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Supplementary Note 1: The detailed formulation of MTBR4

The complete formulation of the memory-two bilateral reciprocity (MTBR) strategy is delineated5

in Supplementary Table 1.6

To understand why the table has 20 rows, we need to consider the total number of possible7

states (Nstate) in a two-step memory framework. This calculation is more complex than it might8

initially appear, due to the varying number of states in the initial rounds where full history is not9

yet available.10

Let’s break down the calculation:11

1. There are 2 individuals, each having M = 2 possible actions (cooperate or defect).12

2. The maximum memory length is ℓ = 2.13

3. At each interaction step, there are M × M = 4 possible outcomes.14

4. However, we need to consider the initial rounds where agents do not have a full history of15

ℓ steps: - In the first round: 1 state (initial state) - In the second round: M2 = 4 states - From the16

third round onwards: M2ℓ = 16 states.17

Therefore, the total number of possible states is the sum of all these possibilities:18

Nstate = 1 + M2 + M2ℓ = 1 + 4 + 16 = 21.19

This sum can be generalized and expressed as a geometric series: Nstate = (M2ℓ+2−1
M2−1 − 1).20

For MTBR with M = 2 and ℓ = 2: Nstate = (22(2)+2−1
22−1 − 1) = (63

3 − 1) = 20.21

This table comprehensively outlines the decision-making processes under a two-step mem-22

ory framework, presenting each possible state and corresponding strategic responses according23

to the MTBR’s Q-table. Supplementary Table 1 is essential for replicating our findings and un-24

derstanding the nuanced behavior of agents within the simulated Markov game environments25

discussed in our study.26
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Supplementary Note 2: Theoretical analysis27

Interaction28

We consider the evolutionary dynamics of n strategies, labeled in 1, · · · , n, in a well-mixed pop-29

ulation of finite and fixed size N. The payoff of these individuals depends on their counterpart’s30

strategies and the payoff matrix31

s1 s2 · · · sn

s1 a11 a12 · · · a1n

s2 a21 a22 · · · a2n
...

...
... . . . ...

sn an1 an2 · · · ann

where aij denotes the payoff received by an i-individual subsequent to the interaction with a32

j-player. Define the number of i-individuals as Xi and the state vector X = (X1, X2, · · · , Xn).33

We know ∑n
k=1 Xk = N. Therefore, we obtain the average payoff of i-individuals34

Ūi(X) =
1

N − 1
(ai1X1 + · · ·+ aii(Xi − 1) + · · ·+ ainXn) , (1)

and the average payoff of all players35

Ū(X) =
1
N

(
n

∑
k=1

Ūi(X)Xk

)
. (2)

Strategy updates36

After all interactions, a random player i is selected to update his strategy, and another random37

player j is selected. Player i imitates player j’s strategy with probability38

pi→j =
1

1 + exp
(
δ
(
Ūi − Ūj

)) . (3)

Under weak selection, the probability can be expanded as39

pi→j =
1
2
+ δ

Ūj − Ūi

4
+ O(δ2). (4)

2



The probability that the number of i-individual increases from Xi to Xi + 1 is40

T+
i (X) = ∑

j ̸=i
pj→i

XiXj

N(N − 1)
, (5)

whereas probability that the number of i-individual decreases from Xi to Xi − 1 is41

T−
i (X) = ∑

j ̸=i
pi→j

XiXj

N(N − 1)
. (6)

Under weak selection, we can rewrite the equations as42

T+
i (X) = ∑

j ̸=i

(
1
2
+ δ

Ūi − Ūj

4

)
XiXj

N(N − 1)
, (7)

43

T−
i (X) = ∑

j ̸=i

(
1
2
+ δ

Ūj − Ūi

4

)
XiXj

N(N − 1)
. (8)

Evolutionary dynamics44

The stochastic evolution process can be formulated in terms of the master equation45

Pτ+1(X)− Pτ(X) =
n

∑
i=1

Pτ(X1, · · · , Xi − 1, · · · , Xn)T+(X1, · · · , Xi − 1, · · · , Xn)

+
n

∑
i=1

Pτ(X1, · · · , Xi + 1, · · · , Xn)T−(X1, · · · , Xi + 1, · · · , Xn)

−
n

∑
i=1

Pτ(X)T+(X)−
n

∑
i=1

Pτ(X)T−(X),

(9)

where Pτ(X) is the probability that the system is in state X at time τ. Introducing the notation46

xi = Xi/N, x = X/N, t = τ/N, and the probability density function ρ (x, t) = NPτ(X)47
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yields48

ρ
(

x, t + N−1
)
− ρ (x, t)

=
n

∑
i=1

ρ
(

x1, · · · , xi − N−1, · · · , xn, t
)

T+
i

(
x1, · · · , xi − N−1, · · · , xn

)
+

n

∑
i=1

ρ
(

x1, · · · , xi + N−1, · · · , xn, t
)

T−
i

(
x1, · · · , xi + N−1, · · · , xn

)
−

n

∑
i=1

ρ (x, t) T−
i (x)−

n

∑
i=1

ρ (x, t) T+
i (x) .

(10)

The probability density function and the transition probability can be expanded in a Taylor series49

at (x, t) for large N. Negelecting high order terms in N−1, we get50

1
N

∂

∂t
ρ(x, t)

=
n

∑
i=1

(
ρ(x, t)− 1

N
∂

∂xi
ρ(x, t) +

1
2N2

∂2

∂x2
i

ρ(x, t)

)(
T+

i (x)− 1
N

∂

∂xi
T+

i (x) +
1

2N2
∂2

∂x2
i

T+
i (x)

)

+
n

∑
i=1

(
ρ(x, t) +

1
N

∂

∂xi
ρ(x, t) +

1
2N2

∂2

∂x2
i

ρ(x, t)

)(
T−

i (x) +
1
N

∂

∂xi
T−

i (x) +
1

2N2
∂2

∂x2
i

T−
i (x)

)

−
n

∑
i=1

ρ (x, t) T−
i (x)−

n

∑
i=1

ρ (x, t) T+
i (x)

=− 1
N

n

∑
i=1

∂

∂xi
(ϕi(x)ρ(x, t)) +

1
2N

n

∑
i=1

∂2

∂x2
i

(
ψ2

i (x)ρ (x, t)
)

.

(11)

Finally, we obtain51

∂

∂t
ρ (x, t) = −

n

∑
i=1

∂

∂xi
(ϕi(x)ρ(x, t)) +

n

∑
i=1

∂2

∂x2
i

(
ψ2

i (x)ρ (x, t)
)

, (12)

where52

ϕi(x) = T+
i (x)− T−

i (x) =
δN

2(N − 1)
xi (Ūi − Ū) , (13a)

ψi(x) =
√(

T+
i (x) + T−

i (x)
)

/N =
√

xi(1 − xi)/(N − 1). (13b)
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The partial differential equation has the form of a Fokker-Planck equation. Meanwhile, we can53

derive the corresponding Langevin equation54

ẋi = ϕi(x) + ψi(x)ξ, (14)

where ξ is the Gaussian noise.55

Equilibrium point56

The equilibrium points are determined by the first term of Eq. 14, while the second term af-57

fects the stability. To find all equilibrium points, we can omit the second term and let ẋi =58

0 for all i ∈ {1, 2, · · · , n}, from which we know there are n boundary equilibrium points59

(1, 0, · · · 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1). In scenarios where interior equilibrium points ex-60

ist, we discuss the following cases.61

All strategies coexist62

In this case, the following equations must hold63

Ū1(x) = Ū2(x) = · · · = Ūn(x), (15a)

x1 + x2 + · · ·+ xn = 1. (15b)

Moreover, we get a system of linear equations64 

x1(a11 − a21) + x2(a12 − a22) + · · ·+ xn(a1n − a2n) =
a11 − a22

N
,

x1(a11 − a31) + x2(a12 − a32) + · · ·+ xn(a1n − a3n) =
a11 − a33

N
,

...
...

...

x1(a11 − an1) + x2(a12 − an2) + · · ·+ xn(a1n − ann) =
a11 − ann

N
,

x1 + x2 + · · ·+ xn = 1,

(16)

where 0 < xi < 1, ∀i ∈ {1, 2, · · · , n}. Rewrite these equations in the matrix form65

Ax = b, (17)
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where66

A =



a11 − a21 a12 − a22 · · · a1n − a2n

a11 − a31 a12 − a32 · · · a1n − a3n
...

... . . . ...

a11 − an1 a12 − an2 · · · a1n − ann

1 1 · · · 1


, (18)

67

b =



(a11 − a22)/N

(a11 − a33)/N
...

(a11 − ann)/N

1


. (19)

Therefore, if |A| ̸= 0 holds, there may exist an interior equilibrium point. According to the68

Cramer’s rule, we obtain69

x1 =
|A1|
|A| ,

x2 =
|A2|
|A| ,

...

xn =
|An|
|A| ,

(20)

where Ai is the matrix formed by replacing the ith column of A by the column vector b.70

m strategies coexist71

Denote the fraction of remaining strategies as xi1 , xi2 , · · · , xim and the fraction of the extinct72

strategies xj1 , xj2 , · · · , xjn−m . Let I := {i1, i2, · · · , im} and J := {j1, j2, · · · , jm}. In this case,73

the following equations must hold74

Ūi1(x) = Ūi2(x) = · · · = Ūim(x), (21a)

xi1 + xi2 + · · ·+ xim = 1, (21b)

xj1 = xj2 = · · · = xjn−m = 0. (21c)
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Similarly, we get a system of linear equations75 

xi1(ai1i1 − ai2i1) + xi2(ai1i2 − ai2i2) + · · ·+ xim(ai1im − ai2im) =
ai1i1 − ai2i2

N
,

xi1(ai1i1 − ai3i1) + xi3(ai1i2 − ai3i2) + · · ·+ xim(ai1im − ai3im) =
ai1i1 − ai3i3

N
,

...
...

...

xi1(ai1i1 − aimi1) + xi2(ai1i2 − aimi2) + · · ·+ xim(ai1im − aimim) =
ai1i1 − aimim

N
,

xi1 + xi2 + · · ·+ xim = 1,

(22)

where 0 < xik < 1, ∀ik ∈ I . These equations can also be rewritten in the matrix form76

AIxI = bI , (23)

where77

AI =



ai1i1 − ai2i1 ai1i2 − ai2i2 · · · ai1im − ai2im

ai1i1 − ai3i1 ai1i2 − ai3i2 · · · ai1im − ai3im
...

... . . . ...

ai1i1 − aimi1 ai1i2 − aimi2 · · · ai1im − aimim

1 1 · · · 1


, (24)

78

bI =



(ai1i1 − ai2i2)/N

(ai1i1 − ai3i3)/N
...

(ai1i1 − aimim)/N

1


. (25)
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Therefore, if |AI | ̸= 0 holds, there may exist an interior equilibrium point. According to79

Cramer’s rule, we obtain the following equations80

xi1 =
|AI1|
|AI |

,

xi2 =
|AI2|
|AI |

,

...

xim =
|AIm|
|AI |

,

(26)

where AIk is the matrix formed by replacing the kth column of AI by the column vector bI .81

Note that we may get some equilibrium points where there exist negative elements. There-82

fore, we should check the results after solving the equations.83

Stability84

Define fi(x) = xi(Ūi − Ū). Obviously, ḟi and ẍi have the same sign. So we can use fi(x) to85

analyze the stability of the system. We rewrite Eq. 1 and Eq. 2 in the following form86

Ūi =
N

N − 1

n

∑
j=1

aij

(
xj −

1
N

δij

)
, (27)

87

Ū =
N

N − 1

n

∑
k=1

n

∑
j=1

aij

(
xj −

1
N

δij

)
xk, (28)

from which we get88

∂ (Ūi − Ū)

∂xm
=

N
N − 1

aim − N
N − 1 ∑

j ̸=m
amjxj −

N
N − 1 ∑

k ̸=m
akmxk −

N
N − 1

amm

(
2xm − 1

N

)

=
N

N − 1
aim − N

N − 1

n

∑
k=1

(akm + amk)xk +
1

N − 1
amm.

(29)

Thus, we obtain89

∂ fi(x)
∂xm

=
N

N − 1

(
aim +

1
N

amm −
n

∑
k=1

xk(akm + amk)

)
xi + δim (Ūi − Ū) , (30)
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where δim = 1 if i = m otherwise δim = 0. Define the Jacobian matrix90

J(x) =


∂ f1(x)

∂x1

∂ f1(x)
∂x2

· · · ∂ f1(x)
∂xn

∂ f2(x)
∂x1

∂ f2(x)
∂x2

· · · ∂ f2(x)
∂xn

...
... . . . ...

∂ fn(x)
∂x1

∂ fn(x)
∂x2

· · · ∂ fn(x)
∂xn

 . (31)

For a given equilibrium point x∗, it is stable if and only if all elements of J(x) are negative.91
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Two Steps Ago
(Opponent)

Two Steps Ago
(Self)

One Step Ago
(Opponent)

One Step Ago
(Self) Strategy Choice

Cooperate Cooperate Cooperate Cooperate Cooperate
Cooperate Cooperate Cooperate Defect Cooperate
Cooperate Cooperate Defect Cooperate Defect
Cooperate Cooperate Defect Defect Defect
Cooperate Defect Cooperate Cooperate Cooperate
Cooperate Defect Cooperate Defect Cooperate
Cooperate Defect Defect Cooperate Defect
Cooperate Defect Defect Defect Defect

Defect Cooperate Cooperate Cooperate Cooperate
Defect Cooperate Cooperate Defect Cooperate
Defect Cooperate Defect Cooperate Defect
Defect Cooperate Defect Defect Defect
Defect Defect Cooperate Cooperate Cooperate
Defect Defect Cooperate Defect Cooperate
Defect Defect Defect Cooperate Defect
Defect Defect Defect Defect Cooperate

- - Cooperate Cooperate Cooperate
- - Cooperate Defect Cooperate
- - Defect Cooperate Cooperate
- - Defect Defect Defect

Supplementary Table 1: The detailed formulation of MTBR. This table presents the com-
plete decision-making logic of the MTBR strategy based on the last two interactions. Each row
represents a unique state, with the first 16 rows showing all possible combinations of full two-
step memory, and the last 4 rows representing states with incomplete memory (initial rounds).
The ‘Strategy Choice’ column indicates the MTBR agent’s action (Cooperate or Defect) for each
state. This shows how MTBR considers both players’ actions over two steps to make decisions,
illustrating its sophisticated approach to reciprocity and cooperation in iterated games.
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Supplementary Figure 1: Payoff matrix for strategy interactions in the iterated Prisoner’s
Dilemma. The heatmap shows the average payoffs obtained by 15 different strategies (listed
on the x and y axes) when interacting with each other over 20 rounds of the iterated Prisoner’s
Dilemma. Each cell represents the average payoff of the row strategy when interacting with
the column strategy. The color intensity represents the magnitude of the payoff, with darker
colors indicating higher payoffs. The payoff structure is defined by the reward matrix [R = 3,
T = 5, S = 0, P = 1], where R represents the reward for mutual cooperation, T the temptation
payoff for defecting while the other cooperates, S the sucker’s payoff for cooperating while
the other defects, and P the punishment for mutual defection. Strategies include MTBR, TFT,
WSLS, Holds a Grudge, Fool me Once, Omega TFT, Gradual TFT, ZDExtort2, ZDExtort2v2,
ZDExtort3, ZDExtort4, ZDGen2, ZDGTFT2, ZDMischief, and ZDSet2. MTBR, our proposed
strategy, is represented in the first row and column, allowing for direct comparison with other
well-established strategies. The heatmap reveals patterns of strategy performance, showcasing
how certain strategies, particularly MTBR, can consistently achieve higher payoffs across various
interactions, while others may be more vulnerable to exploitation or perform well only against
specific opponents.
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Supplementary Figure 2: Interactions between MTBR, TFT, and GradualTFT in the re-
peated Prisoner’s Dilemma. Panel a, Interactions between MTBR and TFT. When MTBR
initiates cooperation and TFT defects, MTBR reciprocates cooperatively, leading to mutual co-
operation. When MTBR starts with defection and TFT cooperates, they enter a ”cooperate-
defect” cycle. If both defect initially, MTBR’s subsequent cooperation improves the situation
to a ”cooperate-defect” cycle. This demonstrates MTBR’s effectiveness in fostering cooperation
when paired with TFT. Panel b, Interactions between MTBR and GradualTFT. When MTBR co-
operates first and GradualTFT defects, they immediately achieve mutual cooperation. If MTBR
defects first while GradualTFT cooperates, mutual cooperation is reached after the third round.
When both initially defect, they achieve mutual cooperation after two rounds of goodwill ges-
tures. Yellow circles indicate individuals ceasing defection and entering mutual cooperation.
Comparison with panel a shows that MTBR and GradualTFT, as cooperative strategies, achieve
better mutual cooperation, gaining an advantage in evolutionary games. This figure extends
the analysis presented in Fig. 2, providing deeper insights into MTBR’s interactions with other
strategies in the repeated Prisoner’s Dilemma.
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Supplementary Figure 3: Population cooperation rate in evolutionarily stable states un-
der various network structures and payoff matrices. Panel a depicts the positioning of four
different game types in parameter space, where Greedy (T − R) is on the x-axis and Unfearful
(S − P) is on the y-axis. Each colored block in panels b, c, and d illustrates the population coop-
eration rate in evolutionarily stable states within a well-mixed population, lattice grid network,
and scale-free network, respectively, under different payoff matrices (R = 3, P = 1). The color
gradient, shifting from yellow to green to dark blue, represents the decline of population cooper-
ation rate from 1.0 to 0.7 in evolutionarily stable states, with T on the x-axis and S on the y-axis.
In the study of games under complex network structures, understanding the population coopera-
tion rate is crucial. We observe that near the line 2R = T + S, the population cooperation rate
remains close to 1. Lower population cooperation rates occur in regions where the values of S
and T are both higher. Our simulation verification shows that near the line 2R = T + S, the
population exhibits a mixed state of GTFT0.3 and GradualTFT. However, in the region further to
the upper right where 2R < T + S, the population becomes a mixture of MTBR and TFT. Due
to the strong cooperative tendency of GTFT0.3 and GradualTFT, the population cooperation rate
also approaches 1 near the line 2R = T + S. In the region where 2R < T + S, as the proportion
of TFT in the population increases, the population cooperation rate gradually decreases to around
0.7.
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Supplementary Figure 4: Average payoff in evolutionarily stable states under various net-
work structures and payoff matrices. Panel a depicts the positioning of four different game
types in parameter space, where Greedy (T − R) is on the x-axis and Unfearful (S − P) is on the
y-axis. Each colored block in panels b, c, and d illustrates the average payoff in evolutionarily
stable states within a well-mixed population, lattice grid network, and scale-free network, respec-
tively, under different payoff matrices (R = 3, P = 1). The color gradient, shifting from yellow
to green to dark blue, represents the decline of average payoff from 3.2 to 2.9 in evolutionarily
stable states, with T on the x-axis and S on the y-axis. In addition to population cooperation
rate, we also focus on another important metric - the average payoff of all individuals in the pop-
ulation. We found that the trend of average payoff changes is completely opposite to that of the
Population Cooperation Rate. The reason is that when 2R < T + S, both individuals obtaining
cooperation and defection behaviors will achieve higher payoffs than mutual cooperation. In this
region, the payoff of mutual cooperation is not as good as the stable “cooperate-defect, defect-
cooperate” cycle. This also explains the equilibrium reached between MTBR and TFT in this
region - when identical individuals meet, TFT gains higher payoff when they randomly choose
“cooperate” and “defect” in the first round (see Fig. 2a), and MTBR gains higher payoff when
both sides randomly defect in the first round (see Fig. 2b). This interplay explains the strategic
variations, highlighting the complexity of interactions and outcomes within these game settings.
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Supplementary Figure 5: Impact of selection intensity and population size on evolutionary
dynamics. The blue lines marked with dots represent the absorption time (generations) required
for the population to reach evolutionarily stable states. The red lines marked with “x” symbols
represent the fraction of the population occupied by MTBR in evolutionarily stable states. Panel
a illustrates the influence of selection intensity s on the absorption time and the occupancy prob-
ability of MTBR in evolutionarily stable states for a fixed population size of N = 500. As
selection intensity increases, we observe a corresponding decrease in absorption time. Notably,
at N = 500, MTBR demonstrates the ability to stably occupy the population. Panel b demon-
strates the impact of population size N on the absorption time and the occupancy probability of
MTBR in evolutionarily stable states for a fixed selection intensity of δ = 1. Larger population
sizes result in slower strategy dissemination and longer absorption times. In smaller populations,
exploitative strategies have a competitive advantage. As the population size increases, the high
returns resulting from interactions between cooperative strategies gradually emerge. All data
points represent the average of over 100 repeated experiments.
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Supplementary Figure 6: Impact of interaction length on the evolution of strategies. The
figure shows the evolutionary dynamics of strategies under different interaction lengths: 15
rounds (panel a), 25 rounds (panel b), and stochastic length with an average of 20 rounds (panel
c). Each line represents the proportion of a specific strategy in the population over time. Al-
though the discovery of MTBR is based on a setup of twenty rounds, we have considered a
variety of interaction setups, including shorter and longer interaction lengths, as well as stochas-
tic interaction lengths. The stochastic interaction lengths experiment involves a 5% probability of
terminating the game after each round, resulting in a mathematical expectation of 20 rounds. We
found that the interaction length only slightly affects the speed of evolution within the popula-
tion, without altering the final evolutionary outcomes. The similarity in evolutionary trajectories
across different interaction lengths demonstrates the robustness of MTBR’s evolutionary advan-
tages.
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