
Supplementary Material: Analog In-Memory

Computing Attention Mechanism for Fast and

Energy-Efficient Large Language Models

1 CMOS layout

We design a custom CMOS layout of the proposed gain cell and charge-to-pulse cir-
cuits. In this study, the circuit simulations were done in TSMC 28nm silicon CMOS
technology. We used this conventional design style as a proof of concept to demonstrate
the capacity of our gain cells-based architecture to perform the attention mechanism.
However, CMOS gain cells lead to relatively large area footprint, primarily due to
Metal-Oxide-Metal (MOM) capacitors which must be relatively large due to their high
leakages. Our layout results show that each cell has a dimensions of 3.9µm×4.9µm,
resulting in an area of 0.08mm2 per 64 × 64 array, or 1.28mm2 for one entire atten-
tion head (16 sub-tiles). In comparison, the ReLU charge-to-pulse circuitry and its
signed variant occupy an area of 0.01mm2 and 0.02mm2 per attention head, respec-
tively. The Layout of the gain cells storing V values and computing ϕ (S) ·V is shown
in shown in Fig. 1. Note that the Layout of the gain cells storing K has transposed
World Lines (WL) and Bit Lines (BL).

4.
55
μ

m

3.
92
μ

m

4.955 μm(a) (b)

Fig. 1 (a) Single cell layout of a for storing V values and computing ϕ (S) ·V . (b) 4×4 array Layout.
Note that apart of the bottom row the hight scales with 3.92µm

1

1.1 ReLU charge-to-pulse converter

In this section, we provide additional information on the working principle for the
ReLU charge-to-pulse circuit block. This charge-to-pulse circuit operates in three dis-
tinct phases: sampling, discharge, and reset. During the sampling phase, input pulses
are applied to the first gain cell array, and the currents generated by the cells are
integrated by a capacitor (C2) in the charge-to-pulse circuit. This capacitor also uti-
lizes the wire capacitance of the word line. In the discharge phase, the voltage of the
capacitor C2 is discharged with a constant current controlled by the bias voltage Vb.
However it is important to note that the system employs an energy saving scheme
by checking the voltage on the integrating capacitor Vcap and only preforming the
discharge in case the voltage is positive. An inverter acts as a simple comparator, trig-
gering a pulse of variable width. Finally, in the reset phase, the bit line is reset to the
initial bit line voltage to prepare for a new inference step.

C2

Vb

S
A
M
P
LE

DISCHARGE

RESET

Fig. 2 CMOS schematic of the ReLU charge-to-pulse converter

2 Signed charge-to-pulse converter

To implement a signed charge to pulse circuit, the main difference from the circuit in
1.1 is the addition of a charge-up path and a D Flip-Flop. This serves the following
purpose: at the end of the sampling stage, the D Flip-Flop captures the polarity of
the voltage on the capacitor and stores it for subsequent operations. This stored sign
determines whether a charge or discharge is applied to the capacitor voltage. The
pulse-forming circuit is now slightly more complex to ensure consistent, high-active
output pulses. Ultimately, the circuit outputs both the sign and the output pulses.

2

D-Flip-Flop

Charge

Discharge

C2

Fig. 3 CMOS schematic of the signed charge-to-pulse converter

Fig. 3 shows the circuit schematics. The two distinct charge up and charge down
behaviours given a certain SIGN are displayed in Fig. 4.

(a) (b)

Fig. 4 Example for a MAC result with positive signed (a) and negative sign (b) featuring distinct
charging behaviours.

3

3 Adaptation Algorithm

3.1 Pseudo-code

Algorithm 1 Pseudo-code for the adaptation algorithm used to map the nonlinear
model to the linear model.

1: gL ▷ Linear model’s modules
2: gNL ▷ Nonlinear model’s modules
3: INPUT0 ← SAMPLE ▷ Get text from the dataset
4: ϵ ∈]0, 1[▷ Error threshold
5: γ ∈]0, 1] ▷ Measure rate
6: Γ ∈]0, 1] ▷ Adaptation rate
7: ERROR← 1
8: for i in MODULES INDEXES do ▷ Inference on the linear model
9: INPUTi ← gLi (INPUTi−1)

10: end for
11: for i in SCALING MODULES INDEXES do ▷ Measure the linear model statistics
12: x← INPUTi

13: y ← aLi x+ bLi

14: σL
i ←

√
1
n

∑n
j (yj − |y|)

2

15: µL
i ← |y|

16: end for
17: while ERROR > 0 do ▷ Adaptation loop
18: ERROR← 0
19: for i in MODULES INDEXES do ▷ Inference on the nonlinear model
20: INPUTi ← gNL

i (INPUTi−1)
21: end for
22: for i in SCALING MODULES INDEXES do ▷ Measure statistics and adapt

scaling
23: x← INPUTi

24: y ← aNL
i x+ bNL

i

25: σNL
i ← γ

√
1
n

∑n
j (yj − |y|)

2
+ (1− γ)σNL

i

26: µNL
i ← γ|y|+ (1− γ)µNL

i

27: if |σNL
i − σL

i | > ϵ then
28: ERROR← ERROR+ 1

29: aNL
i ← ΓaNL

i
σL
i

σNL
i

+ (1− Γ) aNL
i

30: end if
31: if |µNL

i − µL
i | > ϵ then

32: ERROR← ERROR+ 1
33: bNL

i ← Γ
(
bNL
i + µL

i − µNL
i

)
+ (1− Γ) bNL

i

34: end if
35: end for
36: end while

4

3.2 Generalization to Different Nonlinear Functions

Fig. 5 (a) Different nonlinear functions tested in place of the gain cells nonlinearities. (b) Evolution
of perplexity (lower the better) during the adaptation algorithm when our attention model is imple-
mented with different nonlinearities applied on the stored keys and values.

In this experiment, we evaluate the capacity of our adaptation algorithm to general-
ize to other nonlinearities than the one modelling the gain cells (see Fig. 5). We perform
the dot-products of the attention mechanism with different nonlinearities applied to
the stored keys and values. The different functions tested are: f (x) = α (x− β)

5
,

f (x) = αsigmoid (10 (x− β)), and f (x) = αe3(x−β), with α and β chosen to yield to
similar ranges for the different functions.

We see that our adaptation algorithm manage to reduce the perplexity drastically,
except for the exponential function. The high asymmetry of the exponential function
prevents the network to yield good accuracies. The adaptation algorithm manage to
reduce the perplexity for functions which are anti-symmetrical even if they are highly
nonlinear, such as x5 (perplexity=29) or sigmoid (perplexity=21).

5

	CMOS layout
	ReLU charge-to-pulse converter

	Signed charge-to-pulse converter
	Adaptation Algorithm
	Pseudo-code
	Generalization to Different Nonlinear Functions

