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SUPPLEMENTARY MATERIAL

1 Datasets

1.1 Pre-training (PT) dataset

Dataset building

Four datasets from the PhysioNet Computing in Cardiology Challenge 2021 [1-3] have
been exploited to build the PT dataset: Ningbo Database [3, 4], Chapman-Shaozing
Database [3, 5], PTB-XL Database [3, 6, 7] and The Georgia 12-lead ECG Challenge
Database [3]. All of them contain 12-lead ECG recordings, sampled at a frequency
of 500 Hz. Ningbo Database contains 34’905 recordings, Chapman-Shaoxing Database
10’646 recordings, Georgia Database 10’344 recordings, and PTB-XL Database 21°837
recordings from 18885 subjects. All these datasets contain 10-second ECG signals,
except for Georgia Database whose instances last 5 (less than 2%) or 10 seconds. Each
ECG is provided with a set of labels describing cardiac diagnosis, morphology and/or
rhythm. These are assigned to the whole recording period and encoded through the
SNOMED-CT standard.

From these four datasets, we included the recordings containing at least one rhythm
label in the PT dataset and extracted only lead II. As regards Georgia Database, we
excluded the ECGs lasting 5 seconds. Afterward, ECG recordings associated with
noise label or underrepresented labels (around 3% of the remaining recordings) have
been removed. A total of 72850 ECG signals from 70138 subjects associated with
14 different combinations of rhythm labels make up the final dataset. The labels
distribution can be found in table 3. It can be noticed that LTAs (e.g. ventricular
tachycardia, ventricular fibrillation) are not present in PT recordings.

Pre-processing and splitting

All the ECG signals have been resampled at 200 Hz. Each 10s recording has been
truncated to obtain a sequence made by 7 256-sample segments (about 8.96s), to
ensure compatibility with the architecture used during the pre-training phase. From
the set of labels associated with each recording, we selected only the rhythm labels,
resulting in one or more rhythms assigned to each sequence. The signals have been
filtered with a Butterworth 4th order filter with cutoff frequencies of 0.5 and 40 Hz.
The sequences in PT dataset have been split on a subject basis and by exploiting a
multi-label stratified strategy. 20% of the dataset has been kept unused for the test.
The remaining 80% has been split into 80% for training and 20% for validation. Then,
the data were standardized based on the mean and standard deviation computed on
the training set.

1.2 Fine-tuning LTA (FT-LTA) dataset

Dataset building

For the LTA detection downstream task, three publicly available and widely used
datasets have been exploited: MIT-BIH arrhythmia database (MITDB) (3, 8], MIT-
BIH malignant ventricular ectopy database (VFDB) [3, 9] and Creighton University



ventricular tachyarrhythmia database (CUDB) [3, 10]. MITDB contains 48 30-minute
ECG recordings, sampled at 360 Hz, from 47 subjects studied by the Beth Israel
Hospital Arrhythmia Laboratory between 1975 and 1979. VFDB contains 22 30-
minute ECG recordings, sampled at 250 Hz, of subjects who experienced episodes
of sustained ventricular tachycardia, ventricular flutter, and ventricular fibrillation.
CUDB contains 35 8.5-minute single-lead ECG recordings, sampled at 250 Hz, of
subjects who experienced episodes of ventricular fibrillation. For all three datasets,
rhythm annotations were provided, with the time reference of each rhythm change.
For MITDB also beat labels were available.

To build the FT-LTA dataset we extracted lead II and selected the labels describing
cardiac rhythm changes. The FT-LTA dataset includes a total number of 104 ECG
recordings from subjects who have experienced LTAs. Table 7?7 reports the label
distribution in each subset of the FT-LTA dataset.

Pre-processing and splitting

All the recordings have been down-sampled to 200 Hz and converted in uV for consis-
tency with the pre-training data. Each recording has been split into non-overlapping
sequences of 7 256-sample segments. The rhythm labels have been divided into two
classes: LTA, including ventricular tachycardia (VT), ventricular fibrillation (VF),
ventricular flutter (VFL) and polymorphic ventricular tachycardia (PVT), and other,
including all the other rhythms. Then a unique class (LTA or other) was associated
with each 256-sample segment, obtaining 7 labels per sequence. The most frequent
class has been assigned in case of multiple rhythms. The segments labeled with
”noise” have been removed since a clear rhythm could not be assigned. Each sequence
has been pre-processed following the procedure proposed in [11] and exploited also in
[12-14]. Tt consists of four steps: mean subtraction, five-order moving average filter,
high-pass filter at 1Hz for drift suppression, and low-pass Butterworth filter at 30 Hz.
The 1-30 Hz is a typical monitor bandwidth used in AEDs to distinguish shockable
vs non-shockable rhythms.

Each of the three datasets has been split on a subject basis into train, validation, and
test sets. 20% of the dataset has been kept unused for the test, while the remaining
80% has been split into 80% for training and 20% for validation. Finally, the whole
dataset was standardized based on the mean and standard deviation calculated on
the training set.
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2.1 Architecture
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Fig. 1: Architecture of ECGnet-v0 and ECGnet-v1
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Fig. 2: Architecture of ECGnet-vi-L, ECGnet-vi-M and ECGnet-v1-S 9290
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3.1 Optimization of the freezing configuration
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Fig. 3: Sensitivity, specificity and macro Fl-score of ECGnet-vl TL on the FT-
LTA validation set (first columns) and test set (second column) varying the freezing
configuration. The x-axis reports the number of frozen blocks during the fine-tuning
phase (from no frozen blocks to all but the last frozen block)

References

[1] M. A. Reyna, N. Sadr, E. A. P. Alday, A. Gu, A. J. Shah, C. Robichaux, A. B.
Rad, A. Elola, S. Seyedi, S. Ansari, H. Ghanbari, Q. Li, A. Sharma, and G. D.
Clifford, “Will two do? varying dimensions in electrocardiography: The phys-
ionet /computing in cardiology challenge 2021,” in 2021 Computing in Cardiology
(CinC), vol. 48, pp. 14, 2021.

[2] M. A. Reyna, N. Sadr, E. A. P. Alday, A. Gu, A. J. Shah, C. Robichaux, A. B.
Rad, A. Elola, S. Seyedi, S. Ansari, H. Ghanbari, Q. Li, A. Sharma, and G. D.



[11]

[12]

Clifford, “Issues in the automated classification of multilead ecgs using hetero-
geneous labels and populations,” Physiological Measurement, vol. 43, p. 084001,
aug 2022.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and
H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components
of a new research resource for complex physiologic signals,” Circulation,
vol. 101, no. 23, pp. e€215—e220, 2000 (June 13). Circulation Electronic
Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:
10.1161/01.CIR.101.23.€215.

J. Zheng, H. Chu, D. Struppa, J. Zhang, M. Yacoub, H. El-Askary, A. Chang,
L. Ehwerhemuepha, I. Abudayyeh, A. Barrett, G. Fu, H. Yao, D. Li, H. Guo, and
C. Rakovski, “Optimal multi-stage arrhythmia classification approach,” Scientific
Reports, vol. 10, 02 2020.

J. Zheng, J. Zhang, S. Danioko, H. Yao, H. Guo, and C. Rakovski, “A 12-lead
electrocardiogram database for arrhythmia research covering more than 10,000
patients,” Scientific Data, vol. 7, 02 2020.

P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. Lunze, W. Samek,
and T. Schaeffter, “Ptb-xl, a large publicly available electrocardiography dataset,”
Scientific Data, vol. 7, p. 154, 05 2020.

P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek, F. Lunze, W. Samek,
and T. Schaeffter, “Ptb-xl, a large publicly available electrocardiography dataset
(version 1.0.3),” Physionet, 2022.

G. Moody and R. Mark, “The impact of the mit-bih arrhythmia database,” IEEE
Engineering in Medicine and Biology Magazine, vol. 20, no. 3, pp. 45-50, 2001.
S. Greenwald, “The development and analysis of a ventricular fibrillation
detector,” 01 2015.

N.F. M, B. F. K, C. J. M, B. R. W, and S. M. H, “Crei-gard. a new concept
in computerized arrhythmia monitoring systems.,” Proceedings. Annual Scientific
Meeting of Computers in Cardiology, vol. 1986, pp. 515-518, 1987.

“Reliability of old and new ventricular fibrillation detection algorithms for auto-
mated external defibrillators,” BioMedical Engineering OnLine, vol. 4, p. 60, 10
2005.

C. Figuera, U. Irusta, E. Morgado, E. Aramendi, U. Ayala, L. Wik, J. Kramer-
Johansen, T. Eftestgl, and F. Alonso-Atienza, “Machine learning techniques for
the detection of shockable rhythms in automated external defibrillators,” PLoS
ONE, vol. 11, 7 2016.

A. Picon, U. Irusta, A. Alvarez Gila, E. Aramendi, F. Alonso-Atienza, C. Figuera,
U. Ayala, E. Garrote, L. Wik, J. Kramer-Johansen, and T. Eftestsl, “Mixed
convolutional and long short-term memory network for the detection of lethal
ventricular arrhythmia,” PLoS ONE, vol. 14, 5 2019.

K. Dahal and M. H. Ali, “A hybrid gan-based dl approach for the automatic
detection of shockable rhythms in aed for solving imbalanced data problems,”
Electronics (Switzerland), vol. 12, 1 2023.

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322



0G8CL 048CL 8ETOL 68291 68291 ¢1e91 Y9011 9011 ¢8L0T L6VST L6VSY wiey 1oL
L8 L8 8¢ L8 L8 8¢ dLd

6 6 6 6 6 6 THVONI
964 964 9€¢ 9€S 9€g 9€¢ BIXO-DSID
6€1¢ 6€1¢ 6€1¢ 6€1¢ 6€1C 6€1¢ OSdD
¢960¢ ¢960¢ 6281 88¢ 88¢ 0ve Lv61 LV61 G991 LTLST LTLST VLEIT TX-dLd
yieee vieee vieee G665 G665 G665 Lves LveS Lyes ¢L0ce ¢L0ce ¢L0cT 0qSuIN
629G 6¢9¢ 6294 Yvae ¥vae ¥vae cLal cLal cLal €181 €181 €181 ©131095)
¥L101 ¥L101 ¥L101 1697 1697 1697 864¢ 865¢ 864¢ G88¢ G88¢ G88¢ uewdey)
bes N 201 N [gs N bes N 291 N (gs N bes N 291 N (gs N bas N 201 N [gs N

1oL 1S9L, uomnepife) ured,

"1e8e)ep [ J Ul (180} pue ‘UoljepI[eA ‘Urel}) josqns

oed 10} jesejep 90Inos yoes url (bas N) seouonbes juomdes-), pue (0o1 N) sSurpiooal ‘(qns N) spolqns jo Iequny T o[qel,

323
324
325
326

327
328
329

330

331
332
333

334
335

336
337
338
339

340

341
342
343

344
345
346

347
348
349
350

351
352
353

354
355
356

357
358
359
360

361
362
363

364

365
366
367
368



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

660T1T c01 [40)8 T14¢ 0¢ 0T VLIT ST q1 VIivi L9 L9 1oL
y9cv (44 44 806 4 ¥ 907 € € 0S6¢ qr o dddA
1674 14 v 62T 6 6 €29 L L 6v4¢€ 6¢ 6C dALIN
¥8€T Ge 18 1445 L L i g g G16 €¢ €¢ adand
boas N 291 N [gs N boas N 291 N [qs N boas N 291 N [gs N boas N 291 N [qs N

[e10L, 1897, uorjepIfeA ureit,

“19seIep V. I7-LA Ul (1593 pue ‘UoIyepIfeA ‘urery) 39squs
oes 10] josejep eonos yoea ul (bas N) seousnbes juew8es-, pue (0a1 N) s3urprooal ‘(qns N) s109lqns jo Iaquny :g O[],



415
416
417
418
419
420
421
422
423
424
425
426

427
498 Table 3: Number of 7-segment sequences (N seq) and 256-sample segments (N segm)

499 in each rhythm class (or group of classes in case of multiple labels) for each subset
430 (train, validation, and test) in PT dataset.

431 Train Validation Test Total
432 N seq N segm N seq N segm N seq N segm N seq N segm
433 N 17441 122087 4176 20232 5951 41657 27568 192976
434 SB 11226 78582 2797 19579 3536 24752 17559 122913
435 ST 5696 39872 1417 9919 2057 14399 9170 64190
AFL 4754 33278 1186 8302 1527 10689 7467 52269
436 AR 2488 17416 552 3864 2036 14252 5076 35532
437 SA 1472 10304 356 2492 452 3164 2280 15960
438 SA, SB 510 3570 127 889 159 1113 796 5572
139 P 450 3150 102 714 123 861 675 4725
SVT 436 3052 108 756 140 980 684 4788
440 N, sA 410 2870 96 672 123 861 629 4403
441 N, SB 234 1638 55 385 65 455 354 2478
449 N, ST 156 1092 36 252 44 308 236 1652
ARH 129 903 32 224 40 280 201 1407
443 A 95 665 24 168 36 252 155 1085
ijﬁ Tot 45497 318479 11064 77448 16289 114023 72850 509950

446 N: normal synus rhythm, SB: sinus bradycardia, ST: sinus tachycardia, AFL: atrial flutter, AF: atrial
447 fibrillation, SA: sinus arrhythmia, P: paced rhythm, SVT: supraventricular tachycardia, ARH: atrial
448 rhythm, AT: atrial tachycardia
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