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FIG. S1. Main panel: Residual density of both devices in this work. Inset: log-log plot of electrical conductance vs n (blue).
Extrapolations to the linear and flat parts are indicated by the green dashed lines. Red indicates the intersection of these,
which is the residual density n0.

I. DEVICE DISORDER AND RESIDUAL DENSITY

Here, we present measurement of the device disorder level. Figure S1 shows the residual density versus temperature

for both devices exhibited in this work.
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II. RESULTS FOR AN ADDITIONAL DEVICE

In this section, we present data from a second monolayer graphene Corbino device. For this device, the mea-

sured transport ratio does not show an absolute suppression Gth,gen/12GelL0Tbath < 1, only a relative suppression.

Nonetheless, this relative suppression is observed in the degenerate T < TF and quasi-elastic T > TBG region of the

parameter space, similar to the device of the main text. This device has a shorter channel length of ∼ 1.64 µm. The

shorter channel length and smaller radii compared to the device shown in the main text result in a larger region of

expected viscous behavior, since the device dimensions are even smaller than the Gurzhi length lG compared to the

first device. Figure S2 shows the two devices, and compares their electrical resistance and Lorenz ratio versus density

for varying temperature. We observe similar Dirac peak behavior, and comparable transport ratio behavior with the

zero density peak, relative suppression for moderate densities, and enhancement at large densities (see main text and

below). Figure S4 shows the electrical and thermal magnetoresistance (EMR and TMR) parabolic prefactors Ael

and Ath, respectively, versus density for selected temperatures, compared to the zero-field transport ratio. Here, we

observe a similar emergence of negative TMR corresponding with the relative suppression of the zero-field transport

ratio in density and temperature. Figure S5 shows zero-field transport ratios and the parabolic prefactor ratio Ath/Ael

versus density and temperature, showing the emergence of the relative suppression and negative TMR regions in the

degenerate and quasi-elastic regime, as seen in the device discussed in the main text.
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FIG. S2. a) Optical micrograph of the device shown in the main text (MLG3), before (left) and after (right) deposition of
the central contact lead. b) Electrical resistance R of MLG3 versus density n for varying bath temperatures T . c) Transport
ratio Gth,gen/12GelL0Tbath versus n for varying T . d) Optical micrograph of a second Corbino device (MLG4) (left device, red
arrow). e) R versus n for varying T for MLG4. f) Transport ratio Gth,gen/12GelL0Tbath versus n for varying T for MLG4.



5

-0.2

0

0.2

0.4

0.6

MLG3

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=15K

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=24K

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=35K

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=65K

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4
G

th
,g

en
/(

12
G

el
L 0

T
ba

th
)

T=90K

-0.2

0

0.2

0.4

0.6
   

   
   

 A
th

   
   

   
   

   
  

A
el

   
   

  (
1/

T
2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=120K

-1 -0.5 0 0.5 1

n (1012 cm-2)

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=150K

-1 -0.5 0 0.5 1

n (1012 cm-2)

-0.2

0

0.2

0.4

0.6

   
   

   
 A

th
   

   
   

   
   

  
A

el
   

   
  (

1/
T

2
)

0

1

2

3

4

G
th

,g
en

/(
12

G
el

L 0
T

ba
th

)

T=200K

FIG. S3. Left axes: Line cuts of Ael (dark green) and Ath (light green) versus n for varying T from main text device MLG3.
Right axis: Line cuts of Gth,gen/12GelL0Tbath versus n. See main text.
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FIG. S4. Left axes: Line cuts of Ael (dark green) and Ath (light green) versus n for varying T from additional device MLG4.
Right axis: Line cuts of Gth,gen/12GelL0Tbath versus n. See main text.
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FIG. S6. Normalized temperature modulation ∆Tac,rms/Tbath versus n for two representative Tbath.

FIG. S7. Normalized temperature modulation ∆Tac,rms/Tbath versus applied Joule power for Tbath = 30K and n = 1.1 ×
1011 cm−2.

III. RAW TEMPERATURE DATA

Our measurements operate under an open-loop feedback mechanism that holds ∆T/T fixed to between 2− 5% in

these measurements, where ∆T is the measured electronic temperature rise and T is the bath temperature. These

temperature changes are chosen to be in the linear response regime according to sweeps of ∆T vs PJ sweeps, where
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PJ is the injected Joule power. The typical bias current has a range of ∼ 70− 280 µA at 200K and ∼ 1.5− 110 µA at

15K, varying as needed for the power to maintain a few percent temperature increase. At higher bath temperatures

more current is needed to achieve a given ∆T/T for higher electron densities than the system was able to provide,

with the maximum available being ∼ 280 µA; this is why the range is much larger for 200K than 15K. Figure S6

shows the measured temperature rise normalized by the bath temperature ∆T/T , for two representative temperatures

at B = 0, for device MLG4. For this sweep, ∆T/T 2% .

In Fig.S7, we show ∆T/T versus the applied Joule power, for Tbath = 30K and n = 1.1×1011 cm−2. At the chosen

operating point of ∆T/T 2%, we are deep in the linear response regime.
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FIG. S8. Upper left: noise power vs. bath temperature at a sample resistance of 650Ω at B = 0 (x symbols) and B = 38mT (o
symbols). Upper right: noise power vs. bath temperature at a sample resistance of 750Ω at B = 0 (x symbols) and B = 65mT
(o symbols). Lower panel: noise power versus sample resistance, for varying bath temperature. The functional form of the fit
is given in [1]. The sample resistance is swept by gate voltage at low resistances, and by magnetic field at high resistance. In
the overlap region, the two data sets coincide, demonstrating that the measurement circuit is not influenced by the magnetic
field (see discussion).

IV. VERIFYING MAGNETIC FIELD-INDEPENDENCE OF THE MEASUREMENT CIRCUIT

We have carefully designed our measurement circuits to avoid influence by the external magnetic field [1]. The

impedance matching circuit is created with air-core inductors and ceramic or silicon chip capacitors that do not have

magnetic field or temperature dependence. Our amplifiers are situated far outside the field range, outside the cryostat,

with separate cryogenic cooling. In this work, the maximum field attained is 130 mT. To experimentally verify that

there is no impact of the magnetic field on the Johnson noise circuit, we present data from our noise calibration in
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Fig. S8. In the data shown, we measure the raw output noise power versus the bath temperature. We take many such

curves for different values of the gate voltage and magnetic field, while measuring the sample electrical resistance.

Data taken at zero magnetic field is marked with ‘x’ symbols, while data taken at non-zero magnetic fields are marked

with ‘o’ symbols. In the two examples shown in the upper two plots, we see that the zero and finite magnetic field

data closely coincide. The lower plot shows measured noise versus sample resistance for various temperatures. The

functional form that determines this curve is determined by the impedance matching circuit, as described in [1]. Over

the resistance range 600–750 Ω, we observe that the zero and finite magnetic field data overlap precisely, showing that

the magnetic field has no effect on our noise measurement circuit.
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FIG. S9. Density derivative of the electrical resistance versus density. The minimum in the derivative is observed not to
coincide with the minimum in the transport ratio at B = 0.

V. DENSITY DERIVATIVE OF THE RESISTANCE

Figure S9 compares the density derivative of the electrical resistance to the B = 0 transport ratio. The position

of the transport ratio minimum at Tbath = 90 and 200K, where the minimum exists, is shown to be both tempera-

ture dependent, and distinct from the minimum in the density-derivative of the electrical resistance, showing these

quantities are not connected.
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FIG. S10. Momentum-relaxing length scale Lmr and momentum-conserving electron-electron scattering length Lee versus
density for several Tbath, as extracted from the theory fits. Consistent with a hydrodynamic picture, Lee < Lmr throughout
the non-zero density range. Lengths computed via Lee,mr = vF /γee,mr, where γmr comes directly from the fit parameters, and
γee is obtained from the bulk Lorenz ratio via γee = γmr · ([L/L0]

−1 − 1). from Ref.[2].

VI. MOMENTUM-CONSERVING AND MOMENTUM-RELAXING LENGTH SCALES

Figure S10 shows the momentum-conserving and -relaxing length scales as computed from the theory fits (see

main text). The upper panel shows the absolute values of the two length scales, while the lower panel shows their

ratio. As expected for the hydrodynamic regime, the momentum-conserving length scale is far shorter than the

momentum-relaxing length scale throughout the regime where the Lorenz ratio is suppressed in main text Figure 5.

This demonstrates self-consistency of the theory.
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VII. n = 0 BEHAVIOR AND EVIDENCE FOR THE DIRAC FLUID REGIME

In this section we discuss the zero density behavior observed in Figure 1 of the main text. At T ≈ 90K there develops

a small peak at charge neutrality in the measured transport ratio, decreasing to a slightly smaller value by 200K.

The magnitude of the peak is consistent with both a weak hydrodynamic enhancement[2? –7] and a bipolar diffusion

enhancement[8, 9], but our experiment cannot measure their relative contributions. Typically, bipolar diffusion effects

grow with temperature, but this peak weakens from 90K to 200K, consistent with a hydrodynamic enhancement at

90K getting suppressed by additional electron-phonon energy loss at higher temperatures, as was observed in Ref. [10]

where the Lorentz ratio also decreases with T above its peak in a non-monotonic fashion distinct from bipolar diffusion

behavior. Here, the value of the peak enhancement is lower and occurs at a different temperature, which could be

explained by ∼ 10× larger disorder in this device compared to the cleanest device in Ref. [10]. This is because

additional disorder will increase the temperature at which the crossover from the charge puddle to the Dirac Fluid

regime occurs, simultaneously weakening the effect which must compete with electron-phonon eneryg loss at higher

temperatures.

VIII. TRANSPORT RATIO IN THE BALLISTIC REGIME AT B = 0 IN A CONTACT RESISTANCE
MODEL

In the ballistic regime, our self-heating Johnson noise thermometry measurement technique produces artificially

enhanced transport ratios. This is different from the behavior predicted for a diffusive channel whose resistance is

dominated by contact resistance, where the measured transport ratio would trend towards the transport ratio of the

contact resistance itself, presumed to be
Lc

L
= 1[11]. Here, we present a more generalized version of the contact

resistance model developed in Ref. 11.

The total sample resistance is Rs +2Rc, where Rs is the main channel resistance and Rc is each contact resistance.

For simplicity, we assume that each contact resistance is line-like [12], and thus there is no temperature gradient in

the contact. We use T0 to denote the bath temperature.

We wish to obtain a formula that gives us the measured transport number Lm as a function of the sample transport

number Ls and the contact resistance transport number Lc, as well as other fixed or known parameters in the system,

including resistance. Most generally, we can write the generalized thermal conductance of the sample, using the total



15

Joule power P and the average Johnson noise temperature rise ∆T , as

Gth,gen = P/∆T =
I2 (Rs + 2Rc)

2

Rs∆Ts + 2Rc∆Tc

, (1)

where ∆Ts and ∆Tc are respective average Johnson noise temperature rises of the sample channel and contact above

T0.

We define the contact resistance Rc to have a thermal resistance Rc,th = 1/Gth,c such that the temperature drop

∆Tcs across the contact resistance is related to the heat Qc that flows through it via

∆Tcs =
Qc

Gth,c
, (2)

and we can likewise define a contact transport number as

Lc =
Gth,cRc

T0
. (3)

For the purposes of this model, we will assume, without rigorous justification, that the average Johnson noise

temperature of the contact resistance is one half of ∆Tcs. This would be the case for a spatially extended uniformly

resistive contact resistance, as in Ref. 11. We proceed using the same model for the 1D contact to encapsulated

graphene [12].

Ref. 11 assumed that the Joule heat generated at each contact is distributed equally on each side of the contact

resistance; the half that goes into the metal contact is immediately thermalized to the bath temperature, and the

half that goes into the graphene channel flows through the contact resistor and causes a temperature increase. Here,

instead of assuming that the contact resistance Joule power is equally distributed on each side, we will instead assume

that a fraction α is distributed on the graphene side, and 1− α is distributed towards the metal contact. In the case

of a ballistic device, we typically expect α → 0 because dissipation occurs inside the metal contact (reservoir) itself

after the electrons leave the sample.

We will write ∆Tc =
1

2
∆Tcs in terms of the total electrical current and the contact transport number. The heat

current Qc flowing through each contact resistance is then half of the heat generated in the channel Rs added to the

fraction α of heat generated in the contact resistance Rc:

Qc =
1

2
I2Rs + αI2Rc. (4)

We then obtain

∆Tc =
1

2
∆Tcs =

1

2

Qc

Gth,c
=

1

2

1
2I

2Rs + αI2Rc

LcT0/Rc
∆Tcs =

1

2
I2

Rc

LcT0
(Rs + 2αRc) . (5)
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The effective bath temperature for the channel becomes T0 + ∆Tcs. We can define an effective self-heating average

Johnson noise temperature rise for just the channel, above the effective bath temperature, as

∆̃Ts = ∆Ts −∆Tcs =
I2Rs

Gth,gen,s
=

I2Rs

12T0Ls/Rs
(6)

where Gth,gen,s is the generalized thermal conductance of the sample channel only, using the sample transport ratio

Ls =
Gth,gen,sRs

12T0
. This allows us to write

∆Ts = ∆Tcs +
I2R2

s

12T0Ls
. (7)

Substituting Eqs. 5 into 7 and into ??, and the results into Eq. 1, and re-arranging, we obtain

Gth,gen =
(Rs + 2Rc)

2

R3
s

12T0

1

Ls
+

Rc

2T0
(Rs + 2αRc) (Rs +Rc)

1

Lc

. (8)

Finally, relating Gth,gen to the measured transport ratio as

Gth,gen =
12T0Lm

Rs + 2Rc
, (9)

we can write Eq. 8 as

Lm =
(Rs + 2Rc)

3

R3
s

Ls
+

6Rc (Rs + 2αRc) (Rs +Rc)

Lc

. (10)

In the ballistic limit, we have α → 0. Microscopically, this corresponds to electron scattering and randomizing their

momenta only once in the large reservoirs (corresponding to the metal contacts in our device) of the ballistic wire

model. Applying this limit and re-arranging, we find the measured transport ratio becomes

Lm = Ls
(Rs + 2Rc)

3

R3
s + 6RcRs (Rs +Rc)

Ls

Lc

. (11)

Expanding Eq. 11 in
Rs

Rc
→ 0 (as occurs in a quasi-ballistic or ballistic system), we obtain to the lowest two orders

Lm ≈ Lc ·
4

3

Rc

Rs

(
1 +

1

2

Rs

Rc

)
, (12)

showing how the measured transport ratio will become large in ballistic samples where Rc >> Rs.
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