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Appendix A. Estimation of ecosystem services
1 Carbon sequestration(CS)
The carbon sequestration level of a region is usually measured by the total carbon storage.It depends on four carbon pools: aboveground biomass carbon storage, belowground biomass carbon storage, soil carbon storage, and litter carbon storage.1–4. The formula can be expressed as:

	(1)
where Cstord refers to the total carbon stored, Cabove refers to the carbon stored in the aboveground biomass carbon pool, Cbelow refers to the carbon stored in the belowground biomass carbon pool, Csoil refers to the carbon stored in the litter carbon pool, Cdead refers the carbon stored of deadwood and soil carbon pool.
The InVEST Carbon model was used to estimate the carbon storage of a given LULC type. Due to the regional variation of carbon density data, this study obtained the carbon density data for YERB from existing literature (Table S1) Run the Carbon storage and sequestration model in inVEST software, import LULC data during the study period in the column of Current Land Use/Land Cover(Raster) in parameter setting, and import parameters according to Table S1 in the column of Carbon Pools5–7.
Table S1
[bookmark: OLE_LINK28]The carbon stock parameters of different LULC types（Unit: t/ha）
	LULC type
	C_above
	C_below
	C_soil
	C_dead

	Farmland
	16.49
	10.89
	75.82
	2.11

	Woodland
	30.14
	6.03
	100.15
	2.78

	Grassland
	14.29
	17.15
	87.05
	7.28

	Water body
	1.59
	0
	64.03
	3.98

	Built-up land
	7.61
	1.52
	34.33
	0

	Unused land
	10.36
	2.07
	34.32
	0.96


To illuminate the spatial variations of carbon stocks for each land class, we calculated a coefficient based on vegetation cover to correct for the original carbon stocks in Eq. (1). This process is described as follows: 

	(2)

	(3)

	(4)
where f refers to the vegetation cover, Fi refers to the adjustment coefficient for the carbon stock of the pixel i, fi refers to the vegetation cover of the pixel i, f refers to the vegetation cover of the pixel i, Cia is the carbon stock before adjustment and Cib is the adjusted carbon stock.
2 Food supply（FS）
Food production is a foundational provisioning service of ecosystem services, playing a crucial role in human survival and development. By calculating the proportion of individual arable land grid NDVI to the sum of administrative unit's arable land NDVI, multiplied by the total grain yield of the administrative unit, the grain production at the grid scale is obtained 8–10. The formula for calculating food production services is as follows:

	(5)

	(6)
Where GPi is the food production of the ith cultivatedland grid, GPt is the total food production for the entire study area, nrepresents the total number grids of cultivated land in the study area;and NDVli, is the annual NDVl value of the ith cultivated land grid. Theterms NDVlmax and NDVlmin represent the maximum and minimumannual NDVl values of the cultivated land for the study area, respectively.
3 Habitat quality（HQ）
The Habitat Quality module of InVEST is an invaluable tool for evaluating and analyzing the ecological health and quality of specific regions. Habitat quality assesses the landscape's connectivity and its ability to supply vital resources for organism growth and survival, offering valuable insights into the overall environmental health and ecological system performance. The habitat quality index ranges from 0 to 1, with higher values indicating better habitat quality 11,12. The calculation formula is as follows:

	(7)
where HQIxj denotes the habitat quality index of the jth LULC type in each xgrid; Hj denotes the habitat suitability of the jth land use type, k denotes the half-saturation constant, assumed as 0.5 in this study, and HRxj denotes the habitat degradation degree of the jth LULC type in each xgrid.

	(8)
where R denotes the total number of threat factors, Yr denotes the number of units in the threat layer on the LULC, wr denotes the relative weight of threat factor r; ry denotes whether grid y is a threat grid, irxy denotes the impact of threat source r in grid x on habitat y, βx denotes the reachable level of grid x; and Sjr denotes the sensitivity of LULC type j to threat factor r.
Referring to the results of existing studies and an expert scoring system 13,14. We consider farmland, rural settlements, urban land, transportation infrastructure, and unused land as threat factors, and establish the impact distance and weight of each threat factor based on the actual context (Table S2), and habitat suitability of habitat types and sensitivity of different habitat types to threat factors (Table S3). The habitat quality model is run in inVEST software. LULC Data during the study period is imported in the column of Current Land Cover(Raster) in parameter setting, and parameters in Table S2 are imported in the column of Threats Data. Import parameters according to Table S3 in the Sensitivity of Land Cover Types to Each Threat column.
Table S2
Influence distance and weight of threat factors.
	MAX_DIST
	WEIGHT
	THREAT
	DECAY

	4
	0.6
	farmland
	linear

	8
	0.8
	rural settlements
	exponential

	6
	1
	urban land
	exponential

	3
	0.6
	transportation infrastructure
	linear

	3
	0.1
	unused land
	exponential


Table S3
Habitat types and their sensitivity to threat factors.
	NAME
	HABITAT
	L_far
	L_rur
	L_urb
	L_tra
	L_unu

	paddy field
	0.5
	0.3
	0.8
	0.5
	0.4
	1

	dryland
	1
	0.4
	0.7
	0.5
	0.6
	1

	woodland
	0.75
	0.5
	0.8
	0.8
	0.65
	1

	shrubland
	1
	0.7
	0.65
	0.7
	0.6
	1

	Sparse forest land
	0
	0
	0.6
	0.6
	0.5
	0

	Other land use
	0.3
	0.1
	0.85
	0.85
	0.7
	1


4 Water retention 
The retention of freshwater is a key ES that is assessed in this work by combining water yield and surface runoff 15,16. Specifically, the water retention is obtained by correcting the water yield with topographic index, soil saturation hydraulic conductivity (ksat), and flow velocity coefficient (Velocity), which can be expressed by the following equation:

	(9)
Where WR is the water retention (mm); ksat is the soil saturation hydraulic conductivity (mm/d) and is calculated using NeuroTheta software; Velocity is the flow velocity coefficient; TI is the topographic index; Yield is the water yield (mm). The calculation of each main index is as follows:
(1) Topographic index (TI):

	(10)
Where Drainage_Area is the number of pixels in the catchment; Soil_depth is the soil depth (mm); Slope is the slope ratio.
(2) Water yield (Yield)：

	(11)
Where Yj(X) is the annual water yield (mm); P(x) is the average annual precipitation (mm); AETj(X) a is the average annual evapotranspiration (mm) on LULC type j, which is calculated from the following equation: 

	(12)
Where Rj(x) is the dryness index of LULC type j on raster pixel x and represents the ratio of potential evapotranspiration to precipitation; ωj(x) is the ratio of corrected annual available water for vegetation to precipitation. They are calculated as follows:

	(13)

	(14)

	(15)
Where k is the vegetation coefficient and is calculated from the vegetation leaf area index (LAI); ET0 is reference evapotranspiration and is calculated according to the equation proposed by; N is the sunshine time (h); Pt is the saturated water vapor density (g/m3); Ta is the average daily temperature (℃); k is the empirical coefficient (initial value is 0.84).

	(16)
Where Z is the Zhang coefficient whose value is between [1, 10] and is taken as the default value in this study 17; AWC(x) is the effective available water for vegetation and is calculated from the following equation:d

	(17)

	(18)
Where PAWC is the plant available water content; sand is the soil sand content (%); silt is the soil powder content (%); clay is the soil clay content (%); OM is the soil organic matter content (%).
The required input parameters for the model are listed in Table S4, including root depth (Root_depth), vegetation status (LULC_veg), and plant evapotranspiration coefficients according to LULC types (Kc), and flow velocity coefficients (Velocity) 18,19.
Table S4
The input parameters for the InVEST Water Yield model.
	LULC type
	Root_depth*
	LULC_veg
	Kc
	Velocity

	Cropland
	700
	1
	0.8
	900

	Woodland
	7000
	1
	1
	200

	Grassland
	250
	1
	0.7
	500

	Water body
	1000
	0
	1.2
	2012

	Built-up land
	500
	0
	0.4
	2012

	Unused land
	500
	1
	0.5
	1500


5 Soil conservation(SC)
Soil conservation services are assessed using the InVEST sediment retention model. In the model, sediment retention is equal to the sum of the sediment intercepted by the parcel itself and intercepted from the upstream parcel 20–22, which can be expressed as:

	(19)

	(20)

	(21)
Where TC, TP, and TR are the sediment retention, potential soil erosion, actual soil erosion, and sediment intercepted by the parcel from the upstream parcel, respectively; R is the rainfall erosivity index; K is the soil erodibility; LS is a slope length-gradient factor; C is a cover-management factor; P is a support practice factor.
(1) Rainfall erosivity index (R)
The rainfall erosivity index is calculated based on precipitation data according to the following formula:

	(22)
Where P(x) is the precipitation of pixel x.
(2) Soil erodibility factor (k)
The soil erodibility factor was calculated by the EPIC model using soil particle size properties data.

	(23)
Where K1 is the soil sand content (%); K2 is the soil powder content (%); K3 is the soil clay content (%); K4 is the soil organic matter content (%); K5=1-K1/100.
[bookmark: OLE_LINK1]Refer to relevant achievements 23,24,the parameters to be entered into the model are shown in Table S5.
Table S5
The input parameters for the InVEST Sediment Delivery Ratio (SDR) model.
	LULC type
	usle_c
	usle_p

	Cropland
	0.190
	0.400

	Woodland
	0.020
	1.000

	Grassland
	0.310
	1.000

	Water body
	0.000
	0.000

	Built-up land
	0.000
	0.000

	Unused land
	1.000
	1.000


Appendix B. Quantification of landscape structure using landscape metrics
Table S1
Description of the metrics used to assess landscape structure.
	Type
	Metrics
	Level*
	Description

	[bookmark: _Hlk97753552]Composition
	Patch density (PD)
	C
	Range: PD ˃ 0, without limit. Unit: n/km2. PD is measured as the number of patches of each LULC type divided by the total landscape area, reflecting the degree of landscape fragmentation 25,26.

	
	Percentage of Landscape (PLAND)
	C
	Range: 0 ˂ PLAND ≤ 100. Unit: %. PLAND equals the percentage of the landscape comprised of the corresponding patch type and measures the dominance of a particular patch type 27,28.

	
	Mean patch size
(AREA_MN)
	C
	AREA_MN ≥ 0, without limit; Unit: ha.The smaller the average patch size, the greater the patch density and the greater the landscape fragmentation 29–31.

	
	Largest Patch
Index (LPI)
	L
	Range: 0 ˂ LPI ≤ 100. Unit: %. LPI equals the area of the largest patch in the landscape divided by total landscape area and measures the dominance of the largest patch 32,33.

	
	Shannon’s 
diversity index (SHDI)
	L
	Range: SHDI ≥ 0, without limit. Unit: None. SHDI equals minus the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion and indicates the patch diversity in the landscape 34,35.

	Configuration
	Edge density
(ED)
	L
	ED ≥ 0, without limit; Unit: m/ha. ED equals the sum of the lengths of all edge segments in the landscape, divided by the total landscape area, multiplied by 10,000. It measures the complexity of the patch edge 36,37.

	
	Landscape shape index
(LSI)
	L
	LSI ≥ 0, without limit; Unit: None. Larger LSI values indicate longer and more irregular patch boundaries, i.e., a higher degree of landscape fragmentation 38,39.

	
	Interspersion &
Juxtaposition Index (IJI)
	L
	Range: 0 ˂ IJI ≤ 100; Unit: %. IJI is a relative index that represents the observed level of interspersion as a percentage of the maximum possible given the total number of patch types and reflects the adjacent characteristics between different patch types 40,41.

	
	Aggregation Index (AI)
	C
	Range: 0 ˂ AI ≤ 100; Unit: %. AI is equal to the number of like-kind adjacency relationships involving the corresponding category divided by the maximum possible number of like-kind adjacency relationships involving the corresponding category, and is used to measure the degree of non-randomness or clustering of a particular landscape type42.


[bookmark: _Hlk115096873]Notes: * “L” and “C” denote the landscape- and class-level, respectively. The name of each class-level metric is distinguished by the abbreviation of the corresponding LULC type (i.e., cropland (cl), woodlands (wl), and water bodies (wb)). For example, PLAND_cl is the percentage of landscape comprising cropland.


Appendix C. Spatial patterns of regression coefficients in estimating to the five of low model fit. 
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Fig. S 1. Spatial patterns of regression coefficients in estimating CS-FS in 1990, 2000, 2010, and 2020.
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Fig. S 2. Spatial patterns of regression coefficients in estimating CS-WR in 1990, 2000, 2010, and 2020.
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Fig. S 3. Spatial patterns of regression coefficients in estimating FS-HQ in 1990, 2000, 2010, and 2020.
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Fig. S 4. Spatial patterns of regression coefficients in estimating FS-WR in 1990, 2000, 2010, and 2020.
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Fig. S 5. Spatial patterns of regression coefficients in estimating HQ-WR in 1990, 2000, 2010, and 2020.
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