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Supplementary Figures 
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Supplementary Fig. 1.  Morphological characterizations of WC-C catalyst. a, Scanning electron microscopy (SEM) image. b, Transmission electron microscopy (TEM) image. c, X-ray diffraction (XRD) pattern. d, High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image and corresponding energy-dispersive X-ray spectroscopy (EDX) mapping images for C (red) and W (yellow).
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Supplementary Fig. 2.  X-ray photoelectron spectroscopy (XPS) analysis of WC-C catalyst. a, High-resolution XPS spectrum of C 1s. b, High-resolution XPS spectrum of W 4f.
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Supplementary Fig. 3.  Morphological characterizations of W-N-C catalyst. a, SEM image. b, TEM image. c, XRD patterns of W-N-C catalyst and phthalocyanine crystalline complex (Pc complex). d, Aberration-corrected HAADF-STEM image. e, HAADF-STEM image and corresponding EDX mapping images for C (red), N (blue) and W (yellow).
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Supplementary Fig. 4.  XPS analysis of W-N-C catalyst. a, High-resolution XPS spectrum of C 1s. b, High-resolution XPS spectrum of N 1s. c, High-resolution XPS spectrum of W 4f.
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Supplementary Fig. 5.  Morphological characterizations of Co,W-N-C catalyst. a, SEM image. b, TEM image. c, Aberration-corrected HAADF-STEM image. d, XRD patterns of Co,W-N-C catalyst, cobalt (Ⅱ) phthalocyanine complex (CoPc complex) and Pc complex. e, HAADF-STEM image and corresponding EDX mapping images for C (red), N (blue), Co (green) and W (yellow).
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Supplementary Fig. 6.  Morphological characterizations of Ni,W-N-C catalyst. a, SEM image. b, TEM image. c, Aberration-corrected HAADF-STEM image. d, XRD patterns of Ni,W-N-C catalyst, nickel phthalocyanine complex (NiPc complex) and Pc complex. e, HAADF-STEM image and corresponding EDX mapping images for C (red), N (blue), Ni (green) and W (yellow).
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Supplementary Fig. 7.  Distance between two adjacent metal atoms in site 1 (a) and site 2 (b).
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Supplementary Fig. 8.  XPS analysis of Fe,W-N-C catalyst. a, High-resolution XPS spectrum of C 1s. b, High-resolution XPS spectrum of N 1s. c, High-resolution XPS spectrum of Fe 2p. d, High-resolution XPS spectrum of W 4f.
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Supplementary Fig. 9.  Morphological characterizations of Fe-N-C catalyst. a, SEM image. b, TEM image. c, XRD patterns of Fe-N-C catalyst and iron (Ⅱ) phthalocyanine complex (FePc complex). d, Aberration-corrected HAADF-STEM image. e, HAADF-STEM image and corresponding EDX mapping images for C (red), N (blue) and Fe (green).
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Supplementary Fig. 10.  XPS analysis of Fe-N-C catalyst. a, High-resolution XPS spectrum of C 1s. b, High-resolution XPS spectrum of N 1s. c, High-resolution XPS spectrum of Fe 2p. 
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Supplementary Fig. 11.  a, Normalized Fe K-edge X-ray absorption near-edge structure (XANES) spectra of Fe foil, FeO, Fe2O3, Fe,W-N-C and Fe-N-C. b, Expanded pre-edge region of Fe K-edge XANES spectra.
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Supplementary Fig. 12.  3D contour wavelet transformed extended X-ray absorption fine structure (EXAFS) maps of Fe foil (a), FeO (b) and Fe2O3 (c).
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Supplementary Fig. 13.  3D contour Wavelet transformed EXAFS maps of W powder (a) and WO3 (b).
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Supplementary Fig. 14.  Morphological characterizations of Fe,WC-N-C catalyst. a, SEM image. b, TEM image. c, XRD patterns of Fe,WC-N-C catalyst and FePc complex. d, Aberration-corrected HAADF-STEM image. e, HAADF-STEM image and corresponding EDX mapping images for C (red), N (blue), W (yellow) and Fe (green).
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Supplementary Fig. 15.  XPS analysis of Fe,WC-N-C. a, High-resolution XPS spectrum of C 1s. b, High-resolution XPS spectrum of N 1s. c, High-resolution XPS spectrum of Fe 2p. d, High-resolution XPS spectrum of W 4f.
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[bookmark: _Hlk171533675]Supplementary Fig. 16.  Tafel slope for oxygen reduction reaction (ORR) of Fe,W-N-C, Fe,WC-N-C, Fe-N-C, W-N-C, WC-C and commercial 20 wt% Pt/C catalysts.
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Supplementary Fig. 17.  Methanol tolerance tests of Fe,W-N-C and commercial Pt/C catalysts at 0.67 V (V versus RHE). The chronoamperometric responses of the two catalysts before and after adding CH3OH to the electrolyte.
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Supplementary Fig. 18.  Oxygen evolution reaction (OER) polarization curves of Fe,W-N-C, Fe,WC-N-C, Fe-N-C, W-N-C, WC-C and commercial IrO2 catalysts in 1.0 M KOH solution.
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Supplementary Fig. 19.  OER Tafel slopes of Fe,W-N-C, Fe,WC-N-C, Fe-N-C, W-N-C, WC-C and commercial IrO2 catalysts.
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Supplementary Fig. 20.  Long-term electrochemical OER stability tests of Fe,W-N-C and commercial IrO2 catalysts.
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Supplementary Fig. 21.  Specific capacity of zinc-air batteries (ZABs) with Fe,W-N-C catalyst and commercial Pt/C-IrO2 catalyst as the air cathode.
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Supplementary Fig. 22.  Energy density plots of ZABs with Fe,W-N-C catalyst and commercial Pt/C-IrO2 catalyst as the air cathode.
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Supplementary Fig. 23. Repeated galvanostatic discharge/charge cycle stability test for liquid-state ZAB with Fe,W-N-C air cathode at a current density of 5 mA cm-2.
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Supplementary Fig. 24. Galvanostatic discharge/charge cycle stabilities for liquid-state ZABs with Fe,W-N-C and Pt/C-IrO2 air cathodes at a current density of 50 mA cm-2. 


[image: ]

Supplementary Fig. 25.  Photograph of a wristband with LED lights powered by the flexible solid-state ZAB with Fe,W-N-C catalyst as the air cathode.
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Supplementary Fig. 26.  In situ XAS characterizations. a, Fe K-edge XANES spectra of Fe,W-N-C based ZAB during charge and discharge processes at different current densities. b, Enlarged view of the adsorption edge of XANES spectra.
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Supplementary Fig. 27.  The atomistic structure and free energy of the initial, transition, and final states of the adsorption and dissociation reactions of O2 on the W-N4 site in Fe,W-N-C catalyst. 
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Supplementary Fig. 28.  Projected density of state analysis of (a) Fe-3dxy, (b) Fe-3dyz, (c) Fe-3dxz and (d) Fe-3dx2-y2 orbitals with O 2px/2py/2pz orbitals in *OH intermediate on Fe-N4/W-N4 site.
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Supplementary Fig. 29.  Projected density of state analysis of (a) Fe-3dxy, (b) Fe-3dyz, (c) Fe-3dxz and (d) Fe-3dx2-y2 orbitals with O 2px/2py/2pz orbitals in *OH intermediate on Fe-N4 site.
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[bookmark: _Hlk127128925]Supplementary Table 1. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis results of the as-prepared catalysts.

	Catalyst
	M (M=Fe/Co/Ni, wt%)
	W (wt%)

	Fe,W-N-C
	1.25
	4.02

	Fe,WC-N-C
	1.56
	5.49

	Fe-N-C
	1.34
	N/A

	W-N-C
	N/A
	4.76

	WC-N-C
	N/A
	6.23

	Co,W-N-C
	1.18
	4.06

	Ni,W-N-C
	1.30
	4.04








Supplementary Table 2. Extended X-ray absorption fine structure (EXAFS) fitting parameters for Fe foil, WO3 and Fe,W-N-C catalyst.

	Sample
	Bond Type
	Coordination Number
	Bond Length
R (Å)
	Bond disorder
σ2 (Å2)
	R factor

	Fe foil
	Fe-Fe
	8
	2.47±0.02
	0.0049
	0.0023

	
	Fe-Fe
	6
	2.85±0.01
	0.0062
	

	Fe,W-N-C
	Fe-N
	4
	1.90±0.06
	0.0027
	0.0107

	
	Fe-C
	4
	2.69±0.08
	0.0057
	

	
	Fe-C
	4
	3.01±0.09
	0.0025
	

	
	Fe-N (bond with W)
	1
	3.33±0.04
	0.0023
	

	WO3
	W-O
	4
	1.80±0.01
	0.0054
	0.0072

	
	W-O
	2
	2.15±0.03
	0.0052
	

	Fe,W-N-C
	W-N
	4
	2.08±0.09
	0.0014
	0.0164

	
	W-C
	4
	2.88±0.04
	0.0025
	

	
	W-C
	4
	3.21±0.06
	0.0054
	

	
	W-C
	4
	3.65±0.06
	0.0007
	

	
	W-N (bond with Fe)
	1
	4.29±0.05
	0.0055
	





[bookmark: _Hlk127143608]Supplementary Table 3. Summary of the onset potential (Eonset), half-wave potential (E1/2), and Jk at 0.82 V of different catalysts.

	Sample
	Eonset Potential 
(V, V versus RHE)
	E1/2 Potential 
(V, V versus RHE)
	Jk 
(mA cm-2)

	Fe,W-N-C
	1.03
	0.90
	17.14

	Fe,WC-N-C
	1.00
	0.87
	13.96

	Fe-N-C
	0.99
	0.84
	7.26

	W-N-C
	0.90
	0.79
	1.59

	WC-N-C
	0.88
	0.77
	1.10

	Pt/C
	1.01
	0.85
	9.64










Supplementary Table 4. Summary of Tafel slopes for ORR of the as-prepared catalysts.

	
	Fe,W-N-C
	Fe,WC-N-C
	Fe-N-C
	W-N-C
	WC-N-C
	Pt/C

	Tafel Slope
(mV/dec)
	91
	99
	101
	63
	64
	98






Supplementary Table 5.  ORR electrocatalytic performance comparison of Fe,W-N-C with other state-of-the-art catalysts in 0.1 M KOH.

	Catalyst
	Loading Amount
(mg cm-2)
	Eonset
	E1/2 
	Stability
	Ref.

	Fe,W-N-C
	0.2
	1.03
	0.90
	97.94% after 36000 s
	This Work

	Co(CN)3-Cub
	2.04
	0.99
	0.90
	E1/2 −20 mV after 10000 cycles
	[1] 
Nat. Catal. 6, 1164-1173 (2023)

	HESA
	0.127
	0.96
	0.87
	97% after 43200 s
	[2] 
Nat. Sustain. 6, 816-826 (2023)

	(101) copper phosphosulfide
	0.1
	-
	0.90
	E1/2 −11 mV after 30000 cycles
	[3]
Nat. Energy 6, 592-604 (2021)

	ZrN NPs
	0.125
	0.89
	0.80
	95.6% after 36 h
	[4]
Nat. Mater. 19, 282-286 (2020)

	4.3% NiFe-MOF
	2.0
	0.92
	0.83
	97% after 200 h
	[5]
Nat. Energy 4, 115-122 (2019)

	NFLGDY-900c
	0.6
	-
	0.87
	92% after 10000 s
	[6]
Nat. Chem. 10, 924-931 (2018)

	FeCo-NCH
	0.33
	-
	0.889
	E1/2 −8 mV after 10000 cycles
	[7]
Nat. Commun. 14, 1822 (2023)

	HESACs (FeCoNiCuMn)
	0.18
	0.999
	0.887
	93.33% after 25000 s
	[8]
Nat. Commun. 13, 5071 (2022)

	Co SA-NDGs
	0.3
	1.02
	-
	E1/2 −11 mV after 5000 cycles
	[9]
Nat. Commun. 13, 3689 (2022)

	P/Fe-N-C
	0.6
	1.01
	0.90
	E1/2 −2 mV after 36000 s
	[10]
J. Am. Chem. Soc. 145, 3647-3655 (2023)

	MNCSs
	0.126
	-
	0.82
	E1/2 −6mV after 5000 cycles
	[11]
J. Am. Chem. Soc. 144, 11767-11777 (2022)

	Co-Fe ZIF (S-CFZ)
	0.3
	-
	0.85
	91% after 100 h
	[12]
J. Am. Chem. Soc. 144, 4783-4791 (2022)

	Fe-Co-Ni MOF
	0.28
	0.82
	0.75
	-
	[13]
J. Am. Chem. Soc. 144, 3411-3428 (2022)

	Ru-SAS/SNC 
	0.4
	0.998
	0.861
	E1/2 −24 mV after 30000 cycles
	[14]
J. Am. Chem. Soc. 144, 2197–2207 (2022)

	Mn-RuO2
	0.2
	-
	0.86
	95.5% after 50 h
	[15]
J. Am. Chem. Soc. 144, 2694−2704 (2022)

	FeCo-NPC
	0.51
	0.96
	0.83
	no obvious change after 30000 s
	[16]
Adv. Mater. 36, 2306047 (2024)

	YN4-Cl
	0.41
	0.93
	0.85
	95% after 43200 s
	[17]
Adv. Mater. 35, 2300381 (2023)

	FeH-N-C
	0.6
	-
	0.91
	E1/2 −29 mV after 100000 cycles
	[18]
Adv. Mater. 35, 2210714 (2023)

	H-3DOM-Co/ONC
	0.2
	0.94
	0.84
	94% after 30000 s
	[19]
Adv. Mater. 35, 2301894 (2023)

	V-CMO/5rGO
	0.255
	-
	0.86
	90% after 36000 s
	[20]
Adv. Mater. 35, 2303109 (2023)

	DAF-COF
	0.167
	0.89
	0.74
	94.3% after 36000 s
	[21]
Adv. Mater. 35, 2209129 (2023)

	Fe-Zn@SNC
	0.51
	0.99
	0.86
	E1/2 −25 mV after 2000 cycles
	[22]
Angew. Chem. Int. Ed. 135, e202301833 (2023)

	Pd-Gd2O3/C
	0.255
	0.986
	0.877
	90.1 % after 39600 s
	[23]
Angew. Chem. Int. Ed. 62, e202314565 (2023)

	Mn-SAS
	-
	0.99
	0.85
	98.5% after 22000 s
	[24]
Angew. Chem. Int. Ed. 62, e202314933 (2023)












Supplementary Table 6. Summary of the potential at a constant current density of 10 mA cm-2 (EJ=10) and Tafel slopes for OER of the as-prepared catalysts.

	
	Fe,W-N-C
	Fe,WC-N-C
	Fe-N-C
	W-N-C
	WC-N-C
	IrO2

	EJ=10 (V)
	1.56
	1.68
	1.81
	1.64
	1.72
	1.59

	[bookmark: _Hlk116675321]Tafel Slope (mV/dec)
	63
	157
	220
	129
	132
	92














Supplementary Table 7. The zinc-air batteries performance comparison of Fe,W-N-C with other state-of-the-art catalysts.

	Catalyst
	Loading Amount
(mg cm-2)
	Cycling Stability
(h/cycles)
	Current Density
(mA cm-2)
	Ref.

	Fe,W-N-C
	0.5
	Over 10,000 h 
(20,000 cycles)
	5
	This work

	
	1.0
	Over 2,000 h
12,000 cycles
	50
	

	HESA (FeMnCoNiCu)
	1.0
	200 h
	2
	[2]
Nat. Sustain. 6, 816-826 (2023)

	(101)-copper phosphosulfide
	15.0
	800 h
	25
	[3]
Nat. Energy 6, 592-604 (2021)

	ZrN nanoparticles 
	1.0
	100 h
	10
	[4]
Nat. Mater. 19, 282-286 (2020)

	PdMo bimetallene/C
	1.0
	500 h
	10
	[25]
Nature 574, 81-85 (2019)

	CuNa-CF
	0.2
	5000 h
	1
	[26]
Nat. Commun. 15, 8365 (2024).

	FeCo-NCH
	1.0
	100 h
	5
	[7]
Nat. Commun. 14, 1822 (2023)

	P/Fe-N-C
	1.0
	192 h
	10
	[10]
J. Am. Chem. Soc.145, 3647-3655 (2023)

	Ru SAS/SNC
	1.0
	270 h
	5
	[14]
J. Am. Chem. Soc. 144, 2197-2207 ( 2022)

	Fe-Co-Ni MOF
	1.0
	120 h
	5
	[13]
J. Am. Chem. Soc. 144, 3411-3428 ( 2022)

	FeCo-NPC
	10
	60 h
	10
	[16]
Adv. Mater. 36, 2306047 (2024)

	FeH-N-C 
	1.0
	1200 h
	5
	[18]
Adv. Mater. 35, 2210714 (2023)

	VMoON@NC
	2.0
	630 h
	10
	[27]
Adv. Mater. 35, 2302625 (2023)

	CuCo2O4-xSx/NC-2 
	6.0
	300 h
	10
	[28]
Adv. Mater. 35, 2370257 (2023)

	Cu-Co/NC
	1.0
	510 h
	10
	[29]
Adv. Mater. 35, 2300905 (2023)

	T-Fe SAC
	4.0
	350 h
	20
	[30]
Angew. Chem. Int. Ed. 136, e202319370 (2024)

	Fe-SA/N-HCS
	1.0
	400 h
	5
	[31]
Angew. Chem. Int. Ed. 135, e202309784 (2023)

	ZnCo2O4−xFx/CNTs
	6.0
	300 h
	5
	[32]
Angew. Chem. Int. Ed. 62, e202301408 (2023)

	Pd-Gd2O3/C+RuO2
	-
	580 h
	5
	[23]
Angew. Chem. Int. Ed. 62, e202314565 (2023)
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