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The Supplementary Note 1| Proving the Irrelevance of Maxwell-Wagner Effects
 The improvement in capacitance in the bilayer device can also be caused by the leakage current passing through each layer. Therefore, before demonstrating that the capacitance enhancement in our AO/HZO bilayer device is due to the NC or IC effect of the ferroelectric HZO, it is necessary first to verify the possibility that this increase in capacitance is an external effect caused by leakage current. This phenomenon can be understood by the Maxwell Wagner (MW) equivalent circuit, which considers each layer's dielectric constant and resistivity, as illustrated in Figure S1a.1 In a cylindrical ferroelectric/top dielectric device, the dielectric capacitance of each layer can be represented as follows:2
	
	
	(1.1a)

	
	
	(1.1b)


, where  is the vacuum permittivity,  is the dielectric constant of the FE layer along the radial direction,  is the dielectric constant of the DE layer,  is the radius of the bottom electrode,  is the thickness of the FE (DE) layer, and  is the height of the cylinder.
 The resistance of each layer can be represented as follows,
	
	(1.2b)

	
	(1.2b)


 , where  is the resistivity of the FE layer,  is the resistivity of the DE layer, and  is the height of the cylinder. The same short pulse conditions as the experiments were applied to this equivalent circuit, allowing for the calculation of Qch, Qdis, and Qres. In this simulation, the capacitance enhancement effect arising from the MW effect of simple dielectric layers was calculated, excluding the ferroelectricity of the FE layer. Figs. S1b and c show the MW effect for an HZO(3 nm)/AO(2 nm) device. The capacitance of this bilayer device can be determined by differentiating Qdis in the short pulse measurement for the pulse amplitude (Vp) as follows.
	
	(1.3)


 As shown in Fig. S1b, the capacitance of the bilayer device can vary depending on the resistivity of each layer. When the resistivities of both layers are high ( Ωm), the device has an equivalent capacitance corresponding to the serial connection of each layer's capacitors. However, if one of the resistivities is low, the capacitance of the bilayer device converges towards the capacitance of the layer with high resistivity. If the resistivities of both layers are low, the capacitance of the bilayer decreases even more significantly than the serial capacitance. Fig. S1c shows the ratio of Qres/Qch that can be obtained from short pulse measurements for each resistivity value.
 When both resistivities are low, note that the value of Qres approaches Qch. The red horizontal plane in Fig. S1b represents the total capacitance value experimentally measured in our HZO 3 nm/AO 2 nm device. Fig. S1b demonstrates that capacitance boosting can occur due to the MW effect when each layer has a resistivity value corresponding to the intersection line with this plane and calculated surface. In other words, the device can exhibit a capacitance corresponding to experimental values due to the MW effect when the resistivity of the HZO layer, , drops to ~ Ωm, or the resistivity of the AO layer, , to ~ Ωm. However, as shown in Fig. S1c, the simulated ratios of Qres/Qch at these regions are significantly higher (~0.0535 for ~ or ~0.3546 for ~) than the measured value (red plane of ~0.0294) due to the significant leakage currents. Therefore, if the capacitance boosting effect in the HZO (3 nm)/AO (2 nm) layers had occurred due to the MW effect, a significantly higher Qres than the experimental values should have been observed. Thus, the near IC characteristics this device displays are not attributable to the MW effect. Similarly, as shown in Figs. S1d and e, the capacitance boosting in the HZO (2 nm)/AO (3 nm) device could be explained by the MW effect when the resistivity of the AO layer is  Ωm. However, in this region, a much higher Qres/Qch ratio of ~0.4725 occurs, significantly exceeding the experimental value of ~0.0639. Therefore, the MW effect cannot explain the phenomenon of increased capacitance in the HZO (2 nm)/AO (3 nm) device compared to the single capacitance of the AO layer.

The Supplementary Note 2| Derivation of ISE model in cylindrical structure
The multidomain structure of ferroelectrics inside a cylindrical structure can be simplified, as shown in Fig. S2, when the direction of FE polarization is assumed to be out-of-plane. Considering it is a polycrystalline thin film, the actual domain structure might have polar axes in various directions; however, such effects can be represented as reducing the magnitude of the effective bound charge in the out-of-plane direction within this model. Additionally, recent studies showed that the 'S-curve' observed in polycrystalline thin films can be reduced to a simple ISE model with a single polar axis in planar devices.3 This is because the change in ISE with poling is determined by the average potential created by the uncompensated polarization bound charges at the FE/DE interface, regardless of the specific direction of the grains.
This model assumes N sets of antiparallel domains within the cylinder. Therefore, this model has an angular period of , as shown in Fig. S2. The model assumes a triple-layer structure of DE/FE/DE with an internal pillar of a radius , and the thickness of each layer is , , and , respectively. As a voltage, , is applied to the upper electrode, the size of the domain in the same direction as the external electric field within each period increases, which can be simulated as an angular motion of the domain wall. The analytical model for this structure can be easily derived in polar coordinates (r,θ). According to Gauss's law, the governing equation for the potential in each layer can be written as follows.
As for the FE layer ,
	
	(2.1)


, where  is the dielectric constant along the radial (circumferential) direction of the FE layer, and  is the electrostatic potential inside the FE layer.
As for the upper and lower dielectric layers, ,
	
	(2.2)


, where  and  are the electrostatic potentials inside the upper and lower DE layers, respectively. In addition, the following six boundary conditions should be satisfied between the potentials,
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 , where  and  denote the bound charge density along the lower and upper boundary between the FE and DE layer, respectively. As displayed in Fig. S2, the net bound charge distribution can be obtained as a sum of the FE polarization bound charge  and compensating charge densities  as follows,
	
	
	(2.4)


, where the FE bound charge  is given as follows, 
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, where  is the saturated polarization of hard domains, and  is the radian angle of the upward polarization domains. The compensating charge  is as follows,
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, where  is the compensating parameter that denotes the ratio of the net bound charge to the FE bound charge at the initial condition. Note that  indicates the no compensating effect, while  indicates the complete compensating of the FE polarization in the initial condition. Assuming the symmetry, the net bound charge density  at the lower interface can be simply obtained as follows,
	
	
	(2.7)



 Fourier exponential transform (FET) of the entire system over the angular period  enables the partition of the homogeneous and inhomogeneous potential. First, the transform separates the bound charge distribution for a wavenumber  is as follows,
	
	(2.8)


, where  is the angular wavevector, and . 
For the homogeneous portion (, the averaged bound charge density is obtained from Eq. (2.8) as follows,
	
	(2.9)


, where  is the relative ratio of the upward and downward domains defined as follows,
	
	(2.10)


, where  is the radian angle of the downward polarization domains. Note that the average effect of the compensating charge is canceled out due to the symmetry of the compensating at the initial condition.
For the inhomogeneous portion (), each amplitude of the wave can be obtained from Eq. (2.8) as follows,
	
	(2.11)


Similarly, the FET of the electrostatic potential  results in the ordinary differential equations for the radial direction, whose solution can be inverse-transformed into the original solution in the polar coordinates as follows,  
	
	(2.12)


 For the homogeneous portion (the averaged potential along the circumference can be obtained as the homogeneous solutions  in each layer as follows,
	
	(2.13a)
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, where each coefficient is written as follows,
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For the inhomogeneous portion (), the amplitude  for the wavenumber can be obtained in each layer as follows, 
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, where each coefficient is written as follows,
	

	(2.16a)

	

	(2.16b)

	
	(2.16c)

	
	(2.16d)


, where the coefficient , , , , and  are defined as follows,
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Now, the solutions obtained in the k-space can be transformed back into the original coordinates by substituting Eq. (2.15) into Eq. (2.12), noting that 
	
	(2.18)


Therefore, the inhomogeneous potential in the FE layer for the polar coordinates  can be obtained for each layer as follows,
	
	(2.19a)
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Therefore, the total solution of the potential can be obtained as a sum of the homogeneous and inhomogeneous solutions as follows,
	
	(2.20)



Now, using the obtained potentials, the total free energy of the device can be obtained as follows,
	
	(2.21)


, where  and  are the LGD internal bulk free energy and the domain wall energy of the ferroelectrics, which can both be considered as constants in the hard domain structure,  is the electric field, , and  are the accumulated charge density and the potential on the electrode, respectively, and , the electrostatic energy can be equally obtained as,
	
	(2.22)


, where the surface integral in Eq. (2.21) should be performed for both top and bottom interface areas between FE and DE layers as follows,
	
	(2.23)


, where each integral is obtained as follows for the unit thickness of the cylinder,
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 As the potential is decomposed into two components in Eq. (2.20), the electrostatic energy can also be decomposed into homogeneous and inhomogeneous energy by substituting each potential into Eq. (2.22) as follows,
	
	(2.25)


For the homogeneous potential, the surface integral is calculated as follows,
	
	(2.26)


The last term in Eq. (2.22) is obtained as follows,
	
	(2.27)


, where the subscript TE and BE denote the top and bottom electrodes, respectively. Note that the bottom electrode is grounded (). 
The accumulated charge on the top electrode can be obtained from the integral as follows,
	
	(2.28)


, where  is the radial electric field inside the upper dielectric layer. Substituting Eq. (2.13a) into Eq. (2.28) leads to the simple expression of  as follows,
	
	(2.29)


Thus, the exerted work from the source is obtained as,
	
	(2.30)


Finally, the total homogeneous electrostatic energy is obtained as follows,
	
	(2.31)


Thus, the total homogeneous electrostatic energy per unit volume of the cylinder is obtained as follows,
	
	(2.32)



Next, the inhomogeneous electrostatic energy can be obtained by substituting Eq.(2.19b) into Eq. (2.22) as follows,
	
	(2.33)


From Eq. (2.33), the Kittel free energy can be obtained for the depolarized state () as follows,
	
	(2.34)


Thus, the remaining energy that represents the stray field energy from the unsymmetric multidomain structure () is obtained as follows,
	
	(2.35)


Finally, the energy per unit volume is,
	
	(2.36)


Therefore, the total free energy per unit volume is written as follows,
	
	(2.37)


The governing equation for the switching kinetics can be obtained by the Euler-Lagrange variational principle as follows,
	
	(2.38)


Note that only the homogeneous electrostatic energy and the unsymmetric inhomogeneous electrostatic energy depend on the variable .
Substituting Eq. (2.32) and Eq. (2.36) into Eq. (2.38), one can finally derive the analytical expression for the switching kinetics in the cylinder structure as follows.
	
	(2.39)


 As for the FE/DE bilayer structure as in this sample, Eq. (2.39) becomes more simplified by putting  as follows,
	
	(2.40)


, where the coefficients , and  can be explicitly expressed as follows from Eqs. (2.16) and (2.17),
	
	(2.41a)
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 Note that the averaged (homogeneous) radial electric FE field component  is obtained as,
	
	(2.42)


, where  is the averaged (homogeneous) potential across the FE layer obtained from Eq. (2.13). The analytical expression for the  curve (i.e., single or double 'S-curve') at the steady state can be obtained from Eq. (2.40) by substituting 
	
	(2.43)


, while the averaged (homogeneous) displacement field can be obtained as follows,
	
	(2.44)


Finally, using Eq. (2.43) and (2.44), the  curve can be obtained as a function of the relative ratio of the domains  up to the polarized states ().

Supplementary Note 3| Dielectric constant of the AO/HZO cylinder structure device from the ISE model
 The expression for the effective dielectric constant of the HZO layer inside the AO/HZO cylinder structure device was derived to reveal the direct relation between the capacitance and the inhomogeneous stray field energy (ISE). From Eq. (2.13a), the averaged (homogeneous) potential inside the upper dielectric layer can be written as follows, 
	
	(3.1)


, where  can be written as follows,
	
	(3.2)


With the following parameters,
	
	(3.3a)

	
	(3.3b)

	
	(3.3c)


The total charge on the top electrode is obtained as
	
	(3.4)


From Eq. (3.1), Eq. (3.4) becomes
	
	(3.5)


 Thus, the charge density for the bottom electrode is,
	
	(3.6)


From Eq. (3.6), the effective dielectric constant of the FE layer can be obtained as follows,
	
	(3.7)


Substituting Eq.(3.2) into Eq.(3.6), 
	
	(3.8)


Note that for our AO/HZO bilayer structure devices, the lower dielectric layer is ignored in the expressions , ).
As for the first term in Eq. (3.8), The relationship between the applied voltage  and the averaged ferroelectric field  can be obtained from Eq. (2.13b)
	
	(3.9)


, where
	
	(3.10)


For the initial depolarized state (), the derivative  in Eq. (3.8) is obtained as follows,
	
	(3.11)


 Substituting Eq. (3.11) into Eq. (3.8) yields
	
	(3.12)



 For the steady state condition (), the FE electric field on the second term can be related to the inhomogeneous field as follows from Eq.(2.38) and Eq.(2.40)
	
	(3.13)


 Substituting Eq. (3.13) into Eq. (3.12), the effective dielectric constant of the HZO layer inside the AO/HZO cylinder structure device can be obtained as follows,
	
	(3.14)


 Note that the effective dielectric constant of the HZO layer is obtained as a sum of the background dielectric constant and the inverse of the curvature of the ISE for the averaged FE polarization (). Therefore, the variation of the curvature of the ISE results in the change of the effective capacitance of the HZO layer.

Supplementary Note 4| Extraction of the ISE landscape from the experimental results  
 For an FE-DE bilayer device, the  curve of the ferroelectric layer is typically derived from the following equation:
	
	(4.1a)

	
	(4.1b)


 , where  refers to the total discharged charge density. In a planar structure, the capacitance density  of the DE layer can be estimated from the permittivity of the DE layer and its thickness as follows:
	
	(4.2)


However, it should be noted that in a cylindrical structure, the capacitance density can change due to the thickness of the DE layer and the inner radius. That is, for a device with an inner radius , a thickness , and a permittivity , the capacitance density for the bottom electrode area is written as follows:
	
	(4.3)


 In the case of an AO/HZO bilayer structure where the AO layer is deposited on top of the HZO layer, the capacitance of the AO layer is calculated as follows:
	
	(4.4)


 Eq. (4.4) is identical to Eq. (3.3a) in structures without a lower dielectric layer. As shown in Fig. S3, it should be noted that the capacitance of a single AO layer in a pillar structure is not the same as the capacitance of the AO layer in a stacked device. As for our devices with the inner pillar radius is 15 nm, the AO capacitance density for the HZO/AO cylinder is 1.19 times larger than the AO capacitance density for the single AO cylinder. Using the AO capacitance density of the single AO layer significantly overestimates the capacitance enhancement of the HZO/AO bilayer. Therefore, to correctly extract the FE field in a bilayer structure, Eq. (4.4) must be used for the capacitance of the AO layer.
 First, it should be verified whether the accurate extraction of the FE field using Eq. (4.1) and Eq. (4.4) is still valid in a cylindrical structure. First, Eq. (4.1) was derived from Kirchhoff's voltage law.
	
	(4.5)


, where the average voltage  applied across the DE layer can be written as follows:
	
	(4.6)


, where  represents the reversible charge density for the area of the bottom electrode, which is equivalent to . Therefore, by substituting Eqs (3.6) and (4.4) into equation (4.6), one can verify that Eq. (4.6) equals the analytical solution derived from equation (3.1).
	
	(4.7)


 Therefore, from Eq. (4.1) and (4.4), the average field applied across the HZO layer in a cylindrical structure can be accurately extracted as long as the dielectric constant of the AO layer is properly extracted from the Q-V results of a single AO layer. The dielectric constant of a single AO layer should be extracted as follows using Eq. (4.3).
	
	(4.8)


, where  is the thickness of the AO layer,  is the charge density concerning the area of the bottom electrode derived from short pulse measurements of a single AO layer, and  is the electric field across the AO layer derived from the pulse voltage, . Extended Data Fig. 4 shows that the dielectric constant of the amorphous AO layer extracted from Eq. (4.8) is approximately 5.37 and 5.16 for positive and negative bias, respectively.
 Finally, from the  curve of the ferroelectric layer obtained in this way, the ISE landscape can be directly extracted for the averaged FE polarization using the analytical solution. As seen in Eq. (3.13), the average electric field  in the ferroelectric material has the following relationship with the ISE ():
	
	(4.9)


Therefore, if the change in averaged FE polarization can be extracted from the total displacement field,  then the change in  from the initial depolarized state () could be calculated as the integral value of it, as follows:
	
	(4.10)


According to the displacement field continuity of Eq. (2.3f), 
	
	(4.11)


the averaged FE polarization () can be obtained as follows,
	
	(4.12)


, where  can be determined as a function of , which is re-extracted from Eq. (3.9). Therefore, the change in ISE within the device from an estimated value of  (fitting parameter ~ 34) for the HZO layer can be directly extracted using Eq. (4.10). 

Supplementary Note 5| Explanation based on the Landau-Ginzburg-Devonshire model
 The variation in capacitance with the thin film thickness of the HZO/AO layers was explained by the change in the inhomogeneous stray field energy profile according to the ISE model. This effect is attributed to the alteration in the configuration of the ISE due to compensating charges at the AO/HZO interface that screen the polarization-bound charges. Interestingly, a similar interpretation can also be made through the Landau-Ginzburg-Devonshire (LGD) model. 
 Figures S4a and b represent the results reproduced through the LGD model from the Df-Ef curves extracted from devices with HZO (3 nm)/AO (2 nm) and HZO (2 nm)/AO (3 nm), respectively. As for the LGD model, the first-order ferroelectric parameters were used for the LGD polynomial coefficients (, ,  for ). It has been reported that the double S-curve can also be reproduced in the LGD model by assuming the antiparallel domain structure, as shown in Fig. S4c.4,5 However, unlike the ISE model, the switching of FE polarization does not occur via the lateral domain wall motion in the LGD model but rather through homogeneous switching within each domain. As illustrated in Fig. S4c, if an antiparallel structure is formed initially, only the domains opposing the applied electric field undergo homogeneous switching. Therefore, a double S-curve shape appears for each bias polarity, as the S-curves manifest separately for the opposite polarizations, resulting in the PC state at the origin.4 According to the LGD model, if the injection of compensating charges is induced through the DE layer, it leads to the transformation into an antiparallel domain structure due to the reduction of the depolarization field, preventing the maintenance of a homogeneously depolarized state within the FE layer. On the other hand, if the injection is significantly restricted, as shown in Figs. S4b and d, NC stabilization by the stacked DE device occurs, resulting in a single S-curve due to the homogeneously depolarized state. 
 Interestingly, this study shows that the antiparallel LGD model can also explain the changes in the Df-Ef curves with variations in the thickness of the AO layer in a similar principle to the ISE model, as shown in Fig. S4g. As illustrated in Fig. S4h, the LGD model also shows the transition of capacitance as the ratio of effective bound charges λ, due to the compensating of interfacial charges, increases as the AO layer becomes thicker. This finding can be understood as a consequence of the variation of the stray field energy in the antiparallel domain structure caused by an interfacial compensating effect that also affects capacitance in the LGD model. However, as shown in Fig. S4e, even if the initial polarization bound charge is sufficiently screened, the inhomogeneous potential does not increase but decreases as switching progresses. This difference in inhomogeneous potential change from the ISE model is due to the disparate switching kinetics of the LGD model, in which the homogeneous switching occurs within each domain rather than lateral domain wall motion.
 Thus, in the antiparallel LGD model, the ISE landscape is added up to the internal LGD energy landscape. Therefore, the ISE landscape with the negative curvature induces additional NC in the initial depolarized state. This results in the counter-clockwise rotation of the Df-Ef slope at the origin in Fig. S4g with increased AO thickness. When there is a sufficient amount of compensating charge, the reduction in ISE due to polarization switching is not significant, which decreases the negative curvature and thus reduces the contribution of NC. On the other hand, in a homogeneously depolarized state, as shown in Fig. S4f, no stray field is generated, so ISE does not affect the capacitance, and the negative curvature of LGD internal energy becomes the only source of NC. Therefore, these results demonstrate that regardless of the underlying physics of the ferroelectric negative capacitance effect, as long as the antiparallel structure forms, the contribution of inhomogeneous stray field energy due to the presence of compensating charge plays a crucial role in the capacitance variation of the device.

[image: ]
Figure S1| Maxwell-Wagner effect for cylindrical bilayer devices. a, The schematics of the cylindrical bilayer structure and equivalent circuit. b-c, The total capacitance extracted from the short incremental pulse simulation (b) and the ratio of Qres/Qch (c) as a function of the resistivity of the DE (2 nm) and FE (3 nm) layers. The red plane denotes the experimental values. d-e, The total capacitance extracted from the short incremental pulse simulation (d) and the ratio of Qres/Qch (e) as a function of the resistivity of the DE (3 nm) and FE (2 nm) layers.

[image: ]
Figure S2| Schematics of the domain structure in cylindrical DE/FE/DE devices. The arrows inside the FE-HZO layer denote the FE polarization direction. Blue and red curves along the circumferences of the interfaces between FE and upper and lower DE layers denote the initial compensating charge distribution. The analytical solution in the polar coordinates () was obtained for one period of the whole domain structures.
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Figure S3| Capacitance density of the single AO layer in the cylindrical structure. The dashed line denotes the capacitance density for the 3 nm-thick AO single layer in the planar structure. Red curves correspond to the capacitance density for the AO single layer in the cylindrical structure for the inner radius of the bottom electrode. Blue curves represent the capacitance density for the AO single layer on top of the 2 nm-thick HZO layer in the cylindrical structure. The green line denotes the experimental condition of the radius of 15 nm.     
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Figure S4| Double S-curves of the ultra-thin FE-HZO/AO capacitor reproduced in the framework of the Landau-Ginzburg-Devonshire (LGD) model. a-b, Double S-curve (a), and single S-curve (b) reproduced by the LGD model (solid lines) with the experimental Df-Ef curves (circles). c-d, The simulated polarization profiles and interfacial compensating charge distributions corresponding to the state denoted by circles on the Df-Ef curves in Figs. S4(a) and (b) for HZO (3 nm)/AO (2 nm) (c) and HZO (2 nm)/AO (3 nm) (d) respectively. e-f, The simulated inhomogeneous potential induced by the lateral stray field for HZO (3 nm)/AO (2 nm) (e) and HZO (2 nm)/AO (3 nm) (f). g, Df-Ef curves (solid curves) of the FE-HZO/AO devices with different AO thicknesses (tAO) simulated by the LGD model, and experimental data (circles). h, The change of the λ parameters in the LGD model that represents the effective FE bound charges after compensation for the various combinations of the FE-HZO/AO thicknesses
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