Supplementary Information for

Multipath routing based on a network coding protocol suit

1. The Setting of Numerical Simulations

In the simulations, the probability that there is an edge between two nodes is set to 0.5. Given
the number of nodes, the network topology is randomly generated for 10000 times, each time two
nodes being randomly selected as the source node and the destination, respectively. The length of
the binary strings is set to 8, which corresponds to the size of finite field F = GF(28).

For each generated network topology, the same search algorithm is executed by each node to
generate a multipath routing table to support NC. Specifically, after the complete multi-path
routing table being built at node v, it is convenient for v to know which edge can act as the
incoming link from the source node and which one can act as the outgoing (forward) link to the
destination, which means the size of local coding matrix is determined.

As shown in Fig. 2a, it is easy to form a DA graph between the source router and the
destination by connecting each selected node with the next hops to the destination, given the multi-
path routing tables for all selected nodes.

2. An Engineering Verification

An implementation of the proposed protocol suit is shown in Supplementary Fig. 1a, where
Si1,S,, ..., S¢ are NC-integrated layer-3 switches (the model is RG-S6000C, produced by
FrkkFAkkkxAxk Communication Company), the dotted lines represent the reverse links while the
solid lines are the forward links of the generated DA graph between the source S; and the
destination Sg, and the IP addresses near the lines indicate the different network segments the links
belong to. Alice accesses the network via switch S; and Bob accesses the network via Sg. Alice’s
IP address is set to 154.1.1.2 and Bob’s address is 155.1.1.3. All the layer-3 switches are developed
on the same Linux kernel, each having 6.16T switching bandwidth, 252M packet-forwarding rate,
and 48 gigabit Ethernet ports. In this verification, some functions of the intermediate system-to-
intermediate system (IS-1S) protocol are applied to obtain the adjacent matrix of the whole network,
and all network segments the links belong to can also be obtained (Supplementary Fig. 1b-d). The
protocol number of NC-related packets is temporarily set to 234 to distinguish them from other
packets.

Supplementary Fig. 1b-d show the generated routing entries at switch S, under different
circumstances, where the string src refers to the source switch, dst represents the destination,
next refers to the next hop, and s6000c is the model of the layer-3 switches. As shown in
Supplementary Fig. 1b, switch S, has only one next hop (S; exactly) to the source switch S; along
the reverse link. On contrast, there are three next hops (S5, S4, and Ss) to the destination S, along
the forward links, which is shown in Supplementary Fig. 1c. Once the cable connecting switch S,
and S5 has been removed, switch S5 will no longer serve as the next hop to the destination, which
is shown in Supplementary Fig. 1d. This verifies that dynamic routing is well supported in the
proposed protocol suit.

44
45
46

47

48
49
50
51
52
53
54
55
56
57
58
59

An example of the encoding matrices generated for the switches is shown in Supplementary
Fig. 2, where the word length of matrix elements is 2 bytes and the data is represented in decimal

system for convenience.
- \
*N\ 1.1.8.0
: "~ 155.1.1.3
Haze SRG— D
! ’ SS

>z % 1190 Bob

a
154.1.1.2

SUPPLEMENTARY FIG. 1. An implementation of the multipath search algorithm. a, A real
transmission network with 6 NC-integrated layer-3 switches. All the nodes and the solid directed lines
connecting them consist of a directed acyclic graph exactly between router §; and Sg. (b to d) show the routing
entries generated at node S, under different circumstances. b, Only one next hop to the router S;. C, Three next

hops to the router S¢. d, Two next hops remain to the destination. Dynamic routing is well supported in the
algorithm.

60

61

62
63

the matrix K is:
matrix

—

the matrix K is:
matrix

writing kernel! =

the matrix K is:
matrix

bbb L writing kernel! #xiskiix

the matrix K is:
matrix

* writing kernel! =*

the matrix K is:
matrix

/0

writing kernel!

the matrix K is:
matrix

writing kernel! *##%

SUPPLEMENTARY FIG. 2. An example of the generated encoding matrices at 6 switches.

