Appendix 
Codes :
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import yfinance as yf 
from datetime import datetime, timedelta
today=datetime.now()
date=today - timedelta(days=1) 
date_str=date.strftime('%Y-%m-%d')
data=yf.download (tickers='HCLTECH.NS', start='2007-09-17', end=date_str)
data.to_csv('rando.csv')
data = pd.read_csv("/content/rando.csv")
data.head()
data.tail()
data.info()


# Length of the data
length_data = len(data)

# Rows that the data has
split_ratio = 0.7 # Split ratio of 70% train, 30% validation

# Train and validation data length
length_train = round(length_data * split_ratio)
length_validation = length_data - length_train
print("Data length:", length_data)
print("Train data length:", length_train)
print("Validation data length:", length_validation)

# Splitting the data
train_data = data[:length_train].iloc[:, :2] # Selecting first two columns for train data
train_data['Date'] = pd.to_datetime(train_data['Date']) # Converting 'Date' to datetime object
train_data
validation_data = data[length_train:].iloc[:, :2] 
validation_data['Date'] = pd.to_datetime(validation_data['Date']) 
validation_data
dataset_train = train_data.Open.values
print(dataset_train.shape)

# Change 1D array to 2D array (reshape from (x,) to (x,1))
dataset_train = np.reshape(dataset_train, (-1, 1))
print(dataset_train.shape) # New shape of the dataset
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))

# Scaling the dataset
dataset_train_scaled = scaler.fit_transform(dataset_train) 
print(dataset_train_scaled.shape) 

# Creating a plot with specified figure size
plt.subplots(figsize=(15, 6)) 
plt.plot(dataset_train_scaled)
plt.xlabel("Days (as 1st, 2nd, 3rd, etc.)") 
plt.ylabel("Open Price")
plt.show()
x_train = [] 
y_train = [] 
time_step = 40 
length_train = len(dataset_train_scaled)

# Creating training data
for i in range(time_step, length_train):
x_train.append(dataset_train_scaled[i-time_step:i, 0])
y_train.append(dataset_train_scaled[i, 0])
x_train, y_train = np.array(x_train), np.array(y_train)
print(f"x_train shape: {x_train.shape}")
print(f"y_train shape: {y_train.shape}")

# Reshaping X_train to be 3-dimensional: (samples, time_steps, 1 feature)
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

# Reshaping y_train to be 2-dimensional: (samples, 1 target)
y_train = np.reshape(y_train, (y_train.shape[0], 1))

# Printing the shape of the reshaped arrays
print("Shape of X_train after reshape:", x_train.shape)
print("Shape of y_train after reshape:", y_train.shape)
x_train[0]
y_train[0]

dataset_validation = validation_data.Open.values
dataset_validation = np.reshape(dataset_validation, (-1, 1))
scaled_dataset_validation = scaler.fit_transform(dataset_validation) 
print("Shape of scaled validation dataset:", scaled_dataset_validation.shape)
x_test = [] 
y_test = [] 
for i in range(time_step, length_validation):
x_test.append(scaled_dataset_validation[i-time_step:i, 0]) 
y_test.append(scaled_dataset_validation[i, 0]) 

# Converting lists to NumPy arrays
x_test = np.array(x_test)
y_test = np.array(y_test)

# Checking the shapes of the arrays
print(f"Shape of X_test: {X_test.shape}")
print(f"Shape of y_test: {y_test.shape}")

# Reshaping
x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
y_test = np.reshape(y_test, (-1, 1))
print("Shape of x_test after reshape:", x_test.shape)
print("Shape of y_test after reshape:", y_test.shape)


# Scaling y_train using the same scaler
y_train = scaler.fit_transform(y_train)
from keras.layers import LSTM, Dense, Dropout
from keras.models import Sequential

# Building the LSTM model
model_lstm = Sequential()
model_lstm.add(LSTM(64, return_sequences=True, input_shape=(x_train.shape[1], 1))) 
model_lstm.add(LSTM(64, return_sequences=False))

# Adding a Dense layer with 32 neurons
model_lstm.add(Dense(32))

# Adding the output Dense layer with 1 neuron
model_lstm.add(Dense(1))
model_lstm.compile(loss="mean_squared_error", optimizer="adam", metrics=["accuracy"])
history2 = model_lstm.fit(x_train, y_train, epochs=15, batch_size=10)
y_pred = model_lstm.predict(x_train) 
y_pred = scaler.inverse_transform(y_pred)
print(y_pred.shape)
y_train = scaler.inverse_transform(y_train)
print( y_train.shape)
model_lstm.summary()
print(history2.history.keys())
history2.history["loss"]

#Plotting Loss v s Epochs
plt.figure(figsise=(10,7))
plt.plot(history2.history["loss"]) 
plt.xlabel("Epochs") 
plt.ylabel("Losses") 
plt.title('LSTM Model, Loss vs Epoch') 
plt.show()

#Plotting Accuracy v s Epochs
plt.figure(figsise=(10,5))
plt.plot(history2.history["loss"]) 
plt.xlabel("Epochs") 
plt.ylabel("Losses") 
plt.title('LSTM Model, Accuracy vs Epoch') 
plt.show()


# Making predictions on the test data
y_pred_of_test = model_lstm.predict(x_test)
# Scaling back the predictions from 0-1 to the original values
y_pred_of_test = scaler.inverse_transform(y_pred_of_test)
print("Shape of y_pred_of_test:", y_pred_of_test.shape)

# Creating a figure with specified size
plt.figure(figsize=(30, 10))
plt.plot(y_pred_of_test, label='y_pred_of_test', c='orange')
plt.plot(scaler.inverse_transform(y_test), label='y_test', color='g')
plt.xlabel('Days')
plt.ylabel('Open Price')
plt.title('LSTM model, Prediction with Input x_test vs y_tes')
plt.legend()
plt.show()

from keras.models import load_model 
model_lstm.save('lstm.h5')
model = load_model('lstm.h5')
predictions = model.predict(x_test)
binary_predictions = np.where(predictions>0.2,1 ,0) 
new_y_test = np.where(y_test>0.2,1 ,0)
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

#calculate metrics
accuracy = accuracy_score(new_y_test, binary_predictions)
precision = precision_score(new_y_test, binary_predictions)
recall = recall_score(new_y_test, binary_predictions)
f1 = f1_score(new_y_test, binary_predictions)

# Print the metrics
print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1 Score: {f1}')

from sklearn.metrics import classification_report
print(classification_report(new_y_test,binary_predictions)

data.iloc[-1]
x_input = data.iloc[-time_step:].Open.values
x_input = scaler.fit_transform(x_input.reshape(-1,1)) 
x_input = np.reshape(x_input,(1,time_step,1)) 
print("Shape o f X_input : " , x_input.shape)
x_input

LSTM_prediction = scaler.inverse_transform(model_lstm.predict(x_input))
print('LSTM prediction, Open price prediction for', date_str, 'is:', LSTM_prediction[0,0])











import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
import yfinance as yf 
from datetime import datetime, timedelta
 today=datetime.now()
 date=today - timedelta(days=1) 
date_str=date.strftime('%Y-%m-%d')
 data=yf.download (tickers='HCLTECH.NS', start='2007-09-17', end=date_str)
 data.to_csv('rando.csv')
 [*********************100%***********************]  1 of 1 completed
 data = pd.read_csv("
 /content/rando.csv")
 data.head()
 Date Open
 High
 Low
 Close Adj Close Volume
 0 2007-09-17 70.824997 70.824997 69.224998 69.487503 46.129009 1475064
 1 2007-09-18 69.500000 70.500000 69.000000 70.187500 46.593708 1473988
 2 2007-09-19 71.125000 72.224998 70.425003 71.037498 47.158001 3679388
 3 2007-09-20 71.250000 71.250000 68.500000 68.875000 45.722408 4626540
 4 2007-09-21 68.875000 70.349998 67.650002 68.937500 45.763901 6372496

 Next steps:
 data.tail()                    Date Open                             View recommended plots
  High
 Low
 New interactive sheet
 Close Adj Close Volume
 4198 2024-09-27 1810.0 1828.550049 1796.550049 1808.400024 1808.400024 4099016
 4199 2024-09-30 1808.0 1820.699951 1789.150024 1796.099976 1796.099976 2117894
 4200 2024-10-01 1790.0 1822.449951 1790.000000 1816.500000 1816.500000 1642542
 4201 2024-10-03 1778.0 1809.300049 1770.000000 1778.550049 1778.550049 3552386
 4202 2024-10-04 1778.0 1807.900024 1767.250000 1776.599976 1776.599976 2982759
 data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 4203 entries, 0 to 4202
 Data columns (total 7 columns):
 #   Column     Non-Null Count  Dtype  ---  ------     --------------  -----  
 0   Date       4203 non-null   object 
 1   Open       4203 non-null   float64
 2   High       4203 non-null   float64
 3   Low        4203 non-null   float64
 4   Close      4203 non-null   float64
 5   Adj Close  4203 non-null   float64
 6   Volume     4203 non-null   int64  
dtypes: float64(5), int64(1), object(1)
 memory usage: 230.0+ KB
 # Length of the data
 length_data = len(data)
 split_ratio = 0.7
 # Train and validation data length
 length_train = round(length_data * split_ratio)
 length_validation = length_data - length_train
 print("Data length:", length_data)
 print("Train data length:", length_train)
 print("Validation data length:", length_validation)
 Data length: 4203
 Train data length: 2942
 Validation data length: 1261
 # Splitting the data
 train_data = data[:length_train].iloc[:, :2]  
train_data['Date'] = pd.to_datetime(train_data['Date'])
 train_data


Date Open 
 0              70.824997     2937 2019-08-22 535.250000
 1              69.500000     2938 2019-08-23 539.500000
 2              71.125000      2939 2019-08-26 545.799988
 3             71.250000      2940 2019-08-27 549.500000
 4              68.875000      2941 2019-08-28 548.500000
 2942 rows × 2 columns


Generate code with train_data            Next steps                               View recommended plots
 validation_data = data[length_train:].iloc[:, :2] 
validation_data['Date'] = pd.to_datetime(validation_data['Date']) 
validation_data

 Date Open 
 2942 2019-08-29 556.500000         4198 2024-09-27 1810.000000
 2943 2019-08-30 557.849976        4199 2024-09-30 1808.000000
 2944 2019-09-03 553.500000        4200 2024-10-01 1790.000000
 2945 2019-09-04 556.174988       4201 2024-10-03 1778.000000
 2946 2019-09-05 562.724976      4202 2024-10-04 1778.000000
 1261 rows × 2 columns
 New interactive sheet

Generate code with validation_data                                                                 Next steps:
 dataset_train = train_data.Open.values
 print(dataset_train.shape)    (2942,)
 View recommended plots
 # Change 1D array to 2D array (reshape from (x,) to (x,1))
 dataset_train = np.reshape(dataset_train, (-1, 1))
 print(dataset_train.shape)  (2942, 1)
 from sklearn.preprocessing import MinMaxScaler
 scaler = MinMaxScaler(feature_range=(0, 1))
 # Scaling the dataset
 dataset_train_scaled = scaler.fit_transform(dataset_train)  
print(dataset_train_scaled.shape)       (2942, 1)
 # Creating a plot with specified figure size
plt.subplots(figsize=(15, 6)) 
plt.plot(dataset_train_scaled)
plt.xlabel("Days (as 1st, 2nd, 3rd, etc.)") 
plt.ylabel("Open Price")
plt.show()

New interactive sheet
x_train = []  
y_train = []  
time_step = 40 
length_train = len(dataset_train_scaled)

 # Creating training data
 for i in range(time_step, length_train):
    x_train.append(dataset_train_scaled[i-time_step:i, 0])
    y_train.append(dataset_train_scaled[i, 0])
 x_train, y_train = np.array(x_train), np.array(y_train)
 print(f"x_train shape: {x_train.shape}")
 print(f"y_train shape: {y_train.shape}")
 x_train shape: (2902, 40)
 y_train shape: (2902,)

 # Reshaping X_train to be 3-dimensional: (samples, time_steps, 1 feature)
 x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

 # Reshaping y_train to be 2-dimensional: (samples, 1 target)
 y_train = np.reshape(y_train, (y_train.shape[0], 1))

 # Printing the shape of the reshaped arrays
 print("Shape of X_train after reshape:", x_train.shape)
 print("Shape of y_train after reshape:", y_train.shape)
 Shape of X_train after reshape: (2902, 40, 1)
 Shape of y_train after reshape: (2902, 1)
 x_train[0]


 array([[0.08708775],
 [0.08473523],
 [0.0876204 ],
 [0.08784234],
 [0.08362555],
 [0.0851791 ],
 [0.08540104],
 [0.08695459],
 [0.09671978],
 [0.09893915],
 [0.09516623],
 [0.09316881],
 [0.09738559],
 [0.09716366],
 [0.09893915],
 [0.09893915],
 [0.10515336],
 [0.10870434],
 [0.09782946],
 [0.09683075],
 [0.09627591],
 [0.08118425],
 [0.09982689],
 [0.0980514 ],
 [0.09572107],
 [0.09674197],
 [0.0956101 ],
 [0.09405655],
 [0.09807359],
 [0.09889476],
 [0.09938302],
 [0.09989347],
 [0.1011807 ],
 [0.09671978],
 [0.09547695],
 [0.09847309],
 [0.09716366],
 [0.09272493],
 [0.09347952],
 [0.09445603]])

y_train[0]
 array([0.09618713])
 dataset_validation = validation_data.Open.values
 dataset_validation = np.reshape(dataset_validation, (-1, 1))
 scaled_dataset_validation = scaler.fit_transform(dataset_validation)  
print("Shape of scaled validation dataset:", scaled_dataset_validation.shape)
 Shape of scaled validation dataset: (1261, 1)
 x_test = [] 
y_test = []  
for i in range(time_step, length_validation):
    x_test.append(scaled_dataset_validation[i-time_step:i, 0]) 
    y_test.append(scaled_dataset_validation[i, 0]) 

# Converting lists to NumPy arrays
 x_test = np.array(x_test)
 y_test = np.array(y_test)
 # Checking the shapes of the arrays
 print(f"Shape of X_test: {x_test.shape}")
 print(f"Shape of y_test: {y_test.shape}")
 Shape of X_test: (1221, 40)
 Shape of y_test: (1221,)
 x_test = np.reshape(x_test, (x_test.shape[0], x_test.shape[1], 1))
 y_test = np.reshape(y_test, (-1, 1))
 print("Shape of x_test after reshape:", x_test.shape)
 print("Shape of y_test after reshape:", y_test.shape)
 Shape of x_test after reshape: (1221, 40, 1)
 Shape of y_test after reshape: (1221, 1)

 # Scaling y_train using the same scaler
 y_train = scaler.fit_transform(y_train)
 from keras.layers import LSTM, Dense, Dropout
 from keras.models import Sequential

 # Building the LSTM model
 model_lstm = Sequential()
 model_lstm.add(LSTM(64, return_sequences=True, input_shape=(x_train.shape[1], 1)))  
model_lstm.add(LSTM(64, return_sequences=False))

 # Adding a Dense layer with 32 neurons
 model_lstm.add(Dense(32))

 # Adding the output Dense layer with 1 neuron
 model_lstm.add(Dense(1))
 model_lstm.compile(loss="mean_squared_error", optimizer="adam", metrics=["accuracy"])
 history2 = model_lstm.fit(x_train, y_train, epochs=15, batch_size=10) Epoch 1/15
 /usr/local/lib/python3.10/dist-packages/keras/src/layers/rnn/rnn.py:204: UserWarning: Do not pass an `input_shape`/`inpu
super().__init__(**kwargs)




 291/291 ━━━   12s 30ms/step - accuracy: 4.2257e-04 - loss: 0.0216  Epoch 2/15
 291/291 ━━━   8s 27ms/step - accuracy: 2.7663e-04 - loss: 4.2827e-04 Epoch 3/15
 291/291 ━━━11s 28ms/step - accuracy: 1.4492e-04 - loss: 4.5034e-04  Epoch 4/15
 291/291 ━━━10s 28ms/step - accuracy: 6.8918e-04 - loss: 4.0734e-04 Epoch 5/15
 291/291 ━    9s 30ms/step - accuracy: 3.3636e-04 - loss: 3.8105e-04 Epoch 6/15
 291/291 ━━ 9s 27ms/step - accuracy: 6.4970e-04 - loss: 4.3603e-04 Epoch 7/15
 291/291 ━━━8s 29ms/step - accuracy: 8.7441e-05 - loss: 3.7033e-04 Epoch 8/15
 291/291 ━━9s 30ms/step - accuracy: 6.8898e-04 - loss: 2.8478e-04 Epoch 9/15
 291/291 ━━9s 30ms/step - accuracy: 7.6069e-04 - loss: 2.5629e-04 Epoch 10/15
 291/291 ━━ 9s 30ms/step - accuracy: 6.5024e-04 - loss: 2.6522e-04 Epoch 11/15
 291/291 ━━10s 30ms/step - accuracy: 7.2176e-04 - loss: 2.2295e-04 Epoch 12/15
 291/291 ━━━10s 28ms/step - accuracy: 0.0011 - loss: 2.0474e-04 Epoch 13/15
 291/291 ━━━10s 26ms/step - accuracy: 0.0017 - loss: 2.4181e-04 Epoch 14/15
 291/291 ━━━11s 28ms/step - accuracy: 0.0012 - loss: 2.1958e-04  Epoch 15/15
 291/291 ━━━13s 37ms/step - accuracy: 5.1325e-04 - loss: 2.1505e-04

 y_pred = model_lstm.predict(x_train) 
y_pred = scaler.inverse_transform(y_pred)
 print(y_pred.shape)
 91/91 ━━━━━━━━━━━━━━5s 40ms/step  (2902, 1)
 y_train = scaler.inverse_transform(y_train)
 print( y_train.shape)  (2902, 1)
 model_lstm.summary()
 Model: "sequential"
 ┏━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
 ┃ Layer (type)                         
┃ Output Shape                
┃
         Param # ┃
 ┡━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━━
 │ lstm (LSTM)                          │ (None, 40, 64)              │          16,896 │
 ├───────────────────────────────┼─────────────────┤
 │ lstm_1 (LSTM)                        │ (None, 64)                  │          33,024 │
 ├──────────────   ────────────────┼─────────────────┤
 │ dense (Dense)                        │ (None, 32)                  │           2,080 │
 ├────────────────────────────────┼────────────────
 │ dense_1 (Dense)                      │ (None, 1)                   │              33 │
 └─────────────────────────────────┴───────────────
 Total params: 156,101 (609.77 KB)
 Trainable params: 52,033 (203.25 KB)
 Non-trainable params: 0 (0.00 B)
 Optimizer params: 104,068 (406.52 KB)
 print(history2.history.keys())
 dict_keys(['accuracy', 'loss'])
 history2.history["loss"]
 [0.004752226639539003,
 0.00044702665763907135,
 0.000443122407887131,
 0.0003891082014888525,
 0.0004004521470051259,
 0.0003580720804166049,
 0.0003725299029611051,
 0.000324748398270458,
 0.00024651779676787555,
 0.0002513855288270861,
 0.00023219203285407275,
 0.0002239526220364496,
 0.00021084111358504742,
 0.0002097617252729833,
 0.0001798996381694451]

 #Plotting Loss v s Epochs
 plt.figure(figsize=(10,7))
 plt.plot(history2.history["loss"]) 
plt.xlabel("Epochs") 
 plt.ylabel("Losses") 
plt.title('LSTM Model, Loss vs Epoch') 
plt.show()

 #Plotting Accuracy v s Epochs
 plt.figure(figsize=(10,5))
 plt.plot(history2.history["loss"]) 
plt.xlabel("Epochs") 
plt.ylabel("Losses") 
plt.title('LSTM Model, Accuracy vs Epoch') 
plt.show()

 # Making predictions on the test data
 y_pred_of_test = model_lstm.predict(x_test)

 # Scaling back the predictions from 0-1 to the original values
 y_pred_of_test = scaler.inverse_transform(y_pred_of_test)
print ("Shape of y_pred_of_test:", y_pred_of_test.shape)
39/39 ━━━━━━━━1s 18ms/step Shape of y_pred_of_test: (1221, 1)

# Creating a figure with specified size
 plt.figure(figsize=(30, 10))
 plt.plot(y_pred_of_test, label='y_pred_of_test', c='orange')
 plt.plot(scaler.inverse_transform(y_test), label='y_test', color='g')
 plt.xlabel('Days')
 plt.ylabel('Open Price')
 plt.title('LSTM model, Prediction with Input x_test vs y_tes')
 plt.legend()
 plt.show()
 from keras.models import load_model 
model_lstm.save('lstm.h5')
 WARNING:absl:You are saving your model as an HDF5 file via `model.save()` or `keras.saving.save_model(model)`. This file
 model = load_model('lstm.h5')
 predictions = model.predict(x_test)
 binary_predictions = np.where(predictions>0.2,1 ,0) 
new_y_test = np.where(y_test>0.2,1 ,0)
 WARNING:absl:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be e
 39/39 ━━━━━━━━━━━━━━━━━━━━ 2s 23ms/step
 from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

 #calculate metrics
 accuracy = accuracy_score(new_y_test, binary_predictions)
 precision = precision_score(new_y_test, binary_predictions)
 recall = recall_score(new_y_test, binary_predictions)
 f1 = f1_score(new_y_test, binary_predictions)

 # Print the metrics
 print(f'Accuracy: {accuracy}')
 print(f'Precision: {precision}')
 print(f'Recall: {recall}')
 print(f'F1 Score: {f1}')
 Accuracy: 0.9926289926289926
 Precision: 0.9990281827016521
 Recall: 0.9922779922779923
 F1 Score: 0.9956416464891041
 from sklearn.metrics import classification_report
 print (classification_report(new_y_test,binary_predictions))

              precision    recall  f1-score   support
           0       0.96      0.99      0.98       185
           1       1.00      0.99      1.00      1036
    accuracy                           0.99      1221
   macro avg       0.98      0.99      0.99      1221
 weighted avg       0.99      0.99      0.99      1221
 data.iloc[-1]

4202
 Date 2024-10-04
 Open 1778.0
 High 1807.900024
 Low 1767.25
 Close 1776.599976
 Adj Close 1776.599976
 Volume 2982759
 dtype: object

 x_input = data.iloc[-time_step:].Open.values
 x_input = scaler.fit_transform(x_input.reshape(-1,1)) 
x_input = np.reshape(x_input,(1,time_step,1)) 
print("Shape o f X_input : " , x_input.shape)
 x_input
 Shape o f X_input :  (1, 40, 1)
 array([[[0.07883817],
        [0.02863081],
        [0.04979253],
        [0.        ],
        [0.09170114],
        [0.23651452],
        [0.36099585],
        [0.42323651],
        [0.44813278],
        [0.45228216],
        [0.40684668],
        [0.38589212],
        [0.61348538],
        [0.55829896],
        [0.56431535],
        [0.72136919],
        [0.77261391],
        [0.94605809],
        [0.77634845],
        [0.8879668 ],
        [0.87136929],
        [0.74834015],
        [0.71141059],
        [0.83070519],
        [0.92116183],
        [0.94190871],
        [1.        ],
        [0.97074669],
        [0.95477168],
        [0.82157676],
        [0.70539419],
        [0.77178423],
        [0.71369295],
        [0.83319522],
        [0.84751037],
        [0.9626556 ],
        [0.95435685],
        [0.87966805],
        [0.82987552],
        [0.82987552]]])
 LSTM_prediction = scaler.inverse_transform(model_lstm.predict(x_input))
 print('LSTM prediction, Open price prediction for', date_str, 'is:', LSTM_prediction[0,0])
 1/1 ━━ 0s 32ms/step  LSTM prediction, Open price prediction for 2024-10-05 is: 1775.8292

