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Supplementary Information for:
Exploring Dominant Strategies in Evolutionary Games:
A Multi-Agent Reinforcement Learning Approach

Supplementary Note 1: The detailed formulation of MTBR

The complete formulation of the memory-two bilateral reciprocity (MTBR) strategy is delineated
in Supplementary Table 1.

To understand why the table has 20 rows, we need to consider the total number of possible
states (Ns¢gte) in a two-step memory framework. This calculation is more complex than it might
initially appear, due to the varying number of states in the initial rounds where full history is not
yet available.

Let’s break down the calculation:

1. There are 2 individuals, each having M = 2 possible actions (cooperate or defect).

2. The maximum memory length is ¢ = 2.

3. At each interaction step, there are M X M = 4 possible outcomes.

4. However, we need to consider the initial rounds where agents do not have a full history of
¢ steps: - In the first round: 1 state (initial state) - In the second round: M? = 4 states - From the
third round onwards: M2¢ = 16 states.

Therefore, the total number of possible states is the sum of all these possibilities:

Notate =1+ M?>+ M* =1+ 4+16 = 21.

This sum can be generalized and expressed as a geometric series: Nstgre = (% —1).

For MTBR with M = 2 and £ = 2: Niare = (Zope=t — 1) = (62 — 1) = 20.

221
This table comprehensively outlines the decision-making processes under a two-step mem-

ory framework, presenting each possible state and corresponding strategic responses according
to the MTBR’s Q-table. Supplementary Table 1 is essential for replicating our findings and un-
derstanding the nuanced behavior of agents within the simulated Markov game environments

discussed in our study.
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Supplementary Note 2: Theoretical analysis

Interaction

We consider the evolutionary dynamics of 7 strategies, labeledin 1, - - - , n, in a well-mixed pop-
ulation of finite and fixed size N. The payoff of these individuals depends on their counterpart’s

strategies and the payoff matrix

S1 (a1 412 v An
Sz | dz1 dxp - d2p
Sn | Anl An2 - Aun

where 4;; denotes the payoff received by an i-individual subsequent to the interaction with a
j-player. Define the number of i-individuals as X; and the state vector X = (X1, X, - -, Xy).
We know ) ' _; Xy = N. Therefore, we obtain the average payoff of i-individuals

1
U;(X) = N_1 (anX1+ - 4a;(X;—1) + - +a;, %), (D

and the average payoff of all players
n —
> Ui(X) X | - 2
k

Strategy updates

After all interactions, a random player i is selected to update his strategy, and another random

player j is selected. Player i imitates player j’s strategy with probability

1
iy = = —. 3
Pio 1+exp (6 (U; — U;)) )
Under weak selection, the probability can be expanded as
1 U-—U;
Pinj =5+ 5% +0(d?). 4)



a0 The probability that the number of i-individual increases from X; to X; + 1 is

X X;
T, (X) = Z’.Pj_’iN(N——]l)' ®)
j#i

41 whereas probability that the number of i-individual decreases from X; to X; — 1 is

XX
T (X) = Zpi_}jN(N——Jl)' (6)
j#i

2 Under weak selection, we can rewrite the equations as

1 CII-—CI- X; X
Ti+(X):Z<§+5 1 ]> N(N—Jl)’ ™)
j#i
1 U-Uu; XiX;
Ti(X):§<§+(5 ’4 )N(N—]1)' (8)
el

« Evolutionary dynamics

ss  The stochastic evolution process can be formulated in terms of the master equation
PP X) = PT(X) =) P* (X, -+, Xi— 1, X)) TH(Xy, -+, Xi =1, -+, Xp)

+ZPT(X1’,,, ,Xi+1/"' ,Xn)T_(Xl,"' /Xi+1/"' ,Xn) 9

i=1
Sy PTOT(X) ilmxn’(x»
=1 i=

s where PT(X) is the probability that the system is in state X at time 7. Introducing the notation
w x; = X;/N,x = X/N, t = /N, and the probability density function p (x,t) = NP7(X)
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yields

n
:Zp<x1/"' /xi_N_ll"' le’llt> Ti+ (x1,~~' /xl'_N_ll"' /xn>

+ip<x1,--- X+ N7 ,xn,t) T (xl,--- ,xi+N7L ,xn) 1o

The probability density function and the transition probability can be expanded in a Taylor series

at (x, t) for large N. Negelecting high order terms in N 1 we get

i=1 i=1
n n 2
=% L o (409000 + 530 12 555 (47000 (1)
(11)
Finally, we obtain
"9 n 82
0 (1) = = L5 @ple) + 155 (00 (x1)) (12)
where
00 = T (0 = T (%) = gy (0= 1), (130)
9i(0 = /(T (0 + T, (%) /N = /31— ;) /(N 1) (13b)
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The partial differential equation has the form of a Fokker-Planck equation. Meanwhile, we can

derive the corresponding Langevin equation

Xi = ¢i(x) + i(x)C, (14)

where ¢ is the Gaussian noise.

Equilibrium point

The equilibrium points are determined by the first term of Eq. 14, while the second term af-
fects the stability. To find all equilibrium points, we can omit the second term and let X; =
0 foralli € {1,2,---,n}, from which we know there are n boundary equilibrium points
(1,0,---0),(0,1,---,0),---,(0,0,---,1). In scenarios where interior equilibrium points ex-

ist, we discuss the following cases.

All strategies coexist

In this case, the following equations must hold

Ui (x) = Uz(x) = - - - = Uy(x), (15a)
X1+ 4y =1 (15b)

Moreover, we get a system of linear equations

.

ail —ax
x1(a11 — ap1) + x2(ar2 — ax) + - - + xu(a1, — a2,) = - N
a1 — ass
x1(a11 —az) + x2(a12 —azn) + -+ x4(a1, —az,) = - N
(16)
a1 — a
x1(a11 — ap1) + x2(a12 — an2) + - - -+ xp0(a1, — ann) = Tnn,
L X1+ x2+"'+ xnzlz
where 0 < x; < 1,Vi € {1,2,--- ,n}. Rewrite these equations in the matrix form
Ax=b, (17)



66 Wwhere

a1 —4az aip —4axp - A1y — A2p
a1 —aszy a2 —4asy - A1y — a3p
A= : : : , (18)
a11 —an1 412 —an2 - A1p — Qun
1 1 ... 1

67

(a11 —ax)/N

(a11 —as3)/N

b= : . (19)

(a11 — ann)/N
1

s Therefore, if |A| # 0 holds, there may exist an interior equilibrium point. According to the

ss Cramer’s rule, we obtain

A
xl = a1

A
L

Al (20)
X, — A

A

70 where A; is the matrix formed by replacing the i;; column of A by the column vector b.

71 m strategies coexist

72 Denote the fraction of remaining strategies as x;,, X;,, - - -, X;,, and the fraction of the extinct
7 strategies X;,, Xj,, -, Xj,_,- Let T := {iy,ip, -+ ,im} and J := {j1, ]2, -+, jm}. In this case,

74 the following equations must hold

Ui (X) = Ui (X) == Uim (X), (21a)
xil +xi2+...+xim — 1’ (Zlb)
xh = sz == x]-nfm = 0. (210)



75 Similarly, we get a system of linear equations

"

xil(ailil - aizil) + X, (aiﬂ'z - aiziz) +

xil(ailil - ai3i1) + X (‘11‘11’2 - aisiz) + o

xil (ailil - aimil) + ‘xiz (ai1i2 o aimi2) + o

xi, + Xiy 4

+ xi, (aii, — Aiyi,,) =

+ xi,(aii, — Aii,,) =

+ 'xim (ailim - aimim) =

_l_

Xi =

m

Airiy — ipip
7
N

Aiyiy — Aizig

e where 0 < x; < 1,Vi; € Z. These equations can also be rewritten in the matrix form

Arxz = bz,

aiziz) /N
ai3i3) /N

77 where
Aigiy — Aipiy  Aiyiy — Aigiy
Aiviy — Aigiy  Aigiy — Aigiy
A7 =
Airiy — Aiyiy Riyip — Biyiy
1 1
78
(@i —
(@i, —
br =
(aiiy —

aimim ) /N
1

Airiy, = Liniy,

ailim - aiSim

ail im - aim im

(22)

(23)

(24)

(25)



79 Therefore, if |[Az| # 0 holds, there may exist an interior equilibrium point. According to

so Cramer’s rule, we obtain the following equations

. — A

151 ‘AI’ 7

v — A

1 |AI| 7 (26)
’AIm|

xl-m = |AI| ,

st where A7y is the matrix formed by replacing the k;, column of A7 by the column vector b7.
82 Note that we may get some equilibrium points where there exist negative elements. There-

ss fore, we should check the results after solving the equations.

84 Stablllty

ss Define f;(x) = x;(U; — U). Obviously, f; and ¥; have the same sign. So we can use f;(x) to
ss analyze the stability of the system. We rewrite Eq. 1 and Eq. 2 in the following form

- N & 1
Ui = m ;ai]' (x] — ﬁ(sl]) , (27)
87 A
~ N 1
U=—— Z Zai]- (x] — —(Sl]) Xk, (28)
N-145 N
ss from which we get
a(;—1) N N N N 1
= Aim — 37 o Z AmjXj — 377 Z A Xk — < @mm | 2Xm — =
Fr N-1"" N—-14%& N-1.52 N-1 N
N N

TN 1‘1im TN—-1 k:1(akm + amk)xk + N — 1amm-
(29)

ss Thus, we obtain

9fi(x)

0Xy

N

N 1 n _ _
= N_1 <aim + —=amm — Z xk(akm + llmk)> X;i + Oim (Ui — U) , 30)
k=1



o0 Wwhere d;,, = 1if i = m otherwise J;,,, = 0. Define the Jacobian matrix

0filx) 9filx) . 9fa(x)
dxq 0x7 dxy,
of(x) dfh(x) . 9f(x)
J(x) = 3’:1 8’:2 ) "’x . (31)
fu(x)  9fu(x) . 9fn(x)
dxq 0x7 dxy,

o For a given equilibrium point x*, it is stable if and only if all elements of J(x) are negative.



Two Steps Ago | Two Steps Ago | One Step Ago | One Step Ago .
(Oppoflent)g (Sef)f) ¢ (Opporll)ent% (Sel% ¢ Strategy Choice
Cooperate Cooperate Cooperate Cooperate Cooperate
Cooperate Cooperate Cooperate Defect Cooperate
Cooperate Cooperate Defect Cooperate Defect
Cooperate Cooperate Defect Defect Defect
Cooperate Defect Cooperate Cooperate Cooperate
Cooperate Defect Cooperate Defect Cooperate
Cooperate Defect Defect Cooperate Defect
Cooperate Defect Defect Defect Defect

Defect Cooperate Cooperate Cooperate Cooperate
Defect Cooperate Cooperate Defect Cooperate
Defect Cooperate Defect Cooperate Defect
Defect Cooperate Defect Defect Defect
Defect Defect Cooperate Cooperate Cooperate
Defect Defect Cooperate Defect Cooperate
Defect Defect Defect Cooperate Defect
Defect Defect Defect Defect Cooperate
- - Cooperate Cooperate Cooperate
- - Cooperate Defect Cooperate
- - Defect Cooperate Cooperate
- - Defect Defect Defect

Supplementary Table 1: The detailed formulation of MTBR. This table presents the com-
plete decision-making logic of the MTBR strategy based on the last two interactions. Each row
represents a unique state, with the first 16 rows showing all possible combinations of full two-
step memory, and the last 4 rows representing states with incomplete memory (initial rounds).
The ‘Strategy Choice’ column indicates the MTBR agent’s action (Cooperate or Defect) for each
state. This shows how MTBR considers both players’ actions over two steps to make decisions,
illustrating its sophisticated approach to reciprocity and cooperation in iterated games.
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Payoff Matrix Heatmap

MTBR

TFT - 2.75

WSLS

Holds a grudge - 2.50

Fool me once

Omega TFT -2.25

Gradual TFT

ZDExtort2 2.00

ZDEXxtort2v2
ZDExtort3 -1.75
ZDEXxtort4
ZDGen2 -1.50
ZDGTFT2
ZDMischief

-1.25

ZDSet2

Supplementary Figure 1: Payoff matrix for strategy interactions in the iterated Prisoner’s
Dilemma. The heatmap shows the average payoffs obtained by 15 different strategies (listed
on the x and y axes) when interacting with each other over 20 rounds of the iterated Prisoner’s
Dilemma. Each cell represents the average payoff of the row strategy when interacting with
the column strategy. The color intensity represents the magnitude of the payoff, with darker
colors indicating higher payoffs. The payoff structure is defined by the reward matrix [R = 3,
T =5,5=0, P = 1], where R represents the reward for mutual cooperation, T the temptation
payoff for defecting while the other cooperates, S the sucker’s payoff for cooperating while
the other defects, and P the punishment for mutual defection. Strategies include MTBR, TFT,
WSLS, Holds a Grudge, Fool me Once, Omega TFT, Gradual TFT, ZDExtort2, ZDExtort2v2,
ZDExtort3, ZDExtort4, ZDGen2, ZDGTFT2, ZDMischief, and ZDSet2. MTBR, our proposed
strategy, is represented in the first row and column, allowing for direct comparison with other
well-established strategies. The heatmap reveals patterns of strategy performance, showcasing
how certain strategies, particularly MTBR, can consistently achieve higher payoffs across various
interactions, while others may be more vulnerable to exploitation or perform well only against
specific opponents.
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Roundk 1 2 3 4 5 - Roundk 1 2 3 4 5
MTBR c C Cc Cc c - MTBR C C C

TFT D CcC C C C - Gradual D C C
MTBR D C b C D - MTBR D C

TFT c b ¢c b c - Gradual C D C
MTBR D D C D C - MTBR D D C C
TFT D D D C D - Gradual D D

Supplementary Figure 2: Interactions between MTBR, TFT, and GradualTFT in the re-
peated Prisoner’s Dilemma. Panel a, Interactions between MTBR and TFT. When MTBR
initiates cooperation and TFT defects, MTBR reciprocates cooperatively, leading to mutual co-
operation. When MTBR starts with defection and TFT cooperates, they enter a ’cooperate-
defect” cycle. If both defect initially, MTBR’s subsequent cooperation improves the situation
to a “cooperate-defect” cycle. This demonstrates MTBR’s effectiveness in fostering cooperation
when paired with TFT. Panel b, Interactions between MTBR and GradualTFT. When MTBR co-
operates first and Gradual TFT defects, they immediately achieve mutual cooperation. If MTBR
defects first while GradualTFT cooperates, mutual cooperation is reached after the third round.
When both initially defect, they achieve mutual cooperation after two rounds of goodwill ges-
tures. Yellow circles indicate individuals ceasing defection and entering mutual cooperation.
Comparison with panel a shows that MTBR and Gradual TFT, as cooperative strategies, achieve
better mutual cooperation, gaining an advantage in evolutionary games. This figure extends
the analysis presented in Fig. 2, providing deeper insights into MTBR’s interactions with other
strategies in the repeated Prisoner’s Dilemma.

12
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Supplementary Figure 3: Population cooperation rate in evolutionarily stable states un-
der various network structures and payoff matrices. Panel a depicts the positioning of four
different game types in parameter space, where Greedy (T — R) is on the x-axis and Unfearful
(S — P) is on the y-axis. Each colored block in panels b, ¢, and d illustrates the population coop-
eration rate in evolutionarily stable states within a well-mixed population, lattice grid network,
and scale-free network, respectively, under different payoff matrices (R = 3, P = 1). The color
gradient, shifting from yellow to green to dark blue, represents the decline of population cooper-
ation rate from 1.0 to 0.7 in evolutionarily stable states, with T on the x-axis and S on the y-axis.
In the study of games under complex network structures, understanding the population coopera-
tion rate is crucial. We observe that near the line 2R = T + S, the population cooperation rate
remains close to 1. Lower population cooperation rates occur in regions where the values of S
and T are both higher. Our simulation verification shows that near the line 2R = T + S, the
population exhibits a mixed state of GTFT0.3 and Gradual TFT. However, in the region further to
the upper right where 2R < T + S, the population becomes a mixture of MTBR and TFT. Due
to the strong cooperative tendency of GTFT0.3 and Gradual TFT, the population cooperation rate
also approaches 1 near the line 2R = T + S. In the region where 2R < T + S, as the proportion
of TFT in the population increases, the population cooperation rate gradually decreases to around
0.7.

13
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Supplementary Figure 4: Average payoff in evolutionarily stable states under various net-
work structures and payoff matrices. Panel a depicts the positioning of four different game
types in parameter space, where Greedy (T — R) is on the x-axis and Unfearful (S — P) is on the
y-axis. Each colored block in panels b, ¢, and d illustrates the average payoff in evolutionarily
stable states within a well-mixed population, lattice grid network, and scale-free network, respec-
tively, under different payoff matrices (R = 3, P = 1). The color gradient, shifting from yellow
to green to dark blue, represents the decline of average payoff from 3.2 to 2.9 in evolutionarily
stable states, with T on the x-axis and S on the y-axis. In addition to population cooperation
rate, we also focus on another important metric - the average payoff of all individuals in the pop-
ulation. We found that the trend of average payoff changes is completely opposite to that of the
Population Cooperation Rate. The reason is that when 2R < T + S, both individuals obtaining
cooperation and defection behaviors will achieve higher payoffs than mutual cooperation. In this
region, the payoff of mutual cooperation is not as good as the stable “cooperate-defect, defect-
cooperate” cycle. This also explains the equilibrium reached between MTBR and TFT in this
region - when identical individuals meet, TFT gains higher payoff when they randomly choose
“cooperate” and “defect” in the first round (see Fig. 2a), and MTBR gains higher payoff when
both sides randomly defect in the first round (see Fig. 2b). This interplay explains the strategic
variations, highlighting the complexity of interactions and outcomes within these game settings.

14
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Supplementary Figure 5: Impact of selection intensity and population size on evolutionary
dynamics. The blue lines marked with dots represent the absorption time (generations) required
for the population to reach evolutionarily stable states. The red lines marked with “x” symbols
represent the fraction of the population occupied by MTBR in evolutionarily stable states. Panel
a illustrates the influence of selection intensity s on the absorption time and the occupancy prob-
ability of MTBR in evolutionarily stable states for a fixed population size of N = 500. As
selection intensity increases, we observe a corresponding decrease in absorption time. Notably,
at N = 500, MTBR demonstrates the ability to stably occupy the population. Panel b demon-
strates the impact of population size N on the absorption time and the occupancy probability of
MTRBR in evolutionarily stable states for a fixed selection intensity of 6 = 1. Larger population
sizes result in slower strategy dissemination and longer absorption times. In smaller populations,
exploitative strategies have a competitive advantage. As the population size increases, the high
returns resulting from interactions between cooperative strategies gradually emerge. All data
points represent the average of over 100 repeated experiments.
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Supplementary Figure 6: Impact of interaction length on the evolution of strategies. The
figure shows the evolutionary dynamics of strategies under different interaction lengths: 15
rounds (panel a), 25 rounds (panel b), and stochastic length with an average of 20 rounds (panel
¢). Each line represents the proportion of a specific strategy in the population over time. Al-
though the discovery of MTBR is based on a setup of twenty rounds, we have considered a
variety of interaction setups, including shorter and longer interaction lengths, as well as stochas-
tic interaction lengths. The stochastic interaction lengths experiment involves a 5% probability of
terminating the game after each round, resulting in a mathematical expectation of 20 rounds. We
found that the interaction length only slightly affects the speed of evolution within the popula-
tion, without altering the final evolutionary outcomes. The similarity in evolutionary trajectories
across different interaction lengths demonstrates the robustness of MTBR’s evolutionary advan-
tages.
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