Interbrain Synchrony Mitigates the Polarizing Effect of Echo Chambers

2

1

Supplementary Material

4 5

- Supplementary Figure 1.
- 6 A moral dilemma and the moral appropriateness scale

Enemy territory:

Baxter is the leader of a small group of soldiers. He and his soldiers are on their way back from a completed mission deep in enemy territory when Chris, one of Baxter's men has stepped in a trap that has been set by the enemy and is badly injured. The trap is connected to a radio device that by now has alerted the enemy to the soldier's presence. The enemy will soon be on their way. If the enemy finds the injured man, they will torture him and kill him. He begs Baxter not to leave him behind, but if Baxter tries to take him with him, the entire group will be captured. The only way to prevent this injured soldier from being tortured is for Baxter to shoot him himself.

Is it morally appropriate for Baxter to shoot this soldier in order to prevent him from being tortured by the enemy?

1	2	3	4	5	6	7	8
Completely morally inappropriate	Morally inappropriate	Somewhat immoral	Slightly immoral	Slightly moral	Somewhat moral	morally appropriate	Completely morally appropriate

7

8

9

10

11

Note. A screenshot of a computer screen in which one dilemma (out of ten) is presented to the participants in our study. Underneath is the interactive moral appropriateness scale. Note that the content in the screen is translated here to English, whereas the actual content in our study was in either Hebrew or Arabic.

Supplementary Table 1

Comparing Interbrain synchrony levels between real and pseudo groups across all ROI pairs and across both experimental conditions.

Condition	ROI pair	β1	SE	DF	T value	P Value	bonferron
							i
							corrected
							sig.
Discussion	Left dIPFC	0.0134	0.0032	877.31	4.3822	< .001	TRUE
	(BA46)						
Discussion	Right dIPFC	0.0106	0.0027	896	3.8308	< .001	TRUE
	(BA46)						
Discussion	Left dIPFC	0.0138	0.0029	887.09	4.7806	< .001	TRUE
	(BA9)						
Discussion	Right dIPFC	0.0125	0.0027	883.79	4.5388	< .001	TRUE
	(BA9)						
Discussion	Left pars	0.0126	0.0028	897	4.3856	< .001	TRUE
	opercularis						
Discussion	Right pars	0.0114	0.0027	896	4.1522	< .001	TRUE
	opercularis						
Discussion	Left pars	0.0109	0.0027	887.56	4.0225	< .001	TRUE
	triangularis						
Discussion	Right pars	0.0163	0.0028	887.62	5.7698	< .001	TRUE
	triangularis						
Discussion	Left	0.0104	0.0028	887.74	3.7337	< .001	TRUE
	premotor						
	cortex						
Discussion	Right	0.0133	0.0029	886.41	4.6044	< .001	TRUE
	premotor						
	cortex						

Fixation	Left dIPFC	0.0062	0.0044	876.6	1.3973	0.1626	FALSE
	(BA46)						
Fixation	Right dIPFC	0.0054	0.0040	885.53	1.3373	0.1814	FALSE
	(BA46)						
Fixation	Left dIPFC	0.0085	0.0041	886.4	2.0659	0.0391	FALSE
	(BA9)						
Fixation	Right dIPFC	0.0067	0.0039	885.29	1.6984	0.0897	FALSE
	(BA9)						
Fixation	Left pars	0.0071	0.0039	886.56	1.791	0.0736	FALSE
	opercularis						
Fixation	Right pars	0.009	0.0042	885.5	2.1517	0.0316	FALSE
	opercularis						
Fixation	Left pars	0.0107	0.0040	886.37	2.6735	0.0076	FALSE
	triangularis						
Fixation	Right pars	0.0103	0.00419	886.42	2.4659	0.0138	FALSE
	triangularis		2				
Fixation	Left	0.01	0.0043	886.42	2.3165	0.0207	FALSE
	premotor						
	cortex						
Fixation	Right	0.0051	0.0042	885.25	1.2041	0.2288	FALSE
	premotor						
	cortex						

Note. This table summarizes the results of the twenty combarsions comparing interbrain synchrony value in real groups (dummy coded as 1) to pseudo groups (dummy coded as 0), across various ROI pairs and in both experimental conditions. That table includes the estimate of beta (synchrony in real groups minus synchrony in pseudo groups), standard error (SE), degrees of freedom (DF), t-value, p-value, and whether or not the p-value is significant compared to a Bonferroni corrected critical p.

Supplementary Table 2 *Model comparisons between the ten separate H1 models and their corresponding null models.*

DOL i	0.0 -	N		DIC	Chi		
ROI pair	Model	paramters	AIC	BIC	square	DF	p value
Left dIPFC	Null Model	5	904.785	925.162			
(BA46)	H1 Model	7	895.597	924.125	13.187	2	0.0013
Right dIPFC	Null Model	5	927.1426	947.6217			
(BA46)	H1 Model	7	929.080	957.751	2.0619	2	0.3566
Left dIPFC	Null Model	5	923.408	943.876			
(BA9)	H1 Model	7	926.684	955.339	0.7242	2	0.6961
Right dIPFC	Null Model	5	919.187	939.643			
(BA9)	H1 Model	7	921.541	950.180	1.6461	2	0.439
Left pars	Null Model	5	928.323	948.814			
opercularis	H1 Model	7	932.202	960.889	0.121	2	0.9412
Right pars	Null Model	5	926.143	946.622			
opercularis	H1 Model	7	929.962	958.633	0.1808	2	0.9135
Left pars	Null Model	5	926.396	946.875			
triangularis	H1 Model	7	929.047	957.718	1.3491	2	0.5093
Right pars	Null Model	5	922.767	943.224			
triangularis	H1 Model	7	925.579	954.218	1.1883	2	0.552
Left	Null Model	5	925.905	946.3729			
premotor	H1 Model	7	025 992	05/1527	4 0227	2	O 1229
cortex	H1 Model	,	925.882	954.537	4.0227	2	0.1338
Right	Null Model	5	916.065	936.499			
premotor	H1 Model	7	917.485	946.092	2.5807	2	0.2751
cortex	111 MOGE	,	J17. 4 03	340.032	2.3007	~	0.2731

Note. This table summarizes the results of the ten model comparisons.