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Global agricultural land We include cropland and pasture as agricultural land and did not account 
for other land demands related to the agricultural sector, such as housing, manufacturing, 
processing, and transportation. We use cropland spatial data from CROPGRIDS1, a novel synthesis 
of the most recently available information on harvested and physical area maps for 173 crops for 
2020, at a global spatial resolution of 0.05° (approximately 5.6 km at the equator). We used physical 
area maps of CROPGRIDS. We aggregated 173 crop maps to one global cropland map (Fig. S1a). 
Pasture distribution is from HILDA+ pasture/rangeland map2, which is built from several land cover 
datasets (grassland), combined with the Gridded Livestock of the World-2010 (GLW3) map and 
calibrated with FAO statistics. The HILDA+ source maps are at 0.6 arcmin spatial resolution with the 
cell value representing the land use category. We extracted grid cells defined as “pasture/rangeland” 
and converted them into units of area (hectare), assuming the whole area in each grid cell is used for 
pasture. We harmonized the global pasture map derived from HILDA+ with the aggregated cropland 
map by resampling to 3 arcmin and capping the area of grid cells in pasture if the sum of the area of 
pasture and cropland exceeds the cell size. This harmonization reduced the total pasture area by 0.71 
Mkm2, ~2% of the original total area in HILDA+ (30.03 Mkm2). The harmonized global pasture map is 
shown in Fig. S1b. 

 

Fig. S1. Global cropland area (a) and pasture area (b). Spatial resolution: 3 arcmin; Unit: ha 



 

Carbon loss density Here, we account for carbon loss in biomass and soil. We produced the biomass 
carbon loss density map for agriculture for 2019, using Eq.1-2. The actual biomass carbon stock data 
(𝐶2019 , 𝐶2000) is from Xu et al.3, which provided annual estimates (ranging from 2000 to 2019) of global 
terrestrial living biomass (in Mg C ha-1) based on synthesizing ground-based forest inventories with 
airborne and satellite data. To derive 𝐶ℎ𝑦𝑝𝑜, we used Eq. 2 by combining the carbon density map for 
the year 2000 (𝐶2000) with the potential-actual biomass carbon reduction percentage map (𝐶𝑟𝑒𝑑𝑢_2000) 
from Erb et al4, which used circa 2000 data. We disaggregated the coarser grid cells in these maps to 
3 arcmin, assuming homogenous carbon density and reduction in each cell.  

 

𝐶𝑙𝑜𝑠𝑠2019 = 𝐶ℎ𝑦𝑝𝑜 − 𝐶2019 (1) 

𝐶ℎ𝑦𝑝𝑜 =  𝐶2000 (1 − 𝐶𝑟𝑒𝑑𝑢_2000)⁄  (2) 

  

In some grid cells, we found carbon gains. That is, the current carbon storage is larger than the 
potential storage due to current agricultural inputs and the natural productivity of that land. This 
happens in 14% of grid cells globally but the sum of all those cells with carbon gains in agriculture is 
only 0.66 Pg C. Because we focused on carbon loss only, we excluded the grid cells with carbon gains 
by setting those cells to zero, following Walker et al.5. In addition, we capped the cell values in the 
biomass carbon loss map to 47.9 kg C m-2, as it is the maximum potential biomass stock density value 
of undisturbed vegetation4. The capping reduced the total biomass carbon loss in agriculture for 2019 
by 8.39 Pg C. We masked the biomass carbon loss map with global agricultural area extent derived 
from previous steps to obtain biomass carbon loss in agriculture (Fig. S2a). 

We accounted for carbon loss in soil as the changes between current soil carbon pool and the 
predicted pool without land use loss, similar as we did for biomass carbon. Prior global studies6–9 
have assumed loss of 25% of soil carbon within the top meter of soils during the conversion of natural 
ecosystems to croplands. For conversion to pastures, Searchinger et al.7 assume no change in soil 
carbon for tropical pastures and a 10% loss of soil carbon in temperate pastures. However, such 
uniformed percentages are not able to account for the soil loss variation across space, which is of 
great importance in a global mapping study as presented here. 

We first obtained a soil loss density map combining the 2010 soil organic carbon stocks (Mg C / ha) 
for 0-100 cm depths and projected soil organic carbon stocks without land use also for the top meter 
from Sanderman et al.10. Again, we removed cells with soil carbon gains, which were related to ~16% 
cells and 5.30 Pg C soil carbon gains in agriculture. Because we used different cropland and pasture 
maps from Sanderman et al.10, we only considered the soil carbon loss within the global agricultural 
area extent derived in our study. We produced a soil carbon loss map for agriculture at 3 arcmin (Fig. 
S2b), also assuming homogenous soil carbon loss happens in each larger cell. We assume there is 
no soil carbon loss nor gains since 2010 given the lack of more recent data. We aggregated biomass 
and soil carbon loss to obtain the total carbon loss in agriculture at 3 arcmin resolution (Fig. S2c). 



 

Fig. S2. Carbon loss in biomass (a), soil (b) and total carbon pool, including biomass and soil (c) in 
agricultural areas. Spatial resolution: 3 arcmin; Unit: Mg C/ha. 

 

Land use intensity and biodiversity loss density To quantify land use intensity in cropland, we 
followed the methods in Scherer et al.11 using land management inputs (irrigation and fertilizer N & P) 
as the indicators. Specifically, the global irrigation map (AEI) is from Mehta et al.12. Global nitrogen (N) 
and phosphorus (P) fertilizer use maps are obtained from Lu & Tian13. We assigned land-use intensity 
levels to cropland area (Fig. S1a) by overlaying it with AEI, N and P use maps. If the area equipped for 
irrigation and both fertilizer uses did not exceed the first quantile of non-zero values, we consider it 
minimal use. If the area equipped for irrigation or any of the fertilizer uses exceeded the third quartile, 
the cropland we consider it intense use. The remaining cropland we consider to be light use. We 
converted the AEI source map to AEI per area and resampled it to 3 arcmin spatial resolution, 
assuming that the larger cells have the same AEI density as the smaller cells they encompass. 

We built a pasture land-use intensity map by subdividing the pasture from HILDA+ based on GLOBIO 
414. We consider “grassland” as minimal use, “rangeland” as light use, and “pasture” as intense use. 
The GLOBIO 4 data was first reclassified to assign numeric values (minimal use=1, light use=2, 
intense use=3) to the three intensity levels and then resampled with the average method to align the 
resolution with the pasture map (3 arcmin, Fig. S1b). We rounded the averaged values to integers, by 
which we defined the pasture intensity for those areas overlapping with pasture in HILDA+. The 
remaining area in HILDA+ that is not covered by GLOBIO 4 was assigned as light use. 



 

Fig. S3. Land use intensity in cropland (a) and pasture (b). Spatial resolution: 3 arcmin 

 

With the obtained intensity maps (Fig. S3), we then mapped the aggregated, ecoregion-level CFs 
(based on average approach for land occupation, Scherer et al.15) across cropland and pasture by 
ecoregion16, generating CF maps for cropland and pasture separately (Fig. S4). 



 

Fig. S4. Biodiversity loss intensity  in cropland (a) and pasture (b). Spatial resolution: 3 arcmin 

 

Combined loss density To combine carbon and biodiversity loss for each grid cell, we first 
normalized carbon and biodiversity loss (density) values using a cumulative distribution function 
using ecdf()17. For the observations for carbon or biodiversity loss in cropland or pasture, we use the 
observation dataset (excluding zero values) to compute a cumulative distribution function, from 
which we compute the probability (0-1) for each grid cell that a data point in the observations is less 
than or equal to it. We then assigned the returned cumulative probability to each grid cell. By doing 
this, we normalized each loss to a unitless number with a range of 0 to 1. The normalized value 
indicates its relative loss magnitude across the loss in agricultural land, with 1 representing the 
highest level of loss. Then, we averaged the normalized carbon and biodiversity losses into one single, 
unitless number, for cropland and pasture, separately (Fig. S5).  



 

Fig. S5. Combined loss density in cropland and pasture. Spatial resolution: 3 arcmin 

 

Linking impacts to FABIO We aggregated individual CROPGRIDS maps to align with the production 
items in FABIO. Because peppermint and pyrethrum are not included in any product category in 
FABIO, we linked 171 crops to 62 food product categories (see Table S1 for the detailed crop 
information in CROPGRIDS and Table S2 for the mapping relationships). We linked pasture-related 
pressure/impacts to the grazing item in FABIO. We used the country boundary shapefile data from 
GADM version 2.818. We linked the spatial polygons to each region (except for the rest-of-the-world) 
in FABIO (see Table S3 for the region-related information), while we merged the remaining polygons 
for regions that are not included in FABIO and linked them to the rest-of-the-world.  

We constructed land use impacts by linking map-based and country-specific land use areas to 
associated items in FABIO. We calculated the country-specific land use areas for each production 
item in FABIO by using zonal statistics function exact_extract() in the Terra package in R19, with land 



use maps and a FABIO-based country boundary shapefile as inputs. To obtain the map-based losses, 
we multiplied land use maps with loss density maps. With the same method, we constructed and 
connected impacts to FABIO for carbon loss, biodiversity loss and combined loss.  

FABIO has several sub-categories in final demand, and we used the “food use” category throughout 
our analysis. In addition, FABIO provides two versions of the Z matrix that denotes inter-commodity 
input-output flows based on different allocation methods in production processes20. We used the 
matrix version with mass allocation.  

Comparisons with other work Our findings are generally consistent with other work resulting total 
carbon and biodiversity losses in global agriculture. With all anthropogenic land use included, the 
cumulative land-use change (LUC) emissions are estimated at 250 ± 75 Pg C (between 1750 and 
202221).  Based on the estimated total biomass carbon loss and the shares related to our land use 
scope, 312 Pg C with a range of 157 Pg C-487 Pg C can be derived from Erb et al.4. Our biomass carbon 
loss result is lower than the derived mean value, as we use current actual biomass stock maps from 
Xu et al.3, whose estimate for the same year is at the lower bound of those datasets used in Erb et al.4. 
Comparing with Scherer et al.15, our total biodiversity loss result (0.137 PDF) is close but lower than 
theirs (0.156 PDF). This is mainly because we account for cropland and pasture only, whereas Scherer 
et al.15 applied the same CFs to global land use in 2015, including plantations, managed forests and 
urban land.  We find 18% of food-related carbon and biodiversity loss embedded in international trade 
flows, which is in the range of findings from other studies looking at trade in all goods22–26. 
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Fig. S6 Cumulative carbon loss (a) and biodiversity loss (b) based on land area. The blue dash lines mark 
the 50% and 80% of the cumulative loss. 

 

 

Fig. S7. Q-Q plot of carbon loss (a), biodiversity loss (b), and data distribution and Spearman's rank 
correlation coefficient of the two losses (c). Visual inspection is used to check the normality assumptions 
of the two datasets. If the data is normally distributed, the points in a Q-Q (quantile-quantile)  plot will lie on a 
straight Q-Q line drawn through the 0.25th and 0.75th quantiles. The points in (a) and (b) deviate substantially 
from the straight line, indicating that the two data sets are not normally distributed. Therefore, we used non-
parametric Spearman's rank correlation to explore the spatial association between the two losses. In (c), the 
blue dots represent the distribution of the two losses, and Spearman's rank correlation rho and p-value are 
shown on top. 

 



 

Fig. S8  The impact percentage of each food group in high carbon and biodiversity areas (a), and food group 
losses in combined loss, carbon loss and biodiversity loss in high carbon and biodiversity loss areas (b). 
Food groups in (b) are ranked in descending order by total combined loss.  

 

 



 

Fig. S9 Food item losses in combined loss, carbon loss, biodiversity loss, and combined loss per area, per 
tonne and per kcal. Food items are ranked in descending order by total combined loss of the food group and 
then ordered by total combined loss of the item. 

 

 



Fig. S10. Percentage of food group impacts embedded in global trade (a) and the largest trade 
relationships (b-g). Sub-figure names are using ISO3 codes for countries. The country in front of the hyphen is 
the exporting country. 

 

 

Fig. S11.  Contribution of animal products (a) and cattle (b) to total agricultural loss at the national level. 
Dots represent the percentages for each country. The half-violins outline the distribution of results. The boxes 
represent the range from the first to the third quartile, and the horizontal lines within show the median. Qatar 
and Bahrain are not included in the charts given their milk data issue in FABIO. 

 



 

Fig. S12 Contribution of each food group in Mauritania (a), Iceland (b), Botswana (c), Mozambique (d), 
Madagascar (e) and Congo (f). Country names are using ISO3 codes. 

 

Table S18. Largest five net importers and exporters.  

Carbon loss (Pg C) 

  Country Import Export Net import Country Import Export Net export 
1 CHN 61.57 54.92 6.64 BRA 9.31 13.32 4.01 
2 JPN 2.19 0.57 1.62 USA 11.28 13.61 2.33 
3 ITA 2.40 1.37 1.03 AUS 2.01 4.19 2.18 
4 KOR 1.37 0.38 0.99 UKR 1.92 3.52 1.60 
5 GBR 4.14 3.31 0.83 IND 24.32 25.85 1.53 

Biodiversity  loss (1e-3 PDF) 

  Country Import Export Net import Country Import Export Net export 
1 CHN 12.25 8.19 4.06 BRA 8.37 12.76 4.4 
2 USA 4.14 2.15 1.99 AUS 3.07 6.87 3.8 
3 JPN 1.19 0.23 0.96 COL 5.57 6.4 0.83 
4 KOR 0.76 0.05 0.7 ARG 1.58 2.29 0.71 
5 GBR 0.48 0.06 0.42 MEX 4.85 5.39 0.54 

Combined loss (1e6) 
  Country Import Export Net import Country Import Export Net export 



1 CHN 271.02 208.30 62.72 AUS 47.11 103.01 55.91 
2 JPN 16.04 2.17 13.88 BRA 108.45 155.84 47.39 
3 KOR 11.68 1.04 10.65 ARG 40.47 58.48 18.00 
4 ZAF 48.40 41.39 7.01 PRY 4.95 12.11 7.17 
5 EGY 5.66 0.44 5.22 NAM 7.13 13.54 6.41 

Land use (million ha) 

  Country Import Export Net import Country Import Export Net export 
1 CHN 579.27 446.96 132.31 AUS 113.3 247.43 134.14 
2 JPN 36.15 2.83 33.32 BRA 161.99 235.14 73.15 
3 KOR 27.02 1.40 25.62 ARG 85.28 127.94 42.67 
4 ZAF 96.25 78.71 17.54 CAN 19.48 38.83 19.35 
5 VNM 21.02 8.71 12.31 USA 255.61 271.3 15.68 

 

 

Table S19. Largest five transborder displacements and main driving foods.  

Carbon (Pg C) 

 Loss country Driving country Value Main driving foods 
1 BRA CHN 1.78 Bovine meat Pigmeat Vegetable oils 
2 USA CHN 1.65 Pigmeat Vegetable oils Bovine meat 
3 USA MEX 0.80 Other meat Pigmeat Milk 
4 MEX USA 0.62 Bovine meat Vegetables & Fruits Coffee, tea, cocoa 
5 AUS CHN 0.48 Bovine meat Other meat Animal fats 

Biodiversity (1e-3 PDF) 

 Loss country Driving country Value Main driving foods 
1 BRA CHN 1.83 Bovine meat Pigmeat Vegetable oils 
2 AUS CHN 0.78 Bovine meat Other meat Animal fats 
3 MEX USA 0.55 Bovine meat Vegetables & Fruits Coffee, tea, cocoa 
4 AUS USA 0.49 Bovine meat Other meat Milk 
5 AUS JPN 0.48 Bovine meat Wheat Other meat 

Combined loss (1e6) 

 Loss country Driving country Value Main driving foods 
1 BRA CHN 21.67 Bovine meat Pigmeat Vegetable oils 
2 AUS CHN 11.98 Bovine meat Other meat Animal fats 
3 AUS USA 8.36 Bovine meat Other meat Milk 
4 AUS JPN 7.54 Bovine meat Other meat Milk 
5 ARG CHN 7.26 Bovine meat Pigmeat Vegetable oils 

Land use (million ha) 

 Loss country Driving country Value Main driving foods 
1 BRA CHN 34.41 Bovine meat Pigmeat Vegetable oils 
2 AUS CHN 28.85 Bovine meat Other meat Animal fats 
3 AUS USA 20.47 Bovine meat Other meat Milk 



4 AUS JPN 18.18 Bovine meat Other meat Milk 
5 ARG CHN 15.58 Bovine meat Pigmeat Vegetable oils 
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