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Methods 1 

 2 

The multipath search algorithm 3 

The major goal of the search algorithm is to construct a directed acyclic (DA) graph between 4 

the source router 𝑠 and the destination 𝑑 in a distributed manner, given a network. The topology 5 

information of the network can be acquired via the corresponding functions of existing routing 6 

protocols, such as open shortest path first (OSPF), routing information protocol (RIP) and 7 

intermediate system-to-intermediate system (IS-IS). Each node executes the same algorithm to 8 

build up its routing table. 9 

In the search algorithm, the source 𝑠 is the first router to process. In principle, for a node 𝑣, 10 

whether an entry is added to the routing table depends on whether it has been confirmed that one 11 

of the direct neighbors is connected forward to the destination 𝑑 or is node 𝑑 exactly. If yes, then 12 

node 𝑣 is also connected forward to node 𝑑 and two new routing entries are added to the tables of 13 

it and the neighbor, respectively. Unlike general search ideas, where the search process exits once 14 

the destination is reached, this algorithm continues to search for other nodes that are also connected 15 

forward to the destination node 𝑑 to obtain new transmission paths, according to the breadth-first 16 

strategy. Note, here the search process cannot return back to deal with the previous node until all 17 

the direct neighbors have been checked up. For example, as shown in Fig. 1b, if neighbor 𝑣𝑖+1 has 18 

been confirmed to be connected to the destination 𝑑, i.e., a packet sent by 𝑣𝑖+1 can reach node 𝑑  19 

forward, then two entries are added to the routing tables of 𝑣𝑖 and 𝑣𝑖+1, respectively. On the other 20 

hand, since other neighbors 𝑣𝑖+2 and 𝑣𝑖+3 are also connected forward to node 𝑑, they also can act 21 

as the next hops of 𝑣𝑖 to the destination.  22 

Give a node 𝑣, the processing algorithm can be divided into two subfunctions for convenience: 23 

one is to process the direct neighbors of 𝑣 that are connected forward to the destination, and the 24 

other is to process the neighbors that are not connected to the destination or it is not confirmed 25 

whether they are connected to the destination (they are added to the queue 𝐿1 or 𝐿2). If the edge 26 

between node 𝑣 and a direct neighbor 𝑛 has not been visited yet and the minimum hop number 27 

from the source 𝑠 to 𝑣 is less than or equal to the minimum hop number to neighbor 𝑛, then both 28 

routing tables of node 𝑣 and 𝑛 should be updated, provided that it is confirmed that node 𝑛 is 29 

connected forward to the destination. This subfunction is shown in Extended Data Fig. 1 (Function 30 

𝐹1), where 𝐴  is the adjacency matrix of a network, 𝐴0  is a matrix with the same size as 𝐴 , 31 

containing the state information whether a directed edge has been visited, 𝑀0 is a vector containing 32 

the minimum hop numbers from the source 𝑠 to other nodes, and queues 𝐿1 and 𝐿2, indexed by 33 

node 𝑣, are used to temporarily contain the direct neighbors of 𝑣 to be processed in later steps.  34 

Clearly, as shown in Extended Data Fig. 1, if it is not confirmed whether neighbor 𝑛  is 35 

connected to the destination 𝑑 or not, then which queue (𝐿1 or 𝐿2) the node will be added to 36 

depends on the minimum hop numbers from the source 𝑠  to it and node 𝑣 . To clarify the 37 

difference, two cases are shown in Extended Data Fig. 3, where the black solid lines are the links 38 

that have not been visited while the blue ones represent the links that have been visited (the blue 39 

arrow refers to the directed edge that not only has been visited but has been selected out to form 40 

the DA graph, which means two routing entries also have been added to the routing tables of both 41 

sides, respectively), and the red dashed arrow represents a directed edge that the neighbor’s 42 

minimum hop number is less than that of node 𝑣 (it is possible to form routing loops). 43 

As shown in Extended Data Fig. 3a, node 𝑣3 is a direct neighbor of 𝑣1 and its minimum hop 44 

number from the source node 𝑠 is larger than the number of 𝑣1. Since at that time node 𝑣3 has not 45 
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been visited (only the edge between them has been visited), it is impossible to know whether node 46 

𝑣3 is connected forward to node 𝑑 or not. Thus, node 𝑣3 is added to the end of queue 𝐿1 of node 47 

𝑣1. Similarly, the neighbor 𝑣4 is also added to queue 𝐿1. On the other hand, as shown in Extended 48 

Data Fig. 3b, since node 𝑣3 is visited prior to node 𝑣2 according to the depth-first strategy and the 49 

minimum hop number of node 𝑣3 is larger than that of node 𝑣2, 𝑣2 is added to queue 𝐿2 of node 50 

𝑣3. 51 

Next, the nodes in 𝐿1 of node 𝑣 will be processed first because they have larger hop numbers 52 

from the source 𝑠, which is in accord with the principle of DA graphs. The subfunction is given in 53 

Extended Data Fig. 2 (Function 𝐹2), where vector 𝐵0 contains the state whether a node has been 54 

checked (for example, 1 means yes while 0 represents no). Clearly, for a neighbor 𝑛 in 𝐿1, if it has 55 

not been visited yet, then the state in 𝐵0 is modified and Function 𝐹1 is called first to process its 56 

direct neighbors, using the depth-first search idea. If it is confirmed that neighbor 𝑛 is connected 57 

forward to 𝑑, then the routing tables of node 𝑣 and 𝑛 will be updated. Note, the second loop (line 58 

11 to 15) is used to restore the states because the nodes may be useful in the later steps though 59 

they are not connected to 𝑑 forward. For example, as shown in Extended Data Fig. 3a, though node 60 

𝑣4 is not connected forward to the destination 𝑑, it can be connected to node 𝑑 reversely via node 61 

𝑣1, which allows more nodes to relay packets to the destination. 62 

Only if it is confirmed that node 𝑣 cannot be connected forward to node 𝑑 after all the neighbors 63 

in 𝐿1 have been checked up, then the nodes in 𝐿2 will be processed by Function 𝐹2. For example, 64 

as shown in Extended Data Fig. 3b, since the current node is 𝑣3 and the destination 𝑑 is exactly a 65 

direct neighbor of it, Function 𝐹2 is not called, namely line 20 of Function 𝐹1 is not executed to 66 

process the node 𝑣2 in 𝐿2, indexed by node 𝑣3, which means the search algorithm will return back 67 

to process the other neighbor node in queue 𝐿1 of node 𝑣1, i.e., node 𝑣4. 68 

 69 

Implementation of the search algorithm 70 

An example of the search algorithm is shown in Extended Data Fig. 4, where the black lines are 71 

the edges that have not been visited while the blue ones represent the links that have been visited, 72 

and the blue arrows refer to the edges that not only have been visited but have been selected out to 73 

form a directed acyclic graph between the source router 𝑠 and the destination 𝑑, i.e., two entries 74 

have been added in the routing tables of both sides of the directed edge, respectively. Each node 75 

of the network, denoted by 𝑣 for convenience, executes Function 𝐹1, in which the source router 𝑠 76 

is the first node to process. 77 

Clearly, node 𝑠 has two direct neighbors 𝑣1 and 𝑣2. Since both of them have not been visited 78 

yet, node 𝑣 does not know whether they can be connected forward to 𝑑 and has to add them to 79 

queue 𝐿1, indexed by node 𝑠, which is shown in Extended Data Fig. 4a. 80 

Without loss of generality, assume node 𝑣1 (in queue 𝐿1 of node 𝑠) is first checked by Function 81 

𝐹2. Since node 𝑣1 has not been visited, node 𝑣 jumps to call Function 𝐹1 via line 4 of Function 𝐹2. 82 

Since the destination 𝑑  is a direct neighbor of 𝑣1 , so the directed edge from node 𝑣1  to 𝑑  is 83 

redrawn as a blue arrow line, which means that 𝑣1 is connected forward to 𝑑 and two entries are 84 

added to the routing tables of them, respectively. On the other hand, node 𝑣2  is also a direct 85 

neighbor of 𝑣1 while both of them have the same minimum hop number from the source, so it is 86 

added to queue 𝐿1, indexed by 𝑣1. This is shown in Extended Data Fig. 4b.  87 

The next step is to check the nodes in queue 𝐿1, indexed by 𝑣1. Obviously, as shown in Extended 88 

Data Fig. 4c, node 𝑣2 is the only one to be processed by Function 𝐹2. Since the destination 𝑑 is 89 

also a direct neighbor of 𝑣2, the directed edge from 𝑣2 to 𝑑 is re-drawn as a blue arrow line, which 90 
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means node 𝑣2 is also connected forward to 𝑑 and two entries will be added to the routing tables 91 

of them, respectively. 92 

Note, for node 𝑣2 , after its direct neighbor 𝑑  having been checked by Function 𝐹2, node 𝑣 93 

returns back to continue to execute line 6 of Function 𝐹2 (it is executed for the first time). Thus, 94 

the directed edge from node 𝑣1 to 𝑣2 is re-drawn as a blue arrow line, i.e., two entries are added to 95 

the routing tables of them, respectively, which is shown in Extended Data Fig. 4d. Similar 96 

operations are performed to re-draw the directed edge from 𝑠 to 𝑣1, as shown in Extended Data 97 

Fig. 4e. 98 

For the source node 𝑠, since the other neighbor 𝑣2 in queue 𝐿1 is connected forward to 𝑑, similar 99 

operations are performed to re-draw the directed edge from it to 𝑣2, which is shown in Extended 100 

Data Fig. 4f. 101 

Finally, a DA graph is constructed from the source 𝑠  to node 𝑑  by interconnecting all the 102 

selected nodes along the directed edges between them. This is similar to the generation procedure 103 

of a SPF tree by the shortest path algorithm. 104 

 105 

The setting process of encoding matrices 106 

The procedure is started up by the destination 𝑑. After receiving a request from the source router 107 

𝑠, it first generates a |𝐼𝑛(𝑑)| × |𝐼𝑛(𝑑)| random square matrix 𝑹 with full rank, and then sends 108 

each row vector of 𝑹 over an incoming edge 𝑒𝑖 ∈ 𝐼𝑛(𝑑) reversely to the source 𝑠, where 𝐼𝑛(𝑑) 109 

refers to the incoming edge set of 𝑑. 110 

At an intermediate node 𝑣, |𝑂𝑢𝑡(𝑣)| row vectors can be received from the outgoing edges and 111 

given as a |𝑂𝑢𝑡(𝑣)| × |𝐼𝑛(𝑑)|  matrix, denoted by 𝒀𝑣
′  for convenience, where 𝑂𝑢𝑡(𝑣)  is the 112 

outgoing edge set of 𝑣. Pre-multiplying this matrix by the local encoding matrix (kernel), we can 113 

obtain a new matrix 114 

𝑿𝑣
′ = 𝑲𝑣 ∙ 𝒀𝑣

′  115 

where 𝑲𝑣 is a |𝐼𝑛(𝑣)| × |𝑂𝑢𝑡(𝑣)| random matrix (the rank 𝑟(𝑲𝑣) = Min(|𝐼𝑛(𝑣)|, |𝑂𝑢𝑡(𝑣)|)), 116 

generated by node 𝑣 itself. Similarly, each row vector of 𝑿𝑣
′  is sent over an incoming edge 𝑒𝑖 ∈117 

𝐼𝑛(𝑣) reversely to the source.  118 

This procedure is performed until the source node 𝑠, where the received matrix is denoted by 119 

𝒀𝑠
′  for convenience and the row number is |𝑂𝑢𝑡(𝑠)|. Note, linear row transformation is employed 120 

at each intermediate node in the above procedure, namely each row vector of 𝒀𝑠
′  is a linear 121 

combination of the row vectors of matrix 𝑹, according to the theory of linear algebra. Thus, the 122 

maximum dimension 𝜔 of the source messages (the number of edge-disjoint paths from the source 123 

𝑠 to the destination 𝑑) is equal to the row rank of 𝒀𝑠
′ , which means 𝜔 independent column vectors5 124 

can also be extracted from 𝒀𝑠
′  because linear column transformation will be employed in the data 125 

transmission phase. The local encoding matrix 𝑲𝑠   of the source node 𝑠  can be obtained by 126 

calculating the generalized inverse of a matrix consisting of 𝜔 independent column vectors from 127 

𝒀𝑠
′ , and for node 𝑑, the corresponding column vectors with the same order information as the 128 

selected independent column vectors of 𝒀𝑠
′  can be extracted from 𝑹 to form its local encoding 129 

matrix 𝑲𝑑, which is used to decode the received packets in the data transmission phase. 130 
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Extended Data Fig. 1. Processing algorithm of a router node 𝒗. 138 

 139 

 140 

  141 

Function F1: Processing algorithm of a node 𝑣 

Input:  the source node 𝑠, the destination 𝑑, a node 𝑣; 

Output:  𝐿1,  𝐿2, new routing entries; 

Data:  adjacency matrix 𝐴, state matrix 𝐴0, state vector 𝑀0; 

1   for 𝑎𝑙𝑙 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑛 𝑜𝑓 𝑛𝑜𝑑𝑒 𝑣 do 

2    if 𝐴0[𝑣][𝑛] == 0 then 

3     if 𝑀0[𝑛] ≥  𝑀0[𝑣] then 

4      if 𝑛𝑜𝑑𝑒 𝑛 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑑  then 

5       A new entry is added to the routing table of 𝑣(src = 𝑠, dst = 𝑑, next = 𝑛); 

6       A new entry is added to the routing table of 𝑛(src = 𝑑, dst = 𝑠, next = 𝑣); 

7      else 

8       node 𝑛 is added to the end of 𝐿1; 

9      end 

10     else 

11          node 𝑛 is added to the end of 𝐿2; 

12       end 

13       𝐴0[𝑣][𝑛] = 1; 

14      end 

15   end 

16   if 𝐿1 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 then 

17      Call F2(𝑠, 𝑑, 𝑣, 𝐿1); 

18   end 

19   if 𝑣 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑑 𝑎𝑛𝑑 𝐿2 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 then 

20    Call F2(𝑠, 𝑑, 𝑣, 𝐿2); 

21   end 
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 143 

Extended Data Fig. 2. Processing algorithm of neighbors in queue 𝐿1 (or 𝐿2) of node 𝒗. 144 

  145 

Function F2: Processing algorithm of queue 𝐿𝑖 of 𝑣 

Input: node 𝑠, 𝑑, current node 𝑣, 𝑞𝑢𝑒𝑢𝑒 𝐿𝑖(𝑖 = 1, 2); 

Output:  new routing entries; 

Data:  state vector 𝐵0 

1   for 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑛 𝑖𝑛 𝐿𝑖  do 

2    if 𝐵0[𝑛] == 0 then 

3       𝐵0[𝑛] = 1; 

4     Call F1(𝑠, 𝑑, 𝑛); //depth-first search 

5    end 

6    if 𝑛𝑜𝑑𝑒 𝑛 𝑖𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑑 then 

7     A new entry is added to the routing table of 𝑣(src = 𝑠, dst = 𝑑, next = 𝑛); 

8     A new entry is added to the routing table of 𝑛(src = 𝑑, dst = 𝑠, next = 𝑣); 

9      end 

10   end 

11   for 𝑎𝑙𝑙 𝑛𝑜𝑑𝑒𝑠 𝑛 𝑖𝑛 𝐿𝑖  do 

12      if 𝑛𝑜𝑑𝑒 𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑑 then 

13      𝐵0[𝑛] = 0; 

14      end 

15   end 
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 147 

Extended Data Fig. 3. Two cases of the search algorithm. a, Nodes 𝒗𝟑 and 𝒗𝟒 are added to the 148 

end of queue 𝑳𝟏 of node 𝒗𝟏, because their minimum hop numbers from the source node are 149 

larger than the hop number of 𝒗𝟏. b, Node 𝒗𝟐 is added to queue 𝑳𝟐 of node 𝒗𝟑, because the 150 

minimum hop number of node 𝒗𝟑 is larger than that of 𝒗𝟐. 151 

  152 



 

 

7 

 

 153 

Extended Data Fig. 4. An example of the search algorithm. According to the sequence of 154 

time, a to f correspond to the six steps of the search algorithm.  155 


