Supplementary Methods
Check-point inhibitor (CPI) response prediction
Models for Bulk RNAseq and exome data
Models predicting CPI response were created using extreme gradient boosting techniques available from the XGBoost Python package (Chen and Guestrin, 2016) (version 2.1.0). We employed nested cross-validation with 10 train-test divisions (75%) to verify the consistency of prediction performance. Within each training set, model hyperparameters were optimised, in Optuna (Akiba et al., 2019), using 10 times repeated 10-fold cross-validation, with ROC AUC as the metric and with sample allocation to folds stratified by response status and cancer type. The default Optuna tree-structured parzen estimator was employed for this purpose. The domains for hyperparameter search were those recommended in the XGBoost package (Chen and Guestrin, 2016). Under sampling of the majority class was implemented for each training fold using the imbalanced-learn package (Lemaitre et al., 2017) at a ratio of 1 to 1. The optimal hyperparameters were then used to fit an XGBoost regularised classifier on the entirety of each training set with the performance evaluated on the corresponding test set. Feature importance was determined according to SHAP (Shapley Additive exPlanations) Python package (version 0.45; (Lundberg et al., 2017)) and global absolute average values were aggregated across training sets.

Mutation-associated neoantigen scores
Most scRNAseq datasets lacked immunotherapy response labels. Therefore, a previously published measure, the mutation-associated neoantigen (MANA) score, was utilised as a surrogate label. This MANA score comprises a gene signature that was calculated for all CD8+ T cells (CD8A expression > 0) using AddModuleScore() from the Seurat package v4 (Hao et al., 2021). We aggregated these scores for each sample by the upper quartile value to yield sample-specific representations of TME immune dynamics. Different MANA score definitions exist for skin and non-skin tumours (Caushi et al., 2021; Oliveira et al., 2021) and thus we used the appropriate gene signature for each of these categories. Since neoantigen-specific T cells are important mediators of CPI-unleased anti-tumour immune responses (Van Rooij et al., 2013; Rizvi et al., 2015; Fehlings et al., 2017, 2019; George et al., 2017; Kamphorst et al., 2017), this metric serves as a valid surrogate of clinical response.  However, limitations include that clinical response depends on other host- and tumour specific factors (Litchfield et al., 2021), alongside diverse TIME cell types (Pittet, Michielin and Migliorini, 2022). 

Single cell RNAseq data models
Raw count data were extracted from each cell subtype after excluding normal, dying, or unknown cell subtypes, as well as CD8+ T subtypes (due to the risk of confounding as the MANA score is defined on these subtypes). Following the exclusion of mitochondrial genes, these data were pseudobulked and normalised using the variance-stabilisation transformation from DESeq2 (version 1.34.0; (Love, Huber and Anders, 2014)). Principal components analysis using the top 500 most varying genes was performed to identify drivers of batch effects. The removeBatchEffect() function from the limma package (version 3.50.3) was used to regress out the effect of source study, mitochondrial DNA percentage, and the number of expressed genes with raw counts > 5. Successful batch correction was confirmed by inspecting PCA biplots constructed from the corrected data.

Elastic net regression models were trained to predict sample-level MANA scores from pseudobulked, batch-corrected scRNAseq data for each cell subtype using scikit-learn (version 1.0.1; (Pedregosa et al., 2011), with acceleration through scikit-learn-intelex 2021.4.0 (https://pypi.org/project/scikit-learn-intelex/)). 10 train-test splits (75% train) were created by stratifying on the MANA score decile. For each of these training sets, we performed hyperparameter optimization using Optuna and 5-fold quintuple cross-validation (stratifying these splits by MANA score deciles). The optimal hyperparameters were then used to fit an elastic net regularised linear regressor on the entirety of each training set with the performance evaluated on the corresponding test set. To further characterise model behaviour, we additionally developed 100 randomised null models for each cell subtype by randomly shuffling sample MANA scores and repeating the modelling process for 100 randomised train-test split (75% train). Model performances and feature importances were benchmarked against these randomised nulls. Feature importance was determined according to SHAP (SHapley Additive exPlanations) Python package (version 0.41; (Lundberg et al., 2017)) and global absolute average values were aggregated across training sets.

Meta learning approach for immune-oncology target discovery
Feature matrix including CPI prediction importance per gene
Feature importances associated with CPI prediction (excluding the CNA models due to low test set performances) and MANA regression models (excluding any models with MSE greater than two standard deviations above the median), for bulk and single cell data respectively, were considered as potential predictors. The importances were generated within the SHAP (Lundberg, Allen and Lee, 2017). To capture how antigen processing affects immunotherapy response, we downloaded publicly available HLA-peptidomic and matched bulk transcriptomic data for n=60 patients with cancer (Bulik-Sullivan et al., 2018) and computed Pearson correlation coefficients for gene expression-HLA peptide presentation associations. Causal data on immune responses to genetic perturbation stemmed from n=7 publicly available CRISPR co-cultures and n=15,442 SNP-phenotype links. Biological context was provided through node degrees from Hetionet’s GiG network and GrG. Imputations were performed as described above for features common to both approaches. The GiG network degrees (here included as a feature whilst it formed the network topology for the MIDAS GIN) and the Shapley importance scores from CPI response and MANA score predictors were imputed as 0.

Meta-learners and Ensemble Stacking
Several meta-learners were trained on the feature matrix described above: elastic net (Pedregosa et al., 2011), XGBoost (Chen and Guestrin, 2016), random forest (Pedregosa et al., 2011) and support vector machine (Pedregosa et al., 2011). The probability output of each of the meta-learners was used to train a simple logistic regression stacker predicting immune-oncology drug targets from the joint meta-learner output probability matrix. This third layer allows for a weighted mean of the probability outputs from each meta-learner leveraging heterogeneity within the probability outputs of each meta-learners to increase robustness in predictions in external datasets (Whalen and Pandey, 2013). 
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