivariant geometric modeling. They categorize the mainstream representation methods into three
big venues: SE(3)-invariant models, SE(3)-equivariant models with spherical frame basis, and SE(3)-equivariant models with
vector frame basis. (1) Invariant models that utilize invariant features (distances and angles) to predict the energies [13, 14], but
the derived forces are challenging for ML optimization after integration. (2) Equivariant models with spherical frames that
include a computationally expensive tensor-product operation [15, 16], which is unsuitable for large molecular systems. (3)
Equivariant models with vector frames that have been explored for single stable molecules, including molecule representation
and pretraining [17, 18, 19, 20], molecule conformation generation [21], protein representation [22], and protein folding and
design [23, 24]. However, no one has tried it for binding complexes.

ML for Potential Energy and Force Learning for MD Simulation. One straightforward way of molecular dynamics (MD)
simulation is through potential energy modeling. Numerical methods for MD simulation can be classified into classical MD and
ab-initio MD, depending on using the classical mechanism or quantum mechanism to calculate the forces. Alternatively, a
machine learning (ML) research line is to adopt geometric representation methods to learn the energies or the forces, e.g., by
the geometric methods listed above. The first work is DeePMD [1], which targets learning the potential energy function at
each conformation. For inference, the learned energy can be applied to update the atom placement using i-PI software [25],
composing the MD trajectories. TorchMD [26] utilizes TorchMD-Net [27] for energy prediction, which will be fed into the
velocity Verlet algorithm for MD simulation. Similarly, Musaelian et al. adopts Allegro [29] model to learn the force at each
conformation. The learned model will be used for MD trajectory simulation using LAMMPS [30]. In theory, all the geometric
models on small molecules [17, 19, 20] and proteins [22] can be applied to the MD simulation task. However, there are two
main challenges: (1) They require the interval between snapshots to be at the femtoseconds (1e-15 seconds) level for integration
to effectively capture the motion of the molecules. (2) They take the position-energy pairs independently, and thus, they ignore
their temporal correlations during learning.

ML for Trajectory Learning for MD Simulation. More recent works have explored MD simulation by directly learning
the coordinates along the trajectories. There are two key differences between energy and trajectory prediction for MD: (1)
Energy prediction takes each conformation and energy as IID, while trajectory learning optimizes the conformations along
the whole trajectory, enforcing the temporal relation. (2) The trajectory learning is agnostic to the magnitude of the timesteps,
and energy prediction can be sensitive to longer-timestep MD simulations. More concretely, along such trajectory learning
research line, CGDMS [31] builds an SE(3)-invariant model, followed by the velocity Verlet algorithm for MD simulation.
DiffMD [32] is a Markovian method and treats the dynamics between two consecutive snapshots as a coordinate denoising
process. It then applies the SDE solver [33] to solve the molecular dynamics. A parallel work, DFF [3], applies a similar idea
for MD simulation. CG-MD [6] encodes a hierarchical graph neural network model for an auto-regressive position generation
and then adopts the denoising method for fine-tuning. However, these works disregard the prior knowledge of the Newtonian
mechanics governing the motion of atoms.
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Table 1. Comparison of different numerical and machine learning (ML) methods for molecular dynamics (MD). AR for autoregressive and
denoising for denoising diffusion method.

Category Method Energy / Force Calculation Dynamics Objective Function Publications

Numerical Methods

Classical MD
Classical Mechanics:
Force Field Newtonian Dynamics – –

Ab-initio MD
Quantum Mechanics:
DFT for Schrodinger Equation Newtonian Dynamics – –

Langevin MD
Classical Mechanics:
Force Field Langevin Dynamics – –

ML Methods

DeePMD [1] Atom-level Modeling Newtonian Dynamics (i-PI) Energy Prediction PRL’18
TorchMD [26] Atom-level Modeling Newtonian Dynamics (velocity Verlet) Energy Prediction ACS’20
Allegro-LAMMPS [28] Atom-level Modeling Newtonian Dynamics (LAMMPS) Force Prediction ArXiv’23
VerletMD (Ours, baseline) Atom-level Modeling Newtonian Dynamics (velocity Verlet) Energy Prediction –

CGDMS [31] Atom-level Modeling Newtonian Dynamics (velocity Verlet) Position Prediction PLOS’21
DiffMD [32] Atom-level Modeling AR + Denoising Position Prediction AAAI’23
DFF [3] Atom-level Modeling AR + Denoising Position Prediction ACS’23
CG-MD [6] Atom-level Modeling AR + Denoising Position Prediction TMLR’23
LigandMD (Ours, baseline) Atom-level Modeling AR + Denoising Position Prediction –
NeuralMD ODE (Ours) Atom-level Modeling Newtonian Dynamics Position Prediction –
NeuralMD SDE (Ours) Atom-level Modeling Langevin Dynamics Position Prediction –

MD Simulation in Protein-Ligand Binding. The MD simulation papers discussed so far are mainly for small molecules
or proteins, not the binding dynamics. On the other hand, many works have studied the protein-ligand binding problem in
the equilibrium state [34, 35, 36, 37], but not the dynamics. In this work, we consider a more challenging task, which is the
protein-ligand binding dynamics. The viability of this work is also attributed to the efforts of the scientific community, where
more binding dynamics datasets have been revealed, including PLAS-5k [9], MISATO [8], and PLAS-20k [38].
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B Group Symmetry and Equivariance
In this article, a 3D molecular graph is represented by a collection of 3D point clouds. The corresponding symmetry group is
SE(3), which consists of translations and rotations. Recall that we define the notion of equivariance functions in R3 in the main
text through group actions. Formally, the group SE(3) is said to act on R3 if there is a mapping φ : SE(3)×R3 → R3 satisfying
the following two conditions:

1. if e ∈ SE(3) is the identity element, then
φ(e,rrr) = rrr for ∀rrr ∈ R3.

2. if g1,g2 ∈ SE(3), then
φ(g1,φ(g2,rrr)) = φ(g1g2,rrr) for ∀rrr ∈ R3.

Then, there is a natural SE(3) action on vectors rrr in R3 by translating rrr and rotating rrr for multiple times. For g ∈ SE(3) and
rrr ∈ R3, we denote this action by grrr. Once the notion of group action is defined, we say a function f : R3 → R3 that transforms
rrr ∈ R3 is equivariant if:

f (grrr) = g f (rrr), for ∀ rrr ∈ R3.

On the other hand, f : R3 → R1 is invariant, if f is independent of the group actions:

f (grrr) = f (rrr), for ∀ rrr ∈ R3.

For some scenarios, our problem is chiral sensitive. That is, after mirror reflecting a 3D molecule, the properties of the molecule
may change dramatically. In these cases, it’s crucial to include reflection transformations into consideration. More precisely,
we say an SE(3) equivariant function f is reflection anti-symmetric, if:

f (ρrrr) ̸= f (rrr), (1)

for reflection ρ ∈ E(3).
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C Equivariant Modeling With Vector Frames
Frame is a popular terminology in science areas. In physics, the frame is equivalent to a coordinate system. For example,
we may assign a frame to all observers, although different observers may collect different data under different frames, the
underlying physics law should be the same. In other words, denote the physics law by f , then f should be an equivariant
function.

There are certain ways to choose the frame basis, and below we introduce two main types: the orthogonal basis and the
protein backbone basis. The orthogonal basis can be built for flexible 3D point clouds such as atoms, while the protein backbone
basis is specifically proposed to capture the protein backbone.

C.1 Basis
Since there are three orthogonal directions in R3, one natural frame in R3 can be a frame consisting of three orthogonal vectors:

F = (eee1,eee2,eee3).

Once equipped with a frame (coordinate system), we can project all geometric quantities to this frame. For example, an abstract
vector xxx ∈ R3 can be written as xxx = (r1,r2,r3) under the frame F , if: xxx = r1eee1 + r2eee2 + r3eee3. A vector frame further requires
the three orthonormal vectors in (eee1,eee2,eee3) to be equivariant. Intuitively, a vector frame will transform according to the global
rotation or translation of the whole system. Once equipped with a vector frame, we can project vectors into this frame in an
equivariant way:

xxx = r̃1eee1 + r̃2eee2 + r̃3eee3. (2)

We call the process of xxx → r̃ := (r̃1, r̃2, r̃3) the scalarization or projection operation. Since r̃i = eeei · xxx is expressed as an inner
product between vector vectors, we know that r̃ consists of scalars.

In this article, we assign a vector frame to each node/edge, therefore we call them the local frames. We want to highlight
that, in this section, we prove the equivariance property of the vector frame basis using the Gram-Schmidt project. However,
the similar equivariance property can be easily guaranteed for the vector frame bases in the main article after we remove the
mass center of the molecular system.

In the main body, we constructed three vector frames based on three granularities. Here we provide the proof on the protein
backbone frame. Say the three backbone atoms in on proteins are xxxi,xxx j,xxxk respectively. Then the vector frame is defined by:

Vector-Frame(xxxi,xxx j) := Gram-Schmidt{xxxi − xxx j,xxxi − xxxk,(xxxi − xxx j)× (xxxi − xxxk)}. (3)

The Gram-Schmidt orthogonalization makes sure that the Vector-Frame(xxxi,xxx j) is orthonormal.

Reflection Antisymmetric Since we implement the cross product × for building the local frames, the third vector in the
frame is a pseudo-vector. Then, the projection operation is not invariant under reflections (the inner product between a vector
and a pseudo-vector change signs under reflection). Therefore, our model can discriminate two 3D geometries with different
chiralities.

Our local frames also enable us to output vectors equivariantly by multiplying scalars (v1,v2,v3) with the frame: vvv =
v1 · eee1 + v2 · eee2 + v3 · eee3.

Equivariance w.r.t. cross-product The goal is to prove that the cross-product is equivariant to the SE(3)-group, i.e.:

gx×gy = g(x× y), g ∈ SE(3)-Group (4)

Proof. Geometric proof. From intuition, with rotation matrix g, we are transforming the whole basis, thus the direction
of gx × gy changes equivalently with g. And for the value/length of gx × gy, because |gx × gy| = ∥gx∥ · ∥gy∥ · sinθ =
∥x∥ · ∥y∥ · sinθ = |x× y|. So the length stays the same, and the direction changes equivalently. Intuitively, this interpretation is
quite straightforward.

Analytical proof. A more rigorous proof can be found below:
First, we have that for the rotation matrix g:

gx×gy =

gggT
1 xxx

gggT
2 xxx

gggT
3 xxx

×

gggT
1 yyy

gggT
2 yyy

gggT
3 yyy

=

 gggT
2 xxx ·gggT

3 yyy−gggT
3 x ·gggT

2 yyy
−gggT

1 xxx ·gggT
3 yyy+gggT

3 xxx ·gggT
1 yyy

gggT
1 xxx ·gggT

2 yyy−gggT
2 xxx ·gggT

1 yyy

 , (5)
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where gggi,xxx,yyy ∈ R3×1.
Because ATC ·BT D−AT D ·BTC = (A×B)T (C×D), so we can have:

gx×gy =

 gggT
2 xxx ·gggT

3 yyy−gggT
3 x ·gggT

2 yyy
−gggT

1 xxx ·gggT
3 yyy+gggT

3 xxx ·gggT
1 yyy

gggT
1 xxx ·gggT

2 yyy−gggT
2 xxx ·gggT

1 yyy

=

 (ggg2 ×ggg3)
T (xxx× yyy)

(ggg3 ×ggg1)
T (xxx× yyy)

(ggg1 ×ggg2)
T (xxx× yyy).

 (6)

Then because:

det(g) = (ggg2 ×ggg3)
T ggg1 = gggT

1 ggg1 = 1

=⇒(ggg2 ×ggg3)
T ggg1ggg−1

1 = gggT
1 ggg1ggg−1

1

=⇒(ggg2 ×ggg3)
T = gggT

1 .

(7)

Thus, we can have

gx×gy =

(ggg2 ×ggg3)
T (xxx× yyy)

(ggg3 ×ggg1)
T (xxx× yyy)

(ggg1 ×ggg2)
T (xxx× yyy)

=

gggT
1 (xxx× yyy)

gggT
2 (xxx× yyy)

gggT
3 (xxx× yyy)

= g(xxx× yyy). (8)

Rotation symmetric The goal is to prove

Vector-Frame(gxxxi,gxxx j) = gGram-Schmidt{xxxi − xxx j,xxxi − xxxk,(xxxi − xxx j)× (xxxi − xxxk)}. (9)

Proof. We can have:

Vector-Frame(gxxxi,gxxx j) = Gram-Schmidt{gxxxi −gxxx j,gxxxi −gxxxk,(gxxxi −gxxx j)× (gxxxi −gxxxk)}
= Gram-Schmidt{g(xxxi − xxx j),g(xxxi − xxxk),g((xxxi − xxx j)× (xxxi − xxxk))}.

(10)

Recall that Gram-Schmidt projection (Gram-Schmidt{vvv1,vvv2,vvv3}) is:

uuu1 = vvv1, eee1 =
vvv1

∥vvv1∥
,

uuu2 = vvv2 −
uuuT

1 vvv2

∥uuu1∥
uuu1, eee2 =

vvv2

∥vvv2∥
,

uuu3 = vvv3 −
uuuT

1 vvv3

∥uuu1∥
uuu1 −

uuuT
2 vvv3

∥uuu2∥
uuu2, eee3 =

vvv3

∥vvv3∥
.

(11)

Thus, the Gram-Schmidt projection on the rotated vector (Gram-Schmidt{gggvvv1,gggvvv2,gggvvv3}) is:

uuu′1 = gggvvv1,

uuu′2 = gggvvv2 −ggg
uuuT

1 vvv2

∥uuu1∥
uuu1,

uuu′3 = gggvvv3 −ggg
uuuT

1 vvv3

∥uuu1∥
uuu1 −ggg

uuuT
2 vvv3

∥uuu2∥
uuu2,

(12)

Thus, Gram-Schmidt{gggvvv1,gggvvv2,gggvvv3}= gGram-Schmidt{vvv1,vvv2,vvv3}.

Transition symmetric

Vector-Frame(xxxi +δxxx,xxx j +δxxx) = Gram-Schmidt{xxxi − xxx j,xxxi − xxxk,(xxxi − xxx j)× (xxxi − xxxk)}. (13)
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Proof. Because the basis is based on the difference of coordinates, it is straightforward to observe that Gram-Schmidt{vvv1 +
ttt,vvv2 + ttt,vvv3 + ttt}= Gram-Schmidt{vvv1,vvv2,vvv3}. So the frame operation is transition equivariant. We also want to highlight that
for all the other vector frame bases introduced in the main article, we remove the mass center for each molecular system, thus,
we can guarantee the transition equivariance property.

Reflection antisymmetric

Vector-Frame(xxxi,xxx j) ̸= Vector-Frame(−xxxi,−xxx j). (14)

Proof. From intuition, this makes sense because the cross-product is anti-symmetric.
A simple counter-example is the original geometry R and the reflected geometry by the original point −R. Thus the two

bases before and after the reflection group is the following:

Gram-Schmidt{xxxi − xxx j,xxxi − xxxk,(xxxi − xxx j)× (xxxi − xxxk)} (15)
Gram-Schmidt{−xxxi + xxx j,−xxxi + xxxk,(xxxi − xxx j)× (xxxi − xxxk)}. (16)

The bases between vvv1,vvv2,vvv3 and {−vvv1,−vvv2,vvv3}} are different, thus such frame construction is reflection anti-symmetric.

If you are able to get the above derivations, then you can tell that this can be trivially generalized to arbitrary vector frames
as long as the three bases are non-coplanar.

C.2 Scalarization
Once we have the three vectors as the vector frame basis, the next step is modeling. Scalarization refers to the function in which
we map the vectors to the frames or bases we construct. Suppose the frame is F = (eee1,eee2,eee3), then for a vector (tensor) hhh, the
corresponding scalarization is:

hhh⊙F = (hhh⊙ eee1,hhh⊙ eee2,hhh⊙ eee3) = (hhh1,hhh2,hhh3). (17)
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D MISATO Dataset Specifications
In this section, we provide more details on the MISATO dataset [8]. Note that for small molecule ligands, we ignore the
Hydrogen atoms.

(a) Training data. (b) Validation data. (c) Test data.
Figure 1. Distribution on # atoms in small molecule ligands for all protein-ligand complex.

(a) Training data. (b) Validation data. (c) Test data.
Figure 2. Distribution on # residues in proteins for all protein-ligand complex.

7/13



E Details of NeuralMD

E.1 Model Architecture and Hyperparameters
In this section, we provide more details on the model architecture in Figure 3, and hyperparameter details in Table 2.

First, we explain each of the three modules in detail and list the dimensions of each variable to make it easier for readers to
understand. Suppose the representation dimension is d.

BindingNet-Ligand:
• zzz(l) = Embedding( f (l)) ∈ RNatom·d is atom type embedding.
• Then for each atom type embedding zzz(l), we add a normalization by multiplying it with the RBF of distance among the

neighborhoods, and the resulting atom type embedding stays the same dimension zzz(l) ∈ RNatom×d .
• {hhh(l)i = Agg j(xxx

(l)
i − xxx(l)j ) · zzz(l)i } ∈ RNatom·d·3 is the equivariant representation of each atom.

• {hhh(l)i j } ∈ RNedge·2d·3 is the invariant representation after scalarization. Then we will take a simple sum-pooling, followed

by an MLP to get the invariant representation hhh(l)i j ∈ RNedge·d .
• Finally, we will repeat L layers of MPNN:

vec(l)i = vec(l)i +Agg j
(
vec(l)i ·MLP(hhhi j)+(xxx(l)i − xxx(p)

j ) ·MLP(hhhi j)
)
, //{vec(l)i } ∈ RNatom·3

hhh(l)i = hhh(l)i +Agg j
(
MLP(hhhi j)

)
. //{hhh(l)i } ∈ RNatom·d

(18)

BindingNet-Protein:
• zzz(p) ∈ RNbackbone-atom·d is the backbone-atom type representation by aggregating the neighbors without the cutoff c.
• z̃zz(p) ∈ RNbackbone-atom·d is the backbone-atom type representation.
• {hhh(p)

i } ∈ RNbackbone-atom·d·3 is the backbone-atom equivariant representation.
• {hhh(p)

i j } ∈RNedge·2d·3 is the invariant representation after scalarization. Then we take a simple sum-pooling, followed by an

MLP to get the invariant representation {hhh(l)i j } ∈ RNedge·d .

• Finally, we get the residue-level representation as hhh(p) = z̃zz(p)+(hhh(p)
N,Cα

+hhh(p)
Cα ,C)/2 ∈ RNresidue·d .

BindingNet-Complex:
• {hhhi j} ∈ RNedge·d·3 is the equivariant interaction/edge representation.
• {hhhi j = hhhi j ·Fcomplex}RNedge·d·3 is the scalarization. Then we take a simple sum-pooling, followed by an MLP to get the

invariant representation {hhh(l)i j } ∈ RNedge·d .
• The final output is obtained by L MPNN layers as:

vec(pl)
i j = vec(l)i ·MLP(hi j)+(xxx(l)i − xxx(p)

j ) ·MLP(hi j), //{vec(pl)
i j } ∈ RNedge·3

F(l)
i = vec(l)i +Agg j∈N (i)vec(pl)

i j . //{F(l)
i } ∈ RNatom·3

(19)

Figure 3. Detailed pipeline of NeuralMD ODE. In the three key modules of BindingNet, there are three vertical boxes, corresponding to
three granularities of vector frames.
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Table 2. Hyperparameter specifications for NeuralMD.

Hyperparameter Value

# layers {5}
cutoff c {5}
velocity initial mapping function {True, False}
velocity refinement coefficient α {0, 0.01, 0.001}
step size (integration) {0.25, 0.5, 1}
learning rate {1e-3, 1e-4}
optimizer {SGD, Adam }

E.2 Overdamped, Underdamped, and Data-driven Langevin Dynamics
In the literature on using Langevin dynamics for MD simulation, there are two main categories: overdamped Langevin
dynamics and underdamped Langevin dynamics. In this section, we discuss these methods and their applicable settings.

Langevin dynamics or damped Langevin dynamics is defined as

maaa =−∇U(xxx)− γmvvv+
√

2mγkBT R(t), (20)

where γ is the damping constant or collision frequency, T is the temperature, kB is the Boltzmann’s constant, and R(t) is a
delta-correlated stationary Gaussian process with zero-mean.

Overdamped Langevin dynamics (Brownian dynamics) This is the friction-dominated regime, where the inertia term (maaa)
is negligible compared to the friction term (−γmvvv). The equation for overdamped Langevin dynamics is:

−∇U(xxx)− γmvvv+
√

2mγkBT R(t) = 0. (21)

Thus, the trajectories are given by:

xxxt+1 − xxxt =− 1
γm

∇U(x)+

√
2mγkBT

γm
R(t)

=− D
kBT

∇U(X)+
√

2DR(t),
(22)

where D = kBT/γ . This has been widely used in deep generative models like Denoising Diffusion Probabilistic Model
(DDPM) [39]. Specifically, it is employed as the Monte Carlo sampling step.

For application, this is suitable for large molecular systems like protein folding in solution because the motion is slow and
dominated by viscous drag. However, such a dynamic is not suitable for simulating small particles like small molecules.

Underdamped Langevin dynamics This is the inertia-dominated regime, where the inertia term (maaa) is comparable to or
larger than the friction term (−γmvvv). It is applicable for describing a particle moving in a low-viscosity medium or when the
friction coefficient γ is small, allowing the particle to exhibit significant inertial motion.

For application, underdamped Langevin dynamics is ideal for systems where inertia plays an important role, such as in
small molecules or systems with oscillations or high-frequency dynamics. This regime is typically used in molecular dynamics
(MD) simulations where inertia is significant, such as simulating vibrational modes of molecules or dynamics in a gas phase.

Data-driven Langevin dynamics in NeuralMD The Langevin dynamics modeled in NeuralMD make no prior assumptions
about overdamped or underdamped behavior. Instead, we learn a data-driven approximation of Equation (20):

maaa = BindingNet( f (l),xxx(l), f (p),xxx(p)
N ,xxx(p)

Cα
,xxx(p)

C )+BindingNet-Ligand( f (l),xxx(l)) · ε, (23)

where we are using the reparameterization trick, and ε is sampled from a standard Gaussian.

Summary To summarize, if we treat the MD simulation of small particles as a density estimation task, there are several
solutions available, including DDPM-like DenoisingLD and NeuralMD. However, if we consider these models as learning or
simulating dynamics from a physics perspective, we must be cautious. Current DDPM methods like DenoisingLD rely on
overdamped Langevin dynamics, which are not well-suited for simulating small molecule dynamics. In this context, NeuralMD
is a more accurate option.
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F Empirical Results
F.1 Standard Deviation for Multi-trajectory Semi-flexible Binding Prediction
We are running all the experiments using three random seeds, 0, 42, and 123. In the tables of the main article, we are only
reporting the mean due to the space limitation. Thus here, we would also like to report the results with standard deviation. We
show the reconstruction and validity results on three multi-trajectory binding dynamics: MISATO-100 in Table 3, MISATO-1000
in Table 4, and MISATO-All in Table 5.

Table 3. Results of multi-trajectory binding dynamics predictions on MISATO-100. Four evaluation metrics are considered: MAE (Å, ↓),
MSE (↓), Matching(↓), Matching (↓), and Stability (%, ↑).

Reconstruction Validity

MAE MSE Matching Stability

VerletMD 85.286 ± 0.035 54.996 ± 0.17 46.753 ± 2.05 10.051 ± 1.39
GNN-MD 5.964 ± 0.05 3.938 ± 0.02 0.671 ± 0.02 70.546 ± 1.81
DenoisingLD 8.251 ± 0.02 5.541 ± 0.01 1.744 ± 0.04 29.545 ± 0.68

NeuralMD ODE (ours) 5.867 ± 0.00 3.870 ± 0.00 0.539 ± 0.02 79.553 ± 2.17
NeuralMD SDE (ours) 5.868 ± 0.00 3.871 ± 0.00 0.533 ± 0.02 80.229 ± 1.23

Table 4. Results of multi-trajectory binding dynamics predictions on MISATO-1000. Four evaluation metrics are considered: MAE (Å, ↓),
MSE (↓), Matching(↓), Matching (↓), and Stability (%, ↑).

Reconstruction Validity

MAE MSE Matching Stability

VerletMD 104.537 ± 0.07 68.942 ± 0.04 48.899 ± 0.19 10.574 ± 0.59
GNN-MD 7.524 ± 0.01 4.915 ± 0.01 0.670 ± 0.05 68.310 ± 4.08
DenoisingLD 9.251 ± 0.15 6.074 ± 0.10 1.362 ± 0.06 37.289 ± 1.54

NeuralMD ODE (ours) 7.459 ± 0.00 4.867 ± 0.00 0.612 ± 0.02 70.362 ± 1.99
NeuralMD SDE (ours) 7.476 ± 0.00 4.876 ± 0.00 0.457 ± 0.00 83.960 ± 0.00

Table 5. Results of multi-trajectory binding dynamics predictions on MISATO-All. Four evaluation metrics are considered: MAE (Å, ↓),
MSE (↓), Matching(↓), Matching (↓), and Stability (%, ↑).

Reconstruction Validity

MAE MSE Matching Stability

VerletMD 97.213 ± 0.29 64.405 ± 0.19 50.857 ± 0.67 11.888 ± 1.49
GNN-MD 7.637 ± 0.01 5.048 ± 0.00 0.675 ± 0.02 69.244 ± 1.65
DenoisingLD 8.149 ± 0.79 5.387 ± 0.52 0.764 ± 0.38 68.315 ± 20.01

NeuralMD ODE (ours) 7.513 ± 0.01 4.961 ± 0.00 0.491 ± 0.02 81.991 ± 1.80
NeuralMD SDE (ours) 7.517 ± 0.00 4.963 ± 0.00 0.474 ± 0.00 83.264 ± 0.00
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F.2 Standard Deviation for Single-trajectory Semi-flexible Binding Prediction
We illustrate the reconstruction and validity results with standard deviation on ten single-trajectory binding dynamics in Table 6.

Table 6. Results on ten single-trajectory binding dynamics prediction. Results with optimal training loss are reported. Four evaluation
metrics are considered: MAE (Å, ↓), MSE (↓), Matching (↓), and Stability (%, ↓).

VerletMD GNN MD Denoising LD NeuralMD (ODE) NeuralMD (SDE)

5WIJ

MAE 14.629 ± 0.04 2.280 ± 0.05 2.501 ± 0.01 2.252 ± 0.16 2.260 ± 0.15
MSE 10.221 ± 0.03 1.521 ± 0.03 1.644 ± 0.00 1.514 ± 0.13 1.514 ± 0.10
Matching 5.459 ± 0.10 0.803 ± 0.09 0.815 ± 0.07 0.464 ± 0.09 0.615 ± 0.18
Stability 24.360 ± 0.52 54.475 ± 2.45 52.418 ± 4.65 82.046 ± 6.26 67.464 ± 14.15

4ZX0

MAE 21.278 ± 0.02 2.370 ± 0.09 3.138 ± 0.06 1.878 ± 0.00 2.158 ± 0.17
MSE 14.357 ± 0.01 1.599 ± 0.05 2.045 ± 0.03 1.263 ± 0.00 1.455 ± 0.14
Matching 7.971 ± 0.05 0.555 ± 0.02 1.072 ± 0.03 0.428 ± 0.00 0.696 ± 0.09
Stability 19.168 ± 0.35 68.613 ± 1.14 44.228 ± 0.78 81.401 ± 0.78 59.109 ± 7.87

3EOV

MAE 27.960 ± 0.06 3.512 ± 0.02 4.055 ± 0.01 3.858 ± 0.31 3.395 ± 0.22
MSE 18.821 ± 0.04 2.413 ± 0.02 2.787 ± 0.01 2.651 ± 0.20 2.309 ± 0.11
Matching 13.588 ± 0.12 1.216 ± 0.05 1.209 ± 0.01 1.062 ± 0.06 0.962 ± 0.03
Stability 13.067 ± 0.29 40.984 ± 2.58 41.469 ± 0.81 47.328 ± 4.95 50.108 ± 3.48

4K6W

MAE 15.428 ± 0.01 3.695 ± 0.04 3.942 ± 0.01 3.656 ± 0.12 3.765 ± 0.20
MSE 10.357 ± 0.01 2.402 ± 0.03 2.635 ± 0.00 2.400 ± 0.08 2.501 ± 0.17
Matching 7.505 ± 0.06 1.038 ± 0.07 0.839 ± 0.01 0.928 ± 0.19 1.076 ± 0.49
Stability 15.441 ± 0.13 42.480 ± 2.74 53.820 ± 0.57 49.438 ± 8.66 49.700 ± 12.15

1KTI

MAE 18.157 ± 0.04 6.641 ± 0.05 7.051 ± 0.02 6.675 ± 0.04 6.646 ± 0.01
MSE 12.723 ± 0.03 4.173 ± 0.04 4.369 ± 0.01 4.176 ± 0.05 4.141 ± 0.01
Matching 7.467 ± 0.03 0.386 ± 0.03 0.268 ± 0.02 0.337 ± 0.17 0.167 ± 0.02
Stability 19.352 ± 0.61 81.831 ± 2.03 91.986 ± 2.36 86.430 ± 11.59 98.508 ± 0.57

1XP6

MAE 13.753 ± 0.01 2.378 ± 0.06 2.218 ± 0.03 1.924 ± 0.05 2.061 ± 0.06
MSE 9.587 ± 0.01 1.561 ± 0.03 1.472 ± 0.02 1.280 ± 0.04 1.356 ± 0.05
Matching 4.672 ± 0.08 0.966 ± 0.08 0.676 ± 0.01 0.537 ± 0.04 0.615 ± 0.11
Stability 28.129 ± 1.17 49.239 ± 2.78 64.951 ± 0.33 75.533 ± 3.82 69.423 ± 6.48

4YUR

MAE 16.764 ± 0.03 7.031 ± 0.07 7.128 ± 0.01 6.957 ± 0.07 7.038 ± 0.19
MSE 11.069 ± 0.00 4.641 ± 0.07 4.807 ± 0.00 4.597 ± 0.03 4.679 ± 0.11
Matching 9.555 ± 0.04 0.920 ± 0.02 0.834 ± 0.01 0.584 ± 0.07 0.749 ± 0.27
Stability 16.542 ± 0.42 47.555 ± 1.06 49.676 ± 0.64 69.775 ± 6.88 60.344 ± 16.47

4G3E

MAE 5.111 ± 0.02 2.709 ± 0.08 3.588 ± 0.11 2.191 ± 0.02 2.345 ± 0.26
MSE 3.503 ± 0.01 1.785 ± 0.02 2.321 ± 0.07 1.453 ± 0.01 1.536 ± 0.16
Matching 3.388 ± 0.03 0.893 ± 0.59 1.069 ± 0.09 0.505 ± 0.12 0.521 ± 0.03
Stability 31.852 ± 0.79 61.802 ± 18.90 40.823 ± 4.19 71.436 ± 11.43 68.729 ± 2.78

6B7F

MAE 31.934 ± 0.01 4.136 ± 0.10 4.431 ± 0.01 3.921 ± 0.14 3.842 ± 0.06
MSE 22.168 ± 0.01 2.768 ± 0.08 3.047 ± 0.01 2.652 ± 0.11 2.601 ± 0.03
Matching 21.691 ± 0.02 1.194 ± 0.13 0.672 ± 0.03 0.459 ± 0.14 0.741 ± 0.26
Stability 11.050 ± 0.04 39.067 ± 5.15 61.583 ± 3.10 75.692 ± 11.97 57.917 ± 13.31

3B9S

MAE 19.473 ± 0.04 2.578 ± 0.08 2.811 ± 0.05 3.039 ± 0.52 3.132 ± 0.92
MSE 11.696 ± 0.03 1.699 ± 0.06 1.868 ± 0.04 1.999 ± 0.35 2.078 ± 0.62
Matching 0.923 ± 0.15 1.414 ± 0.27 0.472 ± 0.03 0.659 ± 0.43 0.444 ± 0.15
Stability 57.801 ± 3.84 49.306 ± 11.48 71.852 ± 1.40 76.065 ± 17.78 77.801 ± 11.54
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