OCoOoO~NOOOUOTA~,WN -

Methods

The multipath search algorithm

The major goal of the search algorithm is to construct a directed acyclic (DA) graph between
the source router s and the destination d in a distributed manner, given a network. The topology
information of the network can be acquired via the corresponding functions of existing routing
protocols, such as open shortest path first (OSPF), routing information protocol (RIP) and
intermediate system-to-intermediate system (IS-1S). Each node executes the same algorithm to
build up its routing table.

In the search algorithm, the source s is the first router to process. In principle, for a node v,
whether an entry is added to the routing table depends on whether it has been confirmed that one
of the direct neighbors is connected forward to the destination d or is node d exactly. If yes, then
node v is also connected forward to node d and two new routing entries are added to the tables of
it and the neighbor, respectively. Unlike general search ideas, where the search process exits once
the destination is reached, this algorithm continues to search for other nodes that are also connected
forward to the destination node d to obtain new transmission paths, according to the breadth-first
strategy. Note, here the search process cannot return back to deal with the previous node until all
the direct neighbors have been checked up. For example, as shown in Fig. 1b, if neighbor v;,, has
been confirmed to be connected to the destination d, i.e., a packet sent by v;,; can reach node d
forward, then two entries are added to the routing tables of v; and v; ., respectively. On the other
hand, since other neighbors v;,, and v; 5 are also connected forward to node d, they also can act
as the next hops of v; to the destination.

Give a node v, the processing algorithm can be divided into two subfunctions for convenience:
one is to process the direct neighbors of v that are connected forward to the destination, and the
other is to process the neighbors that are not connected to the destination or it is not confirmed
whether they are connected to the destination (they are added to the queue L, or L,). If the edge
between node v and a direct neighbor n has not been visited yet and the minimum hop number
from the source s to v is less than or equal to the minimum hop number to neighbor n, then both
routing tables of node v and n should be updated, provided that it is confirmed that node n is
connected forward to the destination. This subfunction is shown in Extended Data Fig. 1 (Function
F1), where A is the adjacency matrix of a network, A, is a matrix with the same size as 4,
containing the state information whether a directed edge has been visited, M, is a vector containing
the minimum hop numbers from the source s to other nodes, and queues L, and L,, indexed by
node v, are used to temporarily contain the direct neighbors of v to be processed in later steps.

Clearly, as shown in Extended Data Fig. 1, if it is not confirmed whether neighbor n is
connected to the destination d or not, then which queue (L, or L,) the node will be added to
depends on the minimum hop numbers from the source s to it and node v. To clarify the
difference, two cases are shown in Extended Data Fig. 3, where the black solid lines are the links
that have not been visited while the blue ones represent the links that have been visited (the blue
arrow refers to the directed edge that not only has been visited but has been selected out to form
the DA graph, which means two routing entries also have been added to the routing tables of both
sides, respectively), and the red dashed arrow represents a directed edge that the neighbor’s
minimum hop number is less than that of node v (it is possible to form routing loops).

As shown in Extended Data Fig. 3a, node v is a direct neighbor of v, and its minimum hop
number from the source node s is larger than the number of v,. Since at that time node v has not

1

46
47
48
49
50
o1
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

been visited (only the edge between them has been visited), it is impossible to know whether node
v3 IS connected forward to node d or not. Thus, node v5 is added to the end of queue L, of node
v;. Similarly, the neighbor v, is also added to queue L,. On the other hand, as shown in Extended
Data Fig. 3b, since node v is visited prior to node v, according to the depth-first strategy and the
minimum hop number of node v is larger than that of node v,, v, is added to queue L, of node
V3.

Next, the nodes in L; of node v will be processed first because they have larger hop numbers
from the source s, which is in accord with the principle of DA graphs. The subfunction is given in
Extended Data Fig. 2 (Function F2), where vector B, contains the state whether a node has been
checked (for example, 1 means yes while 0 represents no). Clearly, for a neighbor n in Ly, if it has
not been visited yet, then the state in B, is modified and Function F1 is called first to process its
direct neighbors, using the depth-first search idea. If it is confirmed that neighbor n is connected
forward to d, then the routing tables of node v and n will be updated. Note, the second loop (line
11 to 15) is used to restore the states because the nodes may be useful in the later steps though
they are not connected to d forward. For example, as shown in Extended Data Fig. 3a, though node
v, is not connected forward to the destination d, it can be connected to node d reversely via node
v;, which allows more nodes to relay packets to the destination.

Only ifitis confirmed that node v cannot be connected forward to node d after all the neighbors
in L1 have been checked up, then the nodes in L2 will be processed by Function F>. For example,
as shown in Extended Data Fig. 3b, since the current node is v; and the destination d is exactly a
direct neighbor of it, Function F> is not called, namely line 20 of Function F1 is not executed to
process the node v, in L, indexed by node v4, which means the search algorithm will return back
to process the other neighbor node in queue L1 of node vy, i.e., node v,.

Implementation of the search algorithm

An example of the search algorithm is shown in Extended Data Fig. 4, where the black lines are
the edges that have not been visited while the blue ones represent the links that have been visited,
and the blue arrows refer to the edges that not only have been visited but have been selected out to
form a directed acyclic graph between the source router s and the destination d, i.e., two entries
have been added in the routing tables of both sides of the directed edge, respectively. Each node
of the network, denoted by v for convenience, executes Function F1, in which the source router s
is the first node to process.

Clearly, node s has two direct neighbors v, and v,. Since both of them have not been visited
yet, node v does not know whether they can be connected forward to d and has to add them to
queue L1, indexed by node s, which is shown in Extended Data Fig. 4a.

Without loss of generality, assume node v; (in queue L1 of node s) is first checked by Function
F». Since node v, has not been visited, node v jumps to call Function F1 via line 4 of Function F».
Since the destination d is a direct neighbor of v, so the directed edge from node v, to d is
redrawn as a blue arrow line, which means that v; is connected forward to d and two entries are
added to the routing tables of them, respectively. On the other hand, node v, is also a direct
neighbor of v; while both of them have the same minimum hop number from the source, so it is
added to queue L1, indexed by v,. This is shown in Extended Data Fig. 4b.

The next step is to check the nodes in queue L1, indexed by v,. Obviously, as shown in Extended
Data Fig. 4c, node v, is the only one to be processed by Function F». Since the destination d is
also a direct neighbor of v,, the directed edge from v, to d is re-drawn as a blue arrow line, which

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

means node v, is also connected forward to d and two entries will be added to the routing tables
of them, respectively.

Note, for node v,, after its direct neighbor d having been checked by Function F2, node v
returns back to continue to execute line 6 of Function F> (it is executed for the first time). Thus,
the directed edge from node v, to v, is re-drawn as a blue arrow line, i.e., two entries are added to
the routing tables of them, respectively, which is shown in Extended Data Fig. 4d. Similar
operations are performed to re-draw the directed edge from s to v,, as shown in Extended Data
Fig. de.

For the source node s, since the other neighbor v, in queue Lz is connected forward to d, similar
operations are performed to re-draw the directed edge from it to v,, which is shown in Extended
Data Fig. 4f.

Finally, a DA graph is constructed from the source s to node d by interconnecting all the
selected nodes along the directed edges between them. This is similar to the generation procedure
of a SPF tree by the shortest path algorithm.

The setting process of encoding matrices

The procedure is started up by the destination d. After receiving a request from the source router
s, it first generates a [In(d)| x |In(d)| random square matrix R with full rank, and then sends
each row vector of R over an incoming edge e; € In(d) reversely to the source s, where In(d)
refers to the incoming edge set of d.

At an intermediate node v, |Out(v)| row vectors can be received from the outgoing edges and
given as a |Out(v)| x |In(d)| matrix, denoted by Y;, for convenience, where Out(v) is the
outgoing edge set of v. Pre-multiplying this matrix by the local encoding matrix (kernel), we can
obtain a new matrix

X, =K,-Y,
where K, is a [In(v)| X |Out(v)| random matrix (the rank r(K,) = Min(|In(v)|, |Out(v)])),
generated by node v itself. Similarly, each row vector of X, is sent over an incoming edge e; €
In(v) reversely to the source.

This procedure is performed until the source node s, where the received matrix is denoted by
Y for convenience and the row number is |Out(s)|. Note, linear row transformation is employed
at each intermediate node in the above procedure, namely each row vector of Y5 is a linear
combination of the row vectors of matrix R, according to the theory of linear algebra. Thus, the
maximum dimension w of the source messages (the number of edge-disjoint paths from the source
s to the destination d) is equal to the row rank of Y%, which means w independent column vectors®
can also be extracted from Y because linear column transformation will be employed in the data
transmission phase. The local encoding matrix K, of the source node s can be obtained by
calculating the generalized inverse of a matrix consisting of w independent column vectors from
Y., and for node d, the corresponding column vectors with the same order information as the
selected independent column vectors of Y can be extracted from R to form its local encoding
matrix K 4, which is used to decode the received packets in the data transmission phase.

Competing interests The authors declare no competing interests.

137

Function F1: Processing algorithm of a node v

Input: the source node s, the destination d, a node v;
Output: L,, L,, new routing entries;

Data: adjacency matrix 4, state matrix 4,, state vector M;
1 for all neighbors n of node v do

2 if Ay[v][n] == 0 then

3 if My[n] = M,[v] then

" if node n is connected to d then

5 A new entry is added to the routing table of v(src = s, dst = d, next = n);
6 A new entry is added to the routing table of n(src = d, dst = s, next = v);
7 else

s ‘ node n is added to the end of L;;

9 end

10 else

1 ‘ node n is added to the end of L,;

12 end

13 Ao[v][n] = 1;

1 end

s end

1 if L1 is not empty then

v | Call Fx(s,d, v, Ly);

s end

1 if v is not connected d and L, is not empty then
» | Call Fs,d, v, Ly);

» end

138 Extended Data Fig. 1. Processing algorithm of a router node v.
139

140
141

142

Function F>: Processing algorithm of queue L; of v

Input: node s, d, current node v, queue L;(i = 1, 2);
Output: new routing entries;

Data: state vector B,

1 for all nodesnin L; do

2 if By[n] == 0 then

3 BO [Tl] =1;

" Call Fi(s, d, n); //depth-first search

5 end

6 if node n is connected to d then

7 A new entry is added to the routing table of v(src = s, dst = d, next = n);
8 A new entry is added to the routing table of n(src = d, dst = s, next = v);
9 end

10 end

n for all nodesnin L; do

12 if node n is not connected to d then

" | By[n] = 0;

14 end

s end

143
144 Extended Data Fig. 2. Processing algorithm of neighbors in queue Li1 (or L2) of node v.
145

146

147

148
149
150
151

152

Extended Data Fig. 3. Two cases of the search algorithm. a, Nodes v; and v, are added to the
end of queue L, of node v, because their minimum hop numbers from the source node are
larger than the hop number of v4. b, Node v, is added to queue L, of node v3, because the
minimum hop number of node v5 is larger than that of v,.

‘2

-h

0
9%
ool
3@ 93@
(=) (=)
a
(=)

153

154 Extended Data Fig. 4. An example of the search algorithm. According to the sequence of
155 time, a to f correspond to the six steps of the search algorithm.

