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A1. Sample characteristics and fabrication: samples are 2DEGs with electrons confined 

at the interface of high mobility epitaxially grown GaAs/GaAlAs heterojunctions at 90 nm 

below the surface. The low temperature zero field mobility is 300m2s-1V-1 and the electron 

density is ns=1,11.1015m-2. For this density, the bulk filling factor B=2/5 corresponds to a 

magnetic field of 11.2 Tesla. Ohmic contacts are realized by evaporating 125 nm Au, 60 nm 30 

Ge, 4 nm Ni followed by annealing at 470°C. A shallow mesa etching (H3PO4 phosphoric acid, 

time 4 minutes) defines the sample. The QPC gates are realized by e-beam lithography, see 
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Fig.S1 for a SEM image of the sample used. The edge channel length between each contacts 

and the center of the QPC is about 18μm. .  

. 

 
Figure S1-1: SEM view of the sample used. Yellow areas are ohmic contacts, blue aeras 5 

denote the un-etched part of 2DEG mesa. A 10um black bar indicates the scale. (A) and (B) 

denote the probable location of the mixing tunneling point defects coupling the co-propagating 

channels at ν=2 and 3 discussed in part C2 of the supplementary material  

 

A2. Measurement set-up: an ultra-low temperature cryo-free dilution refrigerator with a 10 

22 mK base temperature from CryoConcept is used as in40,44,51 . It is equipped with a dry 

superconducting coil able to reach 14.5 Tesla. Ultra-low-loss dc-40GHz microwave cables 

bring the room temperature microwave excitation from a 20GHz AnaPico APMSXXG-4 4 

channel RF source to a Printed Circuit Board (PCB). The RF power of the microwave source, 

given in the main text is attenuated by fixed 60dB cold attenuators and extra losses in the 15 

cryogenic coaxial cables. Coplanar waveguides designed by CST microwave StudioR etched on 

the PCB bring the two radiofrequency excitations to ohmic contact (1) and (2) of the sample, 

see Fig.1(a) and Fig.S1-1. Noise measurements are obtained by separately converting the 

transmitted and reflected current fluctuations into voltage fluctuations at contact (3) and (4) 

respectively in parallel to a R-L-C resonant circuit tuned to 2,2 MHz frequency and bandwidth 20 

≈ 150 kHz, with R=20kOhms. Note that an effective resonant circuit resistance Reff. =
𝑅𝑅𝐿/(R + 𝑅𝐿) ≈ 6.5kOhms is found instead of 20kOhms due to inductance loss, giving a 

shunt resistance 𝑅𝐿 = (L2π𝑓0) 
2/𝑟 in parallel to R, where r=15 Ohms is the series resistance of 

the inductance. Finally, the Q factor of the RLC resonant circuit is given by the ratio of the 

parallel resistance Reff//RHall to the characteristic impedance √
𝐿

𝐶
 , where RHall is the Hall 25 

resistance of the sample.  The voltage fluctuations are amplified by two home-made cryogenic 

amplifiers with 0.22 nV/Hz1/2 input noise at low temperature, followed by low noise room 

temperature amplifiers. The amplified fluctuations are passed through Chebyshev filters and 
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then sent to a fast 20Ms/s digital acquisition card (ADLink 9852) while a PC provides real-time 

computation of the cross-correlation spectrum. Absolute Noise calibration is done by recording 

the equilibrium Johnson Nyquist noise when varying the temperature from 20mK to 200mK. 

Differential Conductance measurements giving the transmission and reflection are made by 

applying a low frequency AC voltage, frequency 270Hz, and μV amplitude voltage to contact 5 

(1) and sending the amplified AC voltage from contacts (3) and (4) to two Lock-in amplifiers. 

The low frequency measurement accuracy is mostly limited by the large 1/f noise of the 

cryogenic HEMT (white noise cross-over at 1MHz). The shot noise accuracy is limited by the 

input white noise of the amplifier and time averaging. For B=2/3, the 20kOhm resistor and the 

effective RLC parallel resistance Reff=6.5kOhms in parallel with the bulk Hall resistance 10 

converts the input noise of 220pV/Hz1/2 into 2.510-27A2/Hz equivalent current noise power. 

Using cross-correlation and noise averaging during the typical measurement time τm =3s with 

150kHz effective detection bandwidth around the 2.3 MHz RLC resonant frequency, the 

accuracy of a raw noise data point is +/- 3.7 10-30A2/Hz. Longer measurement times can be used 

to increase the accuracy. 15 

A3 Lorentzian voltage pulses: 

 
Figure S1-3: generation of Lorentzian voltage pulses. The pulses generated at the output 

of the room temperature Anapico RF source by a combination of four harmonics54,55,56 of 5-

20GHz with appropriate amplitudes and then splitted into the two signal shown in the figure. 20 

The black (blue) curve is the excitation sent to contact (1) and (2) respectively. Both are 

attenuated by 60dB and additional few dB RF-loss along the cryogenic coaxes. Small difference 

are due to residual imbalance in the RF power splitter used to separate the signal into two.  

 

Figure S1-3 shows the pulses injected towards the upper left and lower right ohmic contacts 25 

(1) and (2). As only the first four harmonics of the Lorentzian pulse are used, the pulse show no 

DC component. The small oscillmations in the voltage signal the lack of harmonics higher than 

the fourth. Note that the lack of DC component of the pulses. 

B: the 2/3 edge channel dynamics model: 
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Model: 

We use the model developed in Ref.32 . Starting with the following equation of motion: 

𝝏

𝝏𝒕
𝑰⃗ = −𝝈𝑪−𝟏

𝝏

𝝏𝒙
𝑰⃗ − −𝝈𝑪−𝟏𝒈𝝈−𝟏𝑰⃗      (S1), 

where 𝑰⃗ =  (
𝑰𝟏
𝑰𝟐
) with 𝑰𝟏(𝟐)(𝒙, 𝒕) denoting the current in outer(inner) channel at time t and point 

x, 𝝈 = 𝝈𝒒 (
𝟏 𝟎
𝟎 −𝟏/𝟑

)  accounts for the channel conductances, 𝒈 = 𝒈(
𝟏 −𝟏
−𝟏 𝟏

)  describes 5 

the inter-channel tunneling conductance  and 𝑪 = (
𝑪𝟏 + 𝑪𝑿 −𝑪𝑿
−𝑪𝑿 𝑪𝟐 + 𝑪𝑿

)  the interaction with 

C1(2) the outer(inner) channel self-capacitance per unit length and CX the inter-channel 

capacitance per unit length32,57. We seek a solution of the form (
𝑰𝟏(𝒙, 𝒕)
𝑰𝟐(𝒙, 𝒕)

) = (
𝑰𝟏
𝑰𝟐
) 𝐞𝐱𝐩 𝒊(𝒌𝒙 −

𝝎𝒕). The local electro-chemical potential expressed in units of voltage are related to the local 

current via 𝑽𝟏(𝒙, 𝒕) = 𝑰𝟏(𝒙, 𝒕)/𝝈𝒒 and 𝑽𝟐(𝒙, 𝒕) = −𝟑𝑰𝟐(𝒙, 𝒕)/𝝈𝒒.  10 

We can make connection with the abelian field theory of FQHE edges described by the 

Lagrangian22,24: 

𝑳 =
𝟏

𝟒𝝅
[𝝏𝑻𝝋

𝑻𝑲𝝏𝒙𝝋− 𝝏𝒙𝝋
𝑻𝑽𝝏𝒙𝝋]    (S2) 

With φ=(V1,V2) and 𝑲 = 𝝈𝒒𝝈
−𝟏  and 𝑽 = 𝝈𝒒𝑪

−𝟏 . The chosen parameters CX=0.4nF/m, 

C1=C2=0.1nF/m correspond to a K-F-P initial renormalization parameter22 Δ=1.109 close to 15 

renormalization fixed point Δ=1 leading to a quasi-charge and quasi-neutral modes. The 
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solutions are given by diagonalization of equation (S1). Here we recall the results obtained in 

Ref.32. An important dimensionless parameter is  

 𝝃(𝝎) = 𝝃𝑶 (𝟏 +
𝒇𝑪.𝒐

𝒇
)     (S3) 

with ξ0=CX/(C1+3C2) and 𝒇𝑪.𝟎. =
𝟏

𝟐𝝅

𝒆𝟐

𝟐𝒉𝑪𝑿𝒍𝒆𝒒.
. 

Solution (I): Charge mode. 5 

Let us define, as done in Ref.32 , the convenient intermediate variable: 𝑿(𝝃) =

√𝟏 − 𝟒𝝃 + (𝟒𝝃)𝟐. With this notation, the charge mode solution corresponds to a wavevector 

kI=k’I+ik”I given by: 

 𝒌𝐈 =
𝝎

𝟐𝝈𝒒
[𝑪𝟏(𝟏 − 𝟐𝝃 + 𝑿(𝝃)) − 𝟑𝑪𝟐(𝟏 + 𝟐𝝃 − 𝑿(𝝃))]  (S4) 

With voltage components on the outer and inner channel (
𝟏

−𝟑𝑰𝐈
), with:  𝑰𝐈 =

−𝟐𝝃

𝟏+𝟒𝝃+𝑿(𝝃)
. 10 

The following graph shows the variations of the charge mode phase velocity vc=ω/k’I, the 

charge mode attenuation length 1/k”I and the inner to outer channel voltage ratio of the charge 

mode. 

 

Figure S2: computed charge mode characteristics for a typical charge relaxation length of 15 

leq.=1 μm. (a) phase velocity versus frequency. The velocity shows a significant variation 

around the cross-over frequency fC.O.=7.7 GHz for leq.=1 μm. This is expected to lead to 

dispersive effects. (b) the charge mode attenuation is shown to be infinite at zero frequency and 

to remain quite large >20μm at high frequency. (c) inner/outer voltage ratio versus frequency. 

At low frequency the mode is a pure charge mode (V1(x,t)=V2(x,t)) while at high frequency it 20 
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is expected to be a quasi-charge mode with few 10% imbalance between the inner and outer 

voltages.  

 

Solution (II): Neutral mode. 

The neutral mode solution corresponds to a wavevector kII=k’II+ik”II given by: 5 

 𝒌𝐈𝐈 =
𝝎

𝟐𝝈𝒒
[𝑪𝟏(𝟏 − 𝟐𝝃 − 𝑿(𝝃)) − 𝟑𝑪𝟐(𝟏 + 𝟐𝝃 + 𝑿(𝝃))]  (S5) 

With components of the current on the outer and inner channel are (
𝑰𝐈𝐈
𝟏
), with:  𝑰𝐈𝐈 =

𝟏+𝟒𝝃−𝑿(𝝃)

−𝟐𝝃
. 

The following graph shows the variations of the neutral mode phase velocity vn=ω/k’II, the 

neutral mode attenuation length 1/k”II and the outer to inner current ratio  of the neutral mode. 

 10 
 

Figure S3: neutral mode characteristics for leq.=1μm. (a) the neutral mode velocity is 

negative, i.e. the neutral mode propagate upstream. Note the frequency dispersion around fC.O. 

as also observed for the charge mode. (b) attenuation length: the neutral mode exponential 

decay occurs over a length smaller than leq. and reaches leq. in the DC limit. (c) the negative 15 

value signals a pure neutral mode with opposite current  I1(x,t)= - I2(x,t) at low frequency, while 

at high frequency the mode is only quasi-neutral.  

 

The next step is to calculate the AC potential at the middle of the QPC point x=L, given 

the applied AC potential V01 at the upper left injecting ohmic contact, point x=0, where x 20 

denotes the curvilinear abcissa along the edge channel. A similar calculation can be done when 

injecting from the lower right contact. To proceed, we remark that the neutral mode cannot 

propagate as the attenuation is stronger than exp(-L/leq.)=2. 10-6 and we are left to only consider 

the charge mode. We use the charge mode scattering amplitude of current derived in equation 

(22) of Ref.32, and the inner to outer amplitude ratio II to calculate the inner channel voltage 25 

𝑉2(𝑡, 𝐿) at the QPC. We find: 

𝑉2(𝑡, 𝐿) = 𝑅𝐸[(−3)𝑉01(1 − 𝐼1𝐼2)𝐼1𝑒
𝑖(𝑘I

′𝐿−2𝜋𝑓𝑡)𝑒−𝑘I
"𝐿   (S6) 
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With the complex kI given by equation S4. This leads to the calculated AC amplitude reduction 

shown in figure 2(d) of the main text and expected for various values of leq. . 

We can also calculate the deformation of periodic Lorentzian pulses injected at contact (1) after 

their 20μm propagation towards the QPC. This is shown in figure S4 for various leq.. The 

Lorentzian repetition frequency is 5GHz and the full width at mid-height is 36ps. For simplicity 5 

and direct use of equation S6, the Lorentzian is approximated by the sum of the first four 

harmonics at 5, 10, 15, and 20 GHz. The truncation is responsible for the small oscillations 

observed in the black dashed curves in figures S4(a-d) which show the injected pulses 

 

Figure S4: Lorentzian pulse deformation for various leq.=2 to 0.25μm. The black dashed 10 

curve represent the 4-harmonics periodic Lorentzian injected at the ohmic contact (1) and the 

red solid curves the inner channel voltage calculated at the QPC, propagation length of 20μm. 

The periodicity is 5GHz (period 0.2ns) and the full width at mid height 36ps. The voltage 

calculated at the QPC shows asymmetric deformation due to dispersive effects and amplitude 

reduction as well as broadening due to damping by inter-channel tunneling. These trends 15 

increase while reducing the charge equilibration length as shown in figure (b to d) for leq.=1, 0.5 

and 0.25μm. 

 

The next figure S5 shows the calculated expect HOM noise variations for two different 

values of leq.. The black dashed curve correspond to an unrealistic value of 100μm and the red 20 

open circle to 0.5μm. The latter is well fitted by a sinewave variation (dashed red curve) 

indicating the loss of high frequency components of the original Lorentzian pulses, while the 

former cannot be fitted by a sinewave (dashed blue curve) as for 100μm equilibration one would 

expect the Lorentzian pulses not to be deformed. To calculated the HOM noise we use to 

identical pulses injected with a relative time-delay τ at contact (1) and (2). The calculation is 25 

   . = 2     . = 1  

   . =  .5     . =  .25  
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done for weak backscattering giving Poissonian shot noise and follows the approach developed 

in Ref.55 for levitons. 

 

Figure S5: calculated HOM shot noise for indistinguishable Lorentzian charge pulses 

colliding at the QPC for    . =100μm (black dashed curve) and    . =0.5μm red open circle). 5 

The blue and red dotted curves are best sinewave fit for both    . values. 

 

C: additional data: 

 

C1. PASN shot noise at 17.05 GHz: 10 

 

Figure S6: PASN determination of charge mode attenuation at 17.05GHz. The 

procedure is similar to that done in figure 2(a) and (b), main text, for 15.3GHz RF drive. 

Left graph: filling factor ν=2, the RF source power is -6dBm. Blue circles points: DCSN, 

red circles PASN. The dashed lines are fits using Te=29+/-1.5mK and, 81+/-4mK and 15 

Vac(ν=2)=74+/-1.5μV for DCSN and PASN respectively. The higher PASN temperature 

is due to RF heating. From this we estimate de AC voltage applied on contact (1) as: 

74+/-3μV<V01<~88+/-4μV. Right graph: same but for ν=2/3 and +6dBm RF power. The 
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fits give Te=34+/-2mK and, Te=120+/-10mK and Vac(ν=2/3)=143+/-3μV for DCSN and 

PASN respectively. The charge mode attenuation from the contact to the QPC is : 

0.40+/-0.02 <Vac(ν=2/3)/4V01<0.483+/-0.03. From the computed attenuation shown 

figure 2(d), main text, this confirms the estimation 1μm ≤    . ≤ 2μm.  

C2. HOM Shot Noise analysis at ν=2 5 

 

Figure S7: schematic representation of discrete inter-channel tunneling points located on 

opposite side of the QPC 

Assuming perfect propagation along the input edge channels, the Lorentzian pulses sent 

at opposite contacts (1) and (2) should give a single HOM dip versus the time delay (modulo 10 

the period T=200ps). However, We observe a split central dip and an additional dip around 

τ=100ps (mod. T).  

Here we explain the reason for the multiple dips. We refer to the work of Refs51,52,53 suggesting 

local tunnel mixing points along the co-propagating edge at ν=2 (and also 3). Because the single 

particle drift velocities of the outer and inner channels are different, we expect several 15 

propagation times for excited charge pulses to reach the QPC. In case of a unique tunnel mixing 

point (A) in the left input edge there will be a propagation time for a quasiparticle emitted in 

the inner channel and remaining in this channel with probability TA=(1-RA) different from than 

the time for a quasiparticle emitted in the outer edge channel and transferred to the inner channel 

with probability RA=1-TA. As similar mixing may occur on the opposite input edge at a point 20 

(B), see figure S7.  

A probable location of the mixing point is at the transition between the ungated at gated edge 

channels denoted as (A) and (B) in figure S1. Indeed, a right angle turn is known to mix edge 

channel58 . For ν=3 this leads to mix the channel belonging to the first and second Landau 

levels58. For ν=2, the Rashba spin orbit, due to the perpendicular electric field confining 25 

electrons at the interface of the GaAs/GaAlAs heterojunction59, is expected to mix the spin 

while the momentum is forced to make a right angle change of direction59,60,61,62,63. We expect 

that the time-domain electronic HOM shot noise would represent the combination of several 
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HOM dips representing the collision of various charge pulses weighted by the mixing 

probabilities. More explicitly, according to52, for two discrete tunneling mixing points, each 

localized on the input arm of the opposite input edge channels, the expected HOM noise is given 

by: 

𝑆𝐼(𝜏) = 𝑅𝐷[𝑇𝐴𝑇𝐵𝑆𝐻𝑂𝑀(𝛥24) + 𝑇𝐴𝑅𝐵𝑆𝐻𝑂𝑀(𝛥23) + 𝑅𝐴𝑇𝐵𝑆𝐻𝑂𝑀(𝛥14) + 𝑅𝐴𝑅𝐵𝑆𝐻𝑂𝑀(𝛥13)] +5 

𝑅2[𝑅𝐴𝑇𝐴𝑆𝐻𝑂𝑀(𝛥12) + 𝑇𝐵𝑇𝐵𝑆𝐻𝑂𝑀(𝛥34)]    (S7) 

With R=1-D the reflection probability at the QPC. The last two terms are τ-independent and 

correspond to the partitioning of electron between inner and outer edge channels in each input 

arm with Δ12=LA(1/v1-1/v2) and Δ34=LB(1/v3-1/v4) where LA(B) is the distance between the 

mixing point A (B) from the ohmic contact 1 (2). Their contribution gives an offset in the HOM 10 

noise. The first four time are τ-dependent terms and correspond to a discrete sum of HOM 

Lorentzian dips. They can be viewed as the HOM noise correlation resulting from the collision 

at the QPC of two split Lorentzians LS1(t) and LS2(t-τ), with LS1(t)=TAL(t-L/v2)+RAL(t-LA/v2-

(L-LA)/v1)  and LS2(t)=TBL(t-L/v4)+RBL(t-LB/v4-(L-LB)/v3) where L(t) denotes the generic 

Lorentzian pulse sent to ohmic contacts and v1(3) denotes the velocity of the outer upper (lower) 15 

channels and v2(4) the velocities of the upper (lower) inner channels and L=20μm is the distance 

between the ohmic contacts and the QPC Eq. S7 justifies the generic form: 𝐶𝑠𝑡 +
𝐴𝑆𝐻𝑂𝑀(𝛥13) + 𝐵𝑆𝐻𝑂𝑀(𝛥23) + 𝐶𝑆𝐻𝑂𝑀(𝛥14) + 𝐷𝑆𝐻𝑂𝑀(𝛥24)  used to fit the ν=2 HOM noise 

data of figure 3(a) main text. For the fit of figure 3(a) we use LS1(t)=0.66L(t)+0.33L(t-70ps) 

and LS2(t)=0.45L(t-τ0)+0.55L(t-τ0-77ps) where τ0=20ps is an arbitrary time delay, known 20 

modulo the 200ps period, arising from propagation delays in the RF coaxial lines. From figure 

S1 we expect the distance of LA and LB to be about 16μm. The close 70 and 77ps values suggest 

a small left-right 1.6 μm asymmetry in the QPC gate location coming from device fabrication. 

A detailed study at ν=2 will be detailed in Ref.51. Note that the orders of magnitudes of the 

various time-delays are in the range expected for inner-outer edge velocities known to range 25 

between few 104m/s and few 105m/s, see Ref.32,34,35. The most important message of figure 3(a) 

is that the shape of the Lorentzian are unperturbed, in contrast to what is observed in figure 3(c) 

at ν=2/3.  

C2. HOM Shot noise at ν=2/3 using sinewave instead of Lorentzian pulses: 

 30 
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Figure S8: HOM shot noise with sinewave at 2/3: The blue open circle are the 

experimental data taken at base temperature with f=15.3GHz. The inner edge channel is 

weakly backscattered, 1-D=0.02. The red dashed line is a fit from equation (4) with 

Bessel function argument replaced by (e*/hf)2Vacsin(πfτ) using an equal AC amplitude 5 

for right and left incoming voltage at the QPC of Vac=148+/-3μV. A small noise offset 

of 2.5e-30A2/Hz has been included in the fit. The Vac value is compatible with PASN 

measurements, giving 143+/-3μV and displayed in figure 2(b) of the main text. 

In figure S8, we show that, injecting sinewave pulses instead of Lorentzian 

pulses on contact (1) and (2) at ν=2/3, gives a HOM analysis in excellent agreement with 10 

the analysis of independent PASN measurements, shown in Fig.2 main text, where the 

RF sinewave is injected to one contact only. 
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