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FIG. S1. Main panel: Residual density of both devices in this work. Inset: log-log plot of electrical conductance vs n (blue).
Extrapolations to the linear and flat parts are indicated by the green dashed lines. Red indicates the intersection of these,
which is the residual density no.

I. DEVICE DISORDER AND RESIDUAL DENSITY

Here, we present measurement of the device disorder level. Figure [ST]shows the residual density versus temperature

for both devices exhibited in this work.



II. RESULTS FOR AN ADDITIONAL DEVICE

In this section, we present data from a second monolayer graphene Corbino device. For this device, the mea-
sured transport ratio does not show an absolute suppression Gip gen/12GeiLoThatn < 1, only a relative suppression.
Nonetheless, this relative suppression is observed in the degenerate T' < Tr and quasi-elastic T > Tgg region of the
parameter space, similar to the device of the main text. This device has a shorter channel length of ~ 1.64 ym. The
shorter channel length and smaller radii compared to the device shown in the main text result in a larger region of
expected viscous behavior, since the device dimensions are even smaller than the Gurzhi length [5 compared to the
first device. Figure [S2]shows the two devices, and compares their electrical resistance and Lorenz ratio versus density
for varying temperature. We observe similar Dirac peak behavior, and comparable transport ratio behavior with the
zero density peak, relative suppression for moderate densities, and enhancement at large densities (see main text and
below). Figure shows the electrical and thermal magnetoresistance (EMR and TMR) parabolic prefactors A
and Ay, respectively, versus density for selected temperatures, compared to the zero-field transport ratio. Here, we
observe a similar emergence of negative TMR corresponding with the relative suppression of the zero-field transport
ratio in density and temperature. Figure shows zero-field transport ratios and the parabolic prefactor ratio Ay, /A
versus density and temperature, showing the emergence of the relative suppression and negative TMR regions in the

degenerate and quasi-elastic regime, as seen in the device discussed in the main text.
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FIG. S2. a) Optical micrograph of the device shown in the main text (MLG3), before (left) and after (right) deposition of
the central contact lead. b) Electrical resistance R of MLG3 versus density n for varying bath temperatures T'. ¢) Transport
ratio Gin,gen/12Ge1 LoTvatn versus n for varying T. d) Optical micrograph of a second Corbino device (MLG4) (left device, red
arrow). e) R versus n for varying T for MLG4. f) Transport ratio Gin,gen/12G e LoTvatn versus n for varying T' for MLGA4.
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FIG. S3. Left axes: Line cuts of A; (dark green) and A, (light green

Right axis: Line cuts of Gin,gen/12GeiLoTbatn versus n. See main text.
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FIG. S4. Left axes: Line cuts of A.; (dark green) and Ay, (light green) versus n for varying T' from additional device MLG4.
Right axis: Line cuts of Gin,gen/12GeiLoTbatn versus n. See main text.



C:"th,gen/(:l'2 GeI I'0 Tbath)
200 3
2
150
<
= 100 0.5
50
0
Ath/AeI
200
0
150
-2
<
= 100

50

10° 1010 10t 10%?
n (cm'2)

FIG. S5.  a) Transport ratio Gin,gen/12GeiLoThatn versus density n and temperature T for additional device MLG4 at
B = 0. Grey line: T = Tr the Fermi temperature. Magenta line: TrBG, the Bloch-Gruneisen temperature. Cyan line:
cyclotron energy in temperature units. See main text. b) Ratio of thermal magnetoresistance curvature A, to electrical
magnetoresistance curvature Ae; versus n and 7.
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III1.

RAW TEMPERATURE DATA

Our measurements operate under an open-loop feedback mechanism that holds AT/T fixed to between 2 — 5% in

these measurements, where AT is the measured electronic temperature rise and T is the bath temperature. These

temperature changes are chosen to be in the linear response regime according to sweeps of AT vs P; sweeps, where



Pj is the injected Joule power. The typical bias current has a range of ~ 70 — 280 uA at 200K and ~ 1.5 —110 uA at
15K, varying as needed for the power to maintain a few percent temperature increase. At higher bath temperatures
more current is needed to achieve a given AT/T for higher electron densities than the system was able to provide,
with the maximum available being ~ 280 wA; this is why the range is much larger for 200K than 15K. Figure [S0]
shows the measured temperature rise normalized by the bath temperature AT /T, for two representative temperatures
at B = 0, for device MLG4. For this sweep, AT/T 2% .

In Fig we show AT/T versus the applied Joule power, for The, = 30K and n = 1.1 x 101t em™2. At the chosen

operating point of AT /T 2%, we are deep in the linear response regime.
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FIG. S8. Upper left: noise power vs. bath temperature at a sample resistance of 6502 at B = 0 (x symbols) and B = 38mT (o
symbols). Upper right: noise power vs. bath temperature at a sample resistance of 75082 at B = 0 (x symbols) and B = 65mT
(o symbols). Lower panel: noise power versus sample resistance, for varying bath temperature. The functional form of the fit
is given in [I]. The sample resistance is swept by gate voltage at low resistances, and by magnetic field at high resistance. In

the overlap region, the two data sets coincide, demonstrating that the measurement circuit is not influenced by the magnetic
field (see discussion).

IV. VERIFYING MAGNETIC FIELD-INDEPENDENCE OF THE MEASUREMENT CIRCUIT

We have carefully designed our measurement circuits to avoid influence by the external magnetic field [I]. The
impedance matching circuit is created with air-core inductors and ceramic or silicon chip capacitors that do not have
magnetic field or temperature dependence. Our amplifiers are situated far outside the field range, outside the cryostat,
with separate cryogenic cooling. In this work, the maximum field attained is 130 mT. To experimentally verify that

there is no impact of the magnetic field on the Johnson noise circuit, we present data from our noise calibration in
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Fig. In the data shown, we measure the raw output noise power versus the bath temperature. We take many such
curves for different values of the gate voltage and magnetic field, while measuring the sample electrical resistance.
Data taken at zero magnetic field is marked with ‘x’ symbols, while data taken at non-zero magnetic fields are marked
with ‘0’ symbols. In the two examples shown in the upper two plots, we see that the zero and finite magnetic field
data closely coincide. The lower plot shows measured noise versus sample resistance for various temperatures. The
functional form that determines this curve is determined by the impedance matching circuit, as described in [I]. Over
the resistance range 600-750 €2, we observe that the zero and finite magnetic field data overlap precisely, showing that

the magnetic field has no effect on our noise measurement circuit.
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FIG. S9. Density derivative of the electrical resistance versus density. The minimum in the derivative is observed not to
coincide with the minimum in the transport ratio at B = 0.

V. DENSITY DERIVATIVE OF THE RESISTANCE

Figure [S9] compares the density derivative of the electrical resistance to the B = 0 transport ratio. The position
of the transport ratio minimum at Tp.¢, = 90 and 200K, where the minimum exists, is shown to be both tempera-
ture dependent, and distinct from the minimum in the density-derivative of the electrical resistance, showing these

quantities are not connected.
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Momentum-relaxing length scale L,,, and momentum-conserving electron-electron scattering length L.. versus

density for several Tyqtn, as extracted from the theory fits. Consistent with a hydrodynamic picture, Lee < L, throughout
the non-zero density range. Lengths computed via Lee,mr = VF/Yee,mr, Where v, comes directly from the fit parameters, and
Yee is obtained from the bulk Lorenz ratio via Yee = Ymr - ([L/Lo]f1 —1). from Ref.[2].

VI. MOMENTUM-CONSERVING AND MOMENTUM-RELAXING LENGTH SCALES

Figure shows the momentum-conserving and -relaxing length scales as computed from the theory fits (see
main text). The upper panel shows the absolute values of the two length scales, while the lower panel shows their
ratio. As expected for the hydrodynamic regime, the momentum-conserving length scale is far shorter than the
momentum-relaxing length scale throughout the regime where the Lorenz ratio is suppressed in main text Figure 5.

This demonstrates self-consistency of the theory.
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VII. n=0  BEHAVIOR AND EVIDENCE FOR THE DIRAC FLUID REGIME

In this section we discuss the zero density behavior observed in Figure 1 of the main text. At 7'~ 90 K there develops
a small peak at charge neutrality in the measured transport ratio, decreasing to a slightly smaller value by 200 K.
The magnitude of the peak is consistent with both a weak hydrodynamic enhancement[2? 7] and a bipolar diffusion
enhancement[8] [9], but our experiment cannot measure their relative contributions. Typically, bipolar diffusion effects
grow with temperature, but this peak weakens from 90 K to 200 K, consistent with a hydrodynamic enhancement at
90 K getting suppressed by additional electron-phonon energy loss at higher temperatures, as was observed in Ref. [10]
where the Lorentz ratio also decreases with T" above its peak in a non-monotonic fashion distinct from bipolar diffusion
behavior. Here, the value of the peak enhancement is lower and occurs at a different temperature, which could be
explained by ~ 10x larger disorder in this device compared to the cleanest device in Ref. [I0]. This is because
additional disorder will increase the temperature at which the crossover from the charge puddle to the Dirac Fluid
regime occurs, simultaneously weakening the effect which must compete with electron-phonon eneryg loss at higher

temperatures.

VIII. TRANSPORT RATIO IN THE BALLISTIC REGIME AT B =0 IN A CONTACT RESISTANCE
MODEL

In the ballistic regime, our self-heating Johnson noise thermometry measurement technique produces artificially
enhanced transport ratios. This is different from the behavior predicted for a diffusive channel whose resistance is
dominated by contact resistance, where the measured transport ratio would trend towards the transport ratio of the
contact resistance itself, presumed to be % = 1[I1]. Here, we present a more generalized version of the contact

resistance model developed in Ref. [11l

The total sample resistance is Rs + 2R., where R, is the main channel resistance and R, is each contact resistance.
For simplicity, we assume that each contact resistance is line-like [I2], and thus there is no temperature gradient in

the contact. We use T to denote the bath temperature.

We wish to obtain a formula that gives us the measured transport number £, as a function of the sample transport
number L4 and the contact resistance transport number L., as well as other fixed or known parameters in the system,

including resistance. Most generally, we can write the generalized thermal conductance of the sample, using the total
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Joule power P and the average Johnson noise temperature rise AT, as

I2 (R, + 2R,)?

G = P H - AN ANT ]
thaen =PI AT = e R AT

(1)

where ATy and AT, are respective average Johnson noise temperature rises of the sample channel and contact above
To.
We define the contact resistance R, to have a thermal resistance Rc;, = 1/Gyp, such that the temperature drop

AT, across the contact resistance is related to the heat Q). that flows through it via

Qc
AT, = , 2
¢ Gth,c ( )
and we can likewise define a contact transport number as
Gth cRc
Lo=—FT—7. 3

For the purposes of this model, we will assume, without rigorous justification, that the average Johnson noise
temperature of the contact resistance is one half of AT,;. This would be the case for a spatially extended uniformly
resistive contact resistance, as in Ref. [I1L We proceed using the same model for the 1D contact to encapsulated
graphene [12].

Ref. [11] assumed that the Joule heat generated at each contact is distributed equally on each side of the contact
resistance; the half that goes into the metal contact is immediately thermalized to the bath temperature, and the
half that goes into the graphene channel flows through the contact resistor and causes a temperature increase. Here,
instead of assuming that the contact resistance Joule power is equally distributed on each side, we will instead assume
that a fraction « is distributed on the graphene side, and 1 — « is distributed towards the metal contact. In the case
of a ballistic device, we typically expect a@ — 0 because dissipation occurs inside the metal contact (reservoir) itself
after the electrons leave the sample.

We will write AT, = %ATGS in terms of the total electrical current and the contact transport number. The heat
current . flowing through each contact resistance is then half of the heat generated in the channel R, added to the

fraction « of heat generated in the contact resistance R.:
Lo 2
Q. = 5[ Rs + al*R.. (4)

We then obtain

112R, 4 al?R,
AT = ‘ap, =1 @ _13l"R+a _ !
2 2Gme 2 Lodo/R. 2" L.T
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The effective bath temperature for the channel becomes Ty + AT.s. We can define an effective self-heating average

Johnson noise temperature rise for just the channel, above the effective bath temperature, as

I’R, I’R,

AT, = AT, — AT., = -
Gth,gen,s 12TO£S/RS

(6)

where Gyp,gen,s is the generalized thermal conductance of the sample channel only, using the sample transport ratio
G R
L, = —thgensTs - mpig allows us to write
12T,
I’R? )
12T0L,

AT, = AT, +

Substituting Eqgs. [ into [7]and into 7?7, and the results into Eq. [I} and re-arranging, we obtain

(Rs + 2R.)*

Gth,gen = R3 1 Rc
S JR—
12T, Ls + 2Ty

(R, +2aR.) (Rs + R.) ﬁi

Finally, relating Gp gen to the measured transport ratio as

1276 L,,
Gth,gen - m» (9)
we can write Eq. [§ as
R, +2R.)*
L= g M 2I) . (10)
R®  6R. (R, + 2aR.) (Rs + R.)
R z

In the ballistic limit, we have v — 0. Microscopically, this corresponds to electron scattering and randomizing their
momenta only once in the large reservoirs (corresponding to the metal contacts in our device) of the ballistic wire

model. Applying this limit and re-arranging, we find the measured transport ratio becomes

. +2R,)°
Lo =L, (R, +2R)

. (11)
R+ 6R.R, (R, + R.) %

R
Expanding Eq. in ﬁg — 0 (as occurs in a quasi-ballistic or ballistic system), we obtain to the lowest two orders

4R, 1R,
Loz |14+ = 12
Lm ~ Le 3 Ry ( 2RC>7 (12)

showing how the measured transport ratio will become large in ballistic samples where R. >> R;.

[1] A. V. Talanov, J. Waissman, T. Taniguchi, K. Watanabe, and P. Kim, High-bandwidth, variable-resistance differential
noise thermometry, Review of Scientific Instruments 92, 014904 (2021).


https://doi.org/10.1063/5.0026488

17

[2] A. Lucas and S. D. Sarma, Electronic hydrodynamics and the breakdown of the wiedemann-franz and mott laws in
interacting metals, Physical Review B 97,/10.1103 /physrevb.97.245128| (2018).

[3] M. Zarenia, A. Principi, and G. Vignale, Disorder-enabled hydrodynamics of charge and heat transport in monolayer
graphene, 2D Materials 6, 035024 (2019).

[4] A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Transport in inhomogeneous quantum critical fluids and in the
dirac fluid in graphene, Physical Review B 93,10.1103/physrevb.93.075426, (2016).

[5] S. Li, A. Levchenko, and A. V. Andreev, Hydrodynamic electron transport near charge neutrality, Physical Review B 102,
10.1103/physrevb.102.075305| (2020).

[6] Y. Seo, G. Song, C. Park, and S.-J. Sin, Small fermi surfaces and strong correlation effects in dirac materials with
holography, Journal of High Energy Physics 2017, 10.1007/jhep10(2017)204 (2017).

[7] H.-Y. Xie and M. S. Foster, Transport coefficients of graphene: Interplay of impurity scattering, coulomb interaction, and
optical phonons, Physical Review B 93, (10.1103/physrevb.93.195103 (2016).

[8] H. Yoshino and K. Murata, Significant enhancement of electronic thermal conductivity of two-dimensional zero-gap systems
by bipolar-diffusion effect, |[Journal of the Physical Society of Japan 84, 024601 (2015).

[9] Y.-T. Tu and S. D. Sarma, Wiedemann-franz law in graphene, Physical Review B 107, 10.1103/physrevb.107.085401
(2023).

[10] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A.
Ohki, and K. C. Fong, Observation of the dirac fluid and the breakdown of the wiedemann-franz law in graphene, |Science
351, 1058 (2016).

[11] K. C. Fong, Impact of contact resistance in lorenz number measurements (2017).

[12] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller,
J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, One-dimensional electrical contact to a two-dimensional material,
Science 342, 614 (2013).


https://doi.org/10.1103/physrevb.97.245128
https://doi.org/10.1088/2053-1583/ab1ad9
https://doi.org/10.1103/physrevb.93.075426
https://doi.org/10.1103/physrevb.102.075305
https://doi.org/10.1007/jhep10(2017)204
https://doi.org/10.1103/physrevb.93.195103
https://doi.org/10.7566/jpsj.84.024601
https://doi.org/10.1103/physrevb.107.085401
https://doi.org/10.1126/science.aad0343
https://doi.org/10.1126/science.aad0343
https://doi.org/10.48550/ARXIV.1711.04005
https://doi.org/10.1126/science.1244358

	Supplementary Information Observation of Electronic Viscous Dissipation in Graphene Magneto-thermal Transport
	Contents
	Device Disorder and Residual Density
	Results for an Additional Device
	Raw Temperature Data
	Verifying Magnetic Field-Independence of the Measurement Circuit
	Density Derivative of the Resistance
	Momentum-conserving and Momentum-Relaxing Length Scales
	n=0 Behavior and Evidence for the Dirac Fluid Regime
	Transport Ratio in the Ballistic Regime at B=0 in a Contact Resistance Model
	Supplementary References


