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Supplementary Information:
A. Experimental Methods
1. Sample characteristics and fabrication
2. Measurement set-up
3. Lorentzian voltage pulses
B. 2/3 edge channel dynamics model
C. Additional data:
1. PASN at 17.05GHz, v=2 and 2/3

2. HOM shot noise at v=2/3 with sinewave RF drive.

Al. Sample characteristics and fabrication: samples are 2DEGs with electrons confined
at the interface of high mobility epitaxially grown GaAs/GaAlAs heterojunctions at 90 nm
below the surface. The low temperature zero field mobility is 300m?s*V* and the electron
density is ns=1,11.10"m. For this density, the bulk filling factor vg=2/5 corresponds to a
magnetic field of ~11.2 Tesla. Ohmic contacts are realized by evaporating 125 nm Au, 60 nm
Ge, 4 nm Ni followed by annealing at 470°C. A shallow mesa etching (H3PO4 phosphoric acid,
time 4 minutes) defines the sample. The QPC gates are realized by e-beam lithography, see




10

15

20

25

Fig.S1 for a SEM image of the sample used. The edge channel length between each contacts
and the center of the QPC is about 18um. .
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Figure S1-1: SEM view of the sample used. Yellow areas are ohmic contacts, blue aeras
denote the un-etched part of 2DEG mesa. A 10um black bar indicates the scale. (A) and (B)
denote the probable location of the mixing tunneling point defects coupling the co-propagating
channels at v=2 and 3 discussed in part C2 of the supplementary material

A2. Measurement set-up: an ultra-low temperature cryo-free dilution refrigerator with a
22 mK base temperature from CryoConcept is used as in*®45! It is equipped with a dry
superconducting coil able to reach 14.5 Tesla. Ultra-low-loss dc-40GHz microwave cables
bring the room temperature microwave excitation from a 20GHz AnaPico APMSXXG-4 4
channel RF source to a Printed Circuit Board (PCB). The RF power of the microwave source,
given in the main text is attenuated by fixed 60dB cold attenuators and extra losses in the
cryogenic coaxial cables. Coplanar waveguides designed by CST microwave StudioR etched on
the PCB bring the two radiofrequency excitations to ohmic contact (1) and (2) of the sample,
see Fig.1(a) and Fig.S1-1. Noise measurements are obtained by separately converting the
transmitted and reflected current fluctuations into voltage fluctuations at contact (3) and (4)
respectively in parallel to a R-L-C resonant circuit tuned to 2,2 MHz frequency and bandwidth
~ 150 kHz, with R=20kOhms. Note that an effective resonant circuit resistance Refr. =
RR;/(R+ R;) = 6.5kOhms is found instead of 20kOhms due to inductance loss, giving a
shunt resistance R, = (L2nfy) 2/r in parallel to R, where r=15 Ohms is the series resistance of
the inductance. Finally, the Q factor of the RLC resonant circuit is given by the ratio of the

parallel resistance Resi//Rnan to the characteristic impedance \/% where Ruan is the Hall

resistance of the sample. The voltage fluctuations are amplified by two home-made cryogenic
amplifiers with 0.22 nV/HzY? input noise at low temperature, followed by low noise room
temperature amplifiers. The amplified fluctuations are passed through Chebyshev filters and

2




10

15

20

25

then sent to a fast 20Ms/s digital acquisition card (ADLink 9852) while a PC provides real-time
computation of the cross-correlation spectrum. Absolute Noise calibration is done by recording
the equilibrium Johnson Nyquist noise when varying the temperature from 20mK to 200mK.
Differential Conductance measurements giving the transmission and reflection are made by
applying a low frequency AC voltage, frequency 270Hz, and uV amplitude voltage to contact
(1) and sending the amplified AC voltage from contacts (3) and (4) to two Lock-in amplifiers.
The low frequency measurement accuracy is mostly limited by the large 1/f noise of the
cryogenic HEMT (white noise cross-over at ~1MHz). The shot noise accuracy is limited by the
input white noise of the amplifier and time averaging. For vg=2/3, the 20kOhm resistor and the
effective RLC parallel resistance Re=6.5kOhms in parallel with the bulk Hall resistance
converts the input noise of 220pV/HzY2 into 2.5102’A%/Hz equivalent current noise power.
Using cross-correlation and noise averaging during the typical measurement time tm =3s with
~150kHz effective detection bandwidth around the 2.3 MHz RLC resonant frequency, the
accuracy of a raw noise data point is +/- 3.7 10°°A%/Hz. Longer measurement times can be used
to increase the accuracy.
A3 Lorentzian voltage pulses:
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Figure S1-3: generation of Lorentzian voltage pulses. The pulses generated at the output

of the room temperature Anapico RF source by a combination of four harmonics®* > of 5-

20GHz with appropriate amplitudes and then splitted into the two signal shown in the figure.

The black (blue) curve is the excitation sent to contact (1) and (2) respectively. Both are

attenuated by 60dB and additional few dB RF-loss along the cryogenic coaxes. Small difference
are due to residual imbalance in the RF power splitter used to separate the signal into two.

Figure S1-3 shows the pulses injected towards the upper left and lower right ohmic contacts
(1) and (2). As only the first four harmonics of the Lorentzian pulse are used, the pulse show no
DC component. The small oscillmations in the voltage signal the lack of harmonics higher than
the fourth. Note that the lack of DC component of the pulses.
B: the 2/3 edge channel dynamics model:
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Model:

We use the model developed in Ref.3? . Starting with the following equation of motion:

i—) _ -1 i—) _ -1 _1—>
atI = —0oC axI oC go'1 (S1),
- I . . . . . .
where I = (I;) with Iz (x, t) denoting the current in outer(inner) channel at time t and point
_. (1 0 /1 -1 .
X, 0 =04 (0 _1/3) accounts for the channel conductances, g = g (_1 1 ) describes

Ci+Cx —Cy
—Cx C,+Cy
Ci the outer(inner) channel self-capacitance per unit length and Cx the inter-channel
Il(x, t) 11 .
I(x, t)) = <12> expi(kx —
wt). The local electro-chemical potential expressed in units of voltage are related to the local
currentviaVy(x,t) = Iy(x,t) /o, and V,(x,t) = —31,(x, t)/0y.

the inter-channel tunneling conductance and C = ( ) the interaction with

capacitance per unit length®>%’. We seek a solution of the form (

We can make connection with the abelian field theory of FQHE edges described by the
Lagrangian®>%*:

L=-10r9"Kdxp ~ 99"V, (52)
With ¢=(V1,V2) and K = 6,067 " and V = ¢,C*. The chosen parameters Cx=0.4nF/m,

C1=C>=0.1nF/m correspond to a K-F-P initial renormalization parameter?? A=1.109 close to
renormalization fixed point A=1 leading to a quasi-charge and quasi-neutral modes. The
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solutions are given by diagonalization of equation (S1). Here we recall the results obtained in
Ref.2, An important dimensionless parameter is

_ feo
f(w)—fa(l"' f ) (53)
eZ
with go=Cx/(C1+3C2) and f¢o. = izncxl '
eq.

Solution (I): Charge mode.

Let us define, as done in Ref3* | the convenient intermediate variable: X(§) =

\/ 1 — 4¢ + (4&)2. With this notation, the charge mode solution corresponds to a wavevector
ki=k’1+ik”| given by:

k= :Tq [C1(1— 28+ X(§) —3C,(1 + 28— X()] (S4)

—-2¢

. . 1 i
With voltage components on the outer and inner channel (_311), with: I; = PPV

The following graph shows the variations of the charge mode phase velocity ve=w/k’), the
charge mode attenuation length 1/k”, and the inner to outer channel voltage ratio of the charge
mode.
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Figure S2: computed charge mode characteristics for a typical charge relaxation length of
leq=1 pm. (a) phase velocity versus frequency. The velocity shows a significant variation
around the cross-over frequency fc.o=7.7 GHz for leg=1 pm. This is expected to lead to
dispersive effects. (b) the charge mode attenuation is shown to be infinite at zero frequency and
to remain quite large >20um at high frequency. (c) inner/outer voltage ratio versus frequency.
At low frequency the mode is a pure charge mode (V1(x,t)=V2(x,t)) while at high frequency it
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is expected to be a quasi-charge mode with few 10% imbalance between the inner and outer
voltages.

Solution (I1): Neutral mode.

The neutral mode solution corresponds to a wavevector ky=k’,i+ik”; given by:

kn = 5-[€1(1 - 28 - X(9) — 3C,(1 + 28 + X)) (S5)
With components of the current on the outer and inner channel are (I 1") with: Iy = —1+4_f;; =),

The following graph shows the variations of the neutral mode phase velocity vh=w/k’1, the
neutral mode attenuation length 1/k”); and the outer to inner current ratio of the neutral mode.
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Figure S3: neutral mode characteristics for leq=1pm. (a) the neutral mode velocity is
negative, i.e. the neutral mode propagate upstream. Note the frequency dispersion around fc.o.
as also observed for the charge mode. (b) attenuation length: the neutral mode exponential
decay occurs over a length smaller than leq. and reaches leq. in the DC limit. (c) the negative
value signals a pure neutral mode with opposite current 11(x,t)= - I2(x,t) at low frequency, while
at high frequency the mode is only quasi-neutral.

The next step is to calculate the AC potential at the middle of the QPC point x=L, given
the applied AC potential Vo1 at the upper left injecting ohmic contact, point x=0, where x
denotes the curvilinear abcissa along the edge channel. A similar calculation can be done when
injecting from the lower right contact. To proceed, we remark that the neutral mode cannot
propagate as the attenuation is stronger than exp(-L/leq.)=2. 10" and we are left to only consider
the charge mode. We use the charge mode scattering amplitude of current derived in equation
(22) of Ref.®2, and the inner to outer amplitude ratio I, to calculate the inner channel voltage
V,(t, L) at the QPC. We find:

Vo(t,L) = RE[(=3)Vo: (1 — L) L' Kib=2m D lal (S6)
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With the complex k; given by equation S4. This leads to the calculated AC amplitude reduction
shown in figure 2(d) of the main text and expected for various values of leq. .

We can also calculate the deformation of periodic Lorentzian pulses injected at contact (1) after
their 20um propagation towards the QPC. This is shown in figure S4 for various leq. The
Lorentzian repetition frequency is 5GHz and the full width at mid-height is 36ps. For simplicity
and direct use of equation S6, the Lorentzian is approximated by the sum of the first four
harmonics at 5, 10, 15, and 20 GHz. The truncation is responsible for the small oscillations
observed in the black dashed curves in figures S4(a-d) which show the injected pulses
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Figure S4: Lorentzian pulse deformation for various leq.=2 to 0.25um. The black dashed
curve represent the 4-harmonics periodic Lorentzian injected at the ohmic contact (1) and the
red solid curves the inner channel voltage calculated at the QPC, propagation length of 20um.
The periodicity is 5GHz (period 0.2ns) and the full width at mid height 36ps. The voltage
calculated at the QPC shows asymmetric deformation due to dispersive effects and amplitude
reduction as well as broadening due to damping by inter-channel tunneling. These trends
increase while reducing the charge equilibration length as shown in figure (b to d) for leq.=1, 0.5
and 0.25pm.

The next figure S5 shows the calculated expect HOM noise variations for two different
values of leq.. The black dashed curve correspond to an unrealistic value of 100um and the red
open circle to 0.5um. The latter is well fitted by a sinewave variation (dashed red curve)
indicating the loss of high frequency components of the original Lorentzian pulses, while the
former cannot be fitted by a sinewave (dashed blue curve) as for 100um equilibration one would
expect the Lorentzian pulses not to be deformed. To calculated the HOM noise we use to
identical pulses injected with a relative time-delay 1 at contact (1) and (2). The calculation is
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done for weak backscattering giving Poissonian shot noise and follows the approach developed
in Ref.* for levitons.
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Figure S5: calculated HOM shot noise for indistinguishable Lorentzian charge pulses
colliding at the QPC for [, =100um (black dashed curve) and I, =0.5um red open circle).
The blue and red dotted curves are best sinewave fit for both [, values.

C: additional data:

C1. PASN shot noise at 17.05 GHz:
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Figure S6: PASN determination of charge mode attenuation at 17.05GHz. The
procedure is similar to that done in figure 2(a) and (b), main text, for 15.3GHz RF drive.
Left graph: filling factor v=2, the RF source power is -6dBm. Blue circles points: DCSN,
red circles PASN. The dashed lines are fits using Te=29+/-1.5mK and, 81+/-4mK and
Vac(v=2)=74+/-1.51V for DCSN and PASN respectively. The higher PASN temperature
is due to RF heating. From this we estimate de AC voltage applied on contact (1) as:
74+/-3uV<V01<~88+/-4uV. Right graph: same but for v=2/3 and +6dBm RF power. The
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fits give Te=34+/-2mK and, Te=120+/-10mK and Vac(v=2/3)=143+/-3uV for DCSN and
PASN respectively. The charge mode attenuation from the contact to the QPC is :
0.40+/-0.02 <Vac(v=2/3)/4V01<0.483+/-0.03. From the computed attenuation shown
figure 2(d), main text, this confirms the estimation 1um < [, < 2um.

C2. HOM Shot Noise analysis at v=2
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Figure S7: schematic representation of discrete inter-channel tunneling points located on
opposite side of the QPC

Assuming perfect propagation along the input edge channels, the Lorentzian pulses sent
at opposite contacts (1) and (2) should give a single HOM dip versus the time delay (modulo
the period T=200ps). However, We observe a split central dip and an additional dip around
=100ps (mod. T).

Here we explain the reason for the multiple dips. We refer to the work of Refs®1°2°3 suggesting
local tunnel mixing points along the co-propagating edge at v=2 (and also 3). Because the single
particle drift velocities of the outer and inner channels are different, we expect several
propagation times for excited charge pulses to reach the QPC. In case of a unique tunnel mixing
point (A) in the left input edge there will be a propagation time for a quasiparticle emitted in
the inner channel and remaining in this channel with probability Ta=(1-Ra) different from than
the time for a quasiparticle emitted in the outer edge channel and transferred to the inner channel
with probability Ra=1-Ta. As similar mixing may occur on the opposite input edge at a point
(B), see figure S7.

A probable location of the mixing point is at the transition between the ungated at gated edge
channels denoted as (A) and (B) in figure S1. Indeed, a right angle turn is known to mix edge
channel®® . For v=3 this leads to mix the channel belonging to the first and second Landau
levels®®. For v=2, the Rashba spin orbit, due to the perpendicular electric field confining
electrons at the interface of the GaAs/GaAlAs heterojunction®, is expected to mix the spin
while the momentum is forced to make a right angle change of direction>®6%61.6263 e expect
that the time-domain electronic HOM shot noise would represent the combination of several

9
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HOM dips representing the collision of various charge pulses weighted by the mixing
probabilities. More explicitly, according to®?, for two discrete tunneling mixing points, each
localized on the input arm of the opposite input edge channels, the expected HOM noise is given

by:
S;(t) = RD[TpTgSnom(424) + T4RpSHom(A23) + RaTSrom(414) + RaRpSpom(413)] +
R2[R4T4Syom(A12) + TeTeSrom(434)] (S7)

With R=1-D the reflection probability at the QPC. The last two terms are t-independent and
correspond to the partitioning of electron between inner and outer edge channels in each input
arm with Ap=La(1/v1-1/v2) and Azs=Lgs(1/vs-1/vs) where Lag) is the distance between the
mixing point A (B) from the ohmic contact 1 (2). Their contribution gives an offset in the HOM
noise. The first four time are t-dependent terms and correspond to a discrete sum of HOM
Lorentzian dips. They can be viewed as the HOM noise correlation resulting from the collision
at the QPC of two split Lorentzians LS1(t) and LS2(t-t), with LS1(t)=TaL(t-L/v2)+RaL(t-La/v2-
(L-La)/v1) and LS2(t)=TsL(t-L/v4)+ReL(t-Le/vs-(L-LB)/v3) where L(t) denotes the generic
Lorentzian pulse sent to ohmic contacts and vy3) denotes the velocity of the outer upper (lower)
channels and vz, the velocities of the upper (lower) inner channels and L=20um is the distance
between the ohmic contacts and the QPC Eqg. S7 justifies the generic form: Cst +
ASyom(413) + BSyom(423) + CSyom(414) + DSyom(454) used to fit the v=2 HOM noise
data of figure 3(a) main text. For the fit of figure 3(a) we use LS1(t)=0.66L(t)+0.33L(t-70ps)
and LS2(t)=0.45L (t-t0)+0.55L (t-t0-77ps) where 10=20ps is an arbitrary time delay, known
modulo the 200ps period, arising from propagation delays in the RF coaxial lines. From figure
S1 we expect the distance of La and Lg to be about 16pum. The close 70 and 77ps values suggest
a small left-right 1.6 um asymmetry in the QPC gate location coming from device fabrication.
A detailed study at v=2 will be detailed in Ref.>!. Note that the orders of magnitudes of the
various time-delays are in the range expected for inner-outer edge velocities known to range
between few 10*m/s and few 10°m/s, see Ref.323435, The most important message of figure 3(a)
is that the shape of the Lorentzian are unperturbed, in contrast to what is observed in figure 3(c)
at v=2/3.

C2. HOM Shot noise at v=2/3 using sinewave instead of Lorentzian pulses:

10
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Figure S8: HOM shot noise with sinewave at 2/3: The blue open circle are the
experimental data taken at base temperature with f=15.3GHz. The inner edge channel is
weakly backscattered, 1-D=0.02. The red dashed line is a fit from equation (4) with
Bessel function argument replaced by (e*/hf)2Vacsin(nft) using an equal AC amplitude
for right and left incoming voltage at the QPC of Va=148+/-3uV. A small noise offset
of 2.5e-30A%/Hz has been included in the fit. The Vac value is compatible with PASN
measurements, giving 143+/-3uV and displayed in figure 2(b) of the main text.

In figure S8, we show that, injecting sinewave pulses instead of Lorentzian
pulses on contact (1) and (2) at v=2/3, gives a HOM analysis in excellent agreement with
the analysis of independent PASN measurements, shown in Fig.2 main text, where the
RF sinewave is injected to one contact only.
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