

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Supplementary Information for

Single-Quantum Sodium MRI at 3T for the Separation of Mono- and Bi-T₂ Sodium Signals

Yongxian Qian,^{1,2,*} Ying-Chia Lin,¹ Xingye Chen,^{1,3} Yulin Ge,¹ Yvonne W. Lui,^{1,4} Fernando E. Boada^{1,†}

¹ Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY 10016.

² Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016.

³ Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY 10016.

⁴ Department of Radiology, NYU Langone Health, New York, NY 10016.

† Present address: Department of Radiology, Stanford University, Stanford, CA 94305.

* Corresponding author. Email: Yongxian.Qian@nyulangone.org

This PDF file includes:

- Supplementary Text
- Figs. S1 to S5
- References (no)

26 **Extrapolation of N -term exponential decay**

27 We once accidentally read a reference in literature about this topic, but could not find the citation at
28 hand, thus summarize here the algorithm in our own language, specifically for the recovery of
29 FID signals. If a signal $f(t)$ is an N -term exponential decay as defined in quation (S1) with
30 parameters $\{A_i, b_i ; i = 1, 2, \dots, N\}$, and is sampled at a uniform interval Δt , then a sample $f(t_0)$
31 at time t_0 can be represented by a linear combination of its late-time neighboring samples
32 $\{f(t_0 + j\Delta t), j = 1, 2, \dots, M\}$, as shown in equation (S2), with coefficients $\{a_j, j = 1, 2, \dots, M \geq$
33 $N\}$ to be determined.

34
$$f(t) = \sum_{i=1}^N A_i e^{-t \cdot b_i} \quad (S1)$$

35
$$f(t_0) = \sum_{j=1}^M a_j f(t_0 + j\Delta t) \quad (S2)$$

36 *Proof.* Extending $f(t_0 + j\Delta t)$ in equation (S2) according to equation (S1) gives

37
$$\begin{aligned} f(t_0) &= \sum_{j=1}^M a_j [\sum_{i=1}^N (A_i e^{-t_0 \cdot b_i})(e^{-j\Delta t \cdot b_i})] \\ &= \sum_{i=1}^N A_i e^{-t_0 \cdot b_i} (\sum_{j=1}^M a_j e^{-j\Delta t \cdot b_i}). \end{aligned} \quad (S3)$$

39 Select time-invariant coefficients $\{a_j, j = 1, 2, \dots, M > N\}$ to satisfy equation (S4), thus equation
40 (S2) holds.

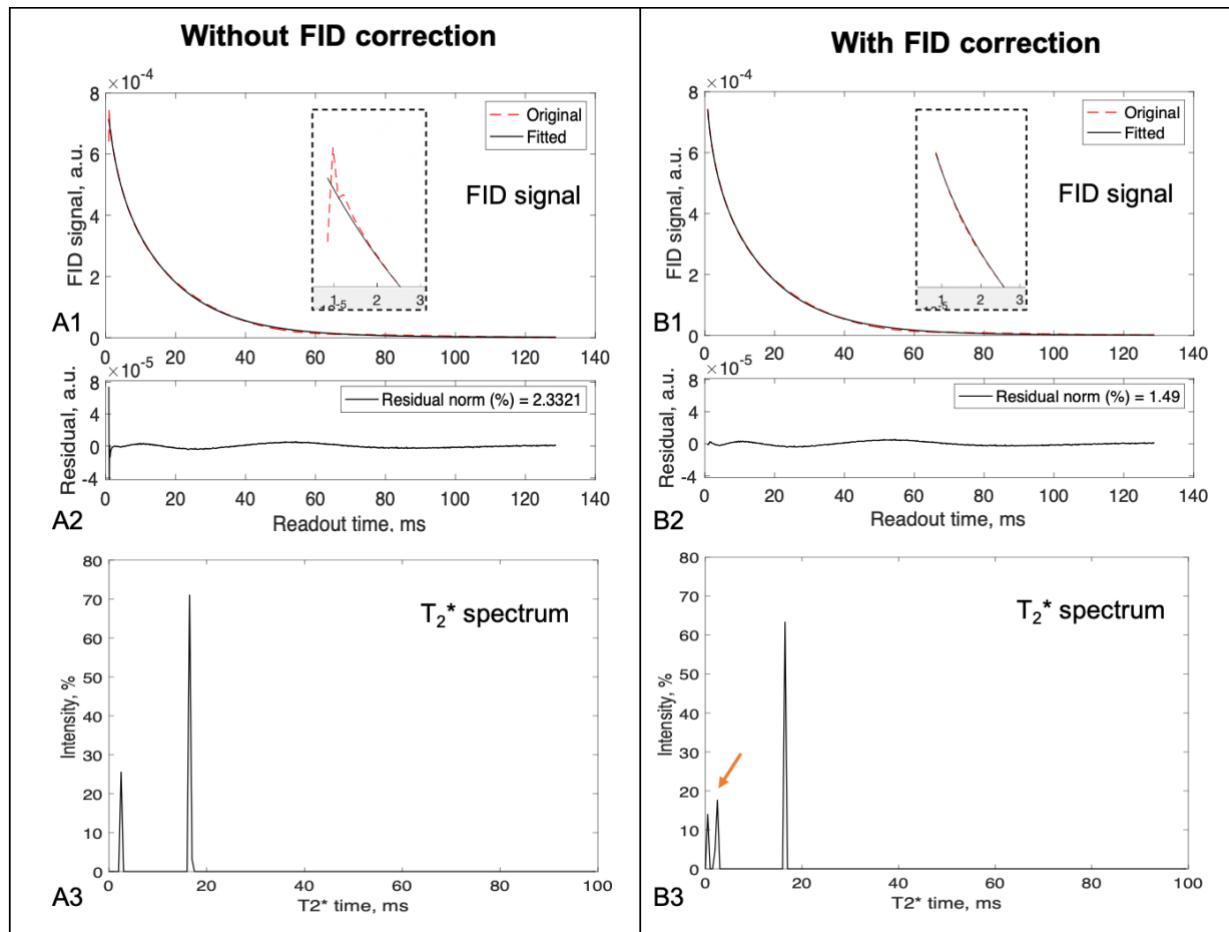
41
$$\sum_{j=1}^M a_j e^{-j\Delta t \cdot b_i} = 1, \text{ for } i = 1, 2, \dots, N. \quad (S4)$$

42 *Note.* The descriptions above are for backward extrapolation in time and used in the recovery of
43 FID signal. The forward extrapolation also holds if Δt is replaced with $-\Delta t$ in equations (S2–S4).
44 To find the unknown coefficients $\{a_j, j = 1, 2, \dots, M\}$, equation (S2), instead of equation (S4), is
45 usually used on such a segment of $f(t)$ that it is not distorted and involves all the N exponential
46 decays. The number of data samples on the segment should be larger than M to form an over-
47 determined problem in case of random noise existing in the signal $f(t)$.

49 **Correction for hardware-related distortion of FID signal**

50 Fig. S1 demonstrates an FID signal from a healthy subject (52 years old, male), with and without
51 correction for the distortion at the first five ADC samples using equation (S2) with $(M, N) = (5,$
52 3). The correction removed distortion and reduced overall residual fitting error from 2.33% to
53 1.49%. The correction also improved resolution of short- T_2^* components: from singlet at 2.5ms
54 to doublet at 0.5ms and 2.5ms (Figs. S1a3, b3).

55

Fig. S1. FID signal and T_2^* spectrum with and without correction.

56

57

58 **Fig. S1.** FID signals (top) and T_2^* spectra (bottom) from whole brain of a healthy subject (52 years old, male), with
 59 (Fig. S1b) and without (Fig. S1a) correction for FID distortion at the first five samples shown in the insets. In the
 60 middle are residual errors from the fitting using the T_2^* spectra in the bottom. The FID correction removed the
 61 distortion, significantly reduced residual error, and clearly improved resolution of short- T_2^* components from singlet
 62 at 2.5ms to doublet at 0.5ms and 2.5ms as well as peaks' intensity (Fig. S1b3). Data acquisition: 3T scanner (Prisma,
 63 Siemens) with a custom-built dual-tuned (^1H - ^{23}Na) 8-channel head array coil [32], *fid* sequence, rectangular RF
 64 duration=0.5ms, TE/TR=0.35/300ms, averages=128, ADC samples=1024 at an interval of 0.125ms.

65 **Calculation stability of T_2^* spectrum at a high resolution of $\Delta T_2^*=0.5\text{ms}$**

66 T_2^* spectrum was calculated via equation (5) on an FID signal using an established algorithm –
 67 the non-negative least squares (NNLS) – at a high spectral resolution of $\Delta T_2^*=0.5\text{ms}$ in a range of
 68 0.5–100 ms. Such a high resolution raises a concern on the stability of calculation as the base
 69 functions at these spectral locations, $\exp(-t/T_2^*)$, are not independent from each other. To
 70 address this concern, we employed singular value decomposition (SVD) to analyze the transfer
 71 matrix \mathbf{E} in equations (S5) and used numerical simulations to detail the impact of random noise
 72 on the T_2^* spectrum in equation (S6).

73 $E_{i,j} \equiv \exp(-t_i/T_{2,j}^*), \quad i = 1, 2, \dots, N, \quad j = 1, 2, \dots, M, \quad N \gg M \quad (\text{S5a})$

74 $\mathbf{E}^T \mathbf{E} = \mathbf{U} \Sigma \mathbf{V}^T \quad (\text{S5b})$

75 $\Sigma = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_M) \quad (\text{S5c})$

76 with sampling time $t_i = TE + (i - 1) * \Delta t$ and spectral location $T_{2,j}^* = j * \Delta T_2^*$. Singular values
 77 $\{\sigma_j, j = 1, 2, \dots, M\}$ determine stability of the calculation for T_2^* spectrum in terms of random
 78 noise interference in equation (5). Correlation coefficients between the base functions are also
 79 calculated.

80 $R_{j1,j2} = (E^T E)_{j1,j2} / \sqrt{(E^T E)_{j1,j1} (E^T E)_{j2,j2}}. \quad j1, j2 = 1, 2, \dots, M \quad (\text{S6})$

81 At $\Delta t = 0.05\text{ms}$, $TE=0.2\text{ms}$ and $N=2048$, the singular values and correlation coefficients were
 82 calculated and shown in Fig. S2. The singular value σ quickly decreases to zero ($<10^{-10}$) at index
 83 (15, 13, 10, 9) when ΔT_2^* increases from 0.5ms to 1.0, 3.0 and 5.0 ms, respectively. This
 84 indicates the existence of null subspace or multiple solutions for T_2^* spectrum (Fig. S2, top). The
 85 normalized correlation coefficients R between any two base functions is spreading out from
 86 diagonal line, confirming non-orthogonal between the base functions (Fig. S2, bottom). However,
 87 the extent of spreading is narrower for short T_2^* values at high resolution $\Delta T_2^* = 0.5\text{ms}$ than at
 88 low resolution $\Delta T_2^* = 5\text{ms}$.

89 Numerical simulations for the impact of random noise on the T_2^* spectrum was performed
 90 at three popular components, $T_2^*=3$, 15, and 50 ms with relative amplitudes $A=30$, 20, and 50,
 91 respectively, plus an additive normal random noise generated by function $\text{randn}(n, 1)$, at $\text{SNR} \equiv$
 92 $f(t=0)/\text{SD} = 100$, 50, and 25. Outcomes of the simulations were summarized in Fig. S3, where
 93 peak parameters at doublets (Fig. S3, bottom) were linearly combined with amplitude-weighting
 94 by left- and right-peaklets in equation (S7). The best spectrum was achieved at $\text{SNR}=100$ among
 95 the three noisy cases, relative to no noise.

96 $T_2^* = (A_L * T_{2,L}^* + A_R * T_{2,R}^*)/A, \quad (\text{S7a})$

97 $A = A_L + A_R \quad (\text{S7b})$

98 **Fig. S2. Calculation stability of T_2^* spectrum.**

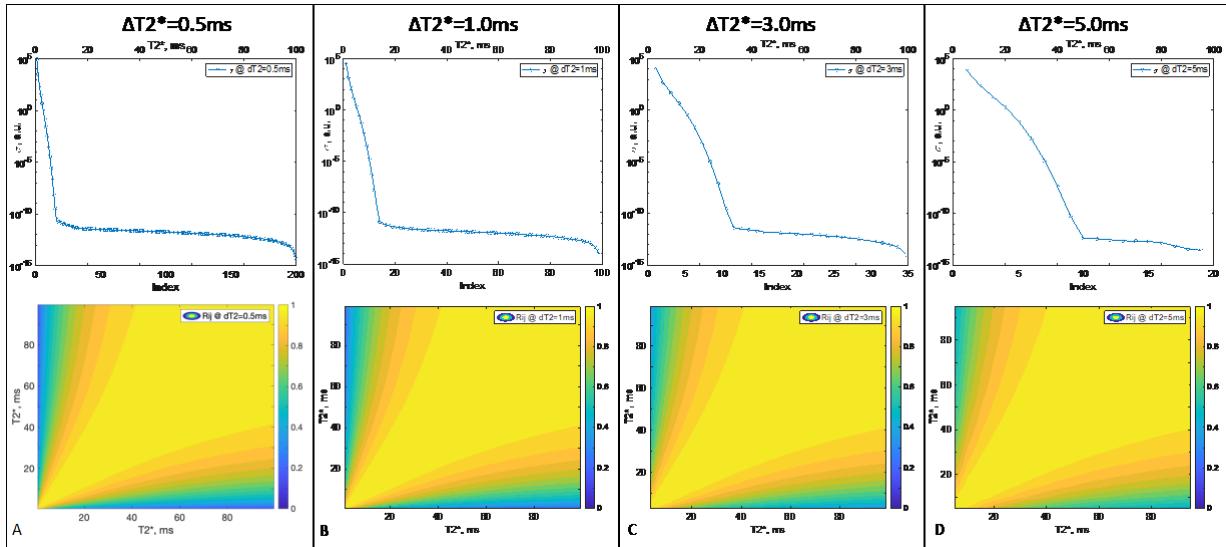


Fig. S2. The SVD singular values of matrix $E^T E$ (top) and correlation coefficients of the base-in matrix E (bottom). (A) – (D) T_2^* spectral resolution at $\Delta T_2^* = 0.5, 1.0, 3.0$, and 5.0ms . In the top, singular value σ quickly decreases to zero ($<10^{-10}$) at index (15, 13, 10, 9) respectively, indicating the existence of null subspace or multiple solutions for the T_2^* spectrum. In the bottom, the normalized correlation coefficient $R_{j1,j2}$ between any two T_2^* base functions $\exp(-t/T_{2,j}^*)$ is spreading out from diagonal line, showing non-orthogonal between the base functions.

99

100 **Fig. S3. Numerical simulations for the impact of random noise on T_2^* spectrum.**

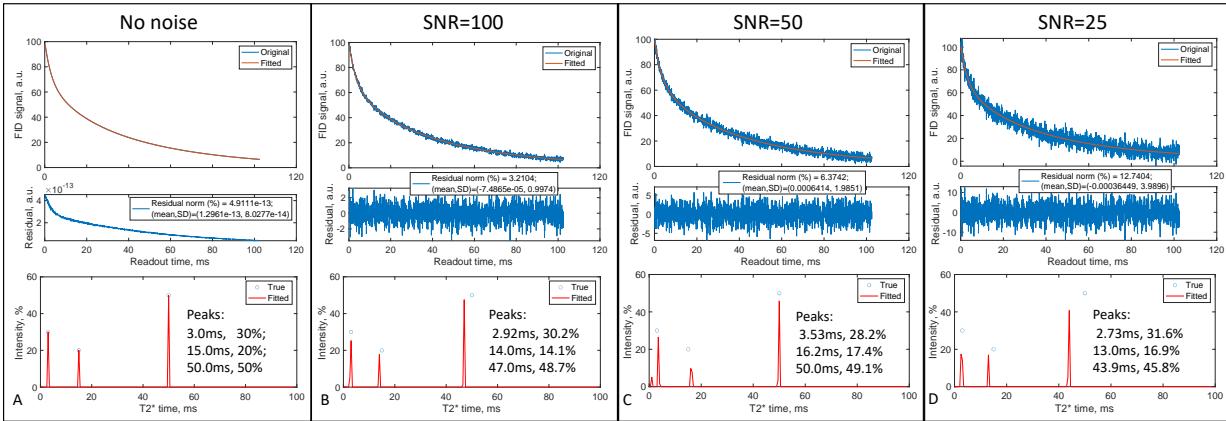


Fig. S3. Calculation stability of T_2^* spectrum using the algorithm NNLS via MATLAB function $lsqnonneg(C,d)$ and the numerical simulations at three popular components (circles \circ): $T_2^*=(3, 15, 50)\text{ms}$ with relative amplitudes $A=(30, 20, 50)$ plus an additive random noise generated by function $randn(n,1)$. (A) – (D) are the simulations at $\Delta T_2^* = 0.5\text{ms}$ with noise at three typical values $\text{SNR} = 100, 50$, and 25 . The peak parameters at doublets (bottom) were linearly combined with amplitude-weighting defined in equation S7. The best spectrum was achieved at $\text{SNR}=100$ among the three noisy cases.

101

102 **Measurement stability of FID signals on whole brain: B_0 shimming**

103 The B_0 shimming may change from subject to subject in routine practice, leading to a concern on
104 the measurement stability of FID signals, thus the T_2^* spectra, from whole brain across subjects.
105 This concern is addressable because sodium (^{23}Na) MRI has about 4-fold lower resonance
106 frequency than proton (^1H) MRI (e.g., 33.8 vs. 127.7 MHz at 3T), and the manual shimming
107 (three iterations) is better than auto shimming. Fig. S4 shows the results of all the 15 subjects
108 studied, with a small standard deviation (SD) in whole-brain histograms. There was no significant
109 difference between the healthy and patient groups ($P=0.908$). Thus, the manual shimming, or
110 ΔB_0 , is stable.

111

112 **Fig. S4. Measurement stability of FID signals on whole brain: B_0 shimming**

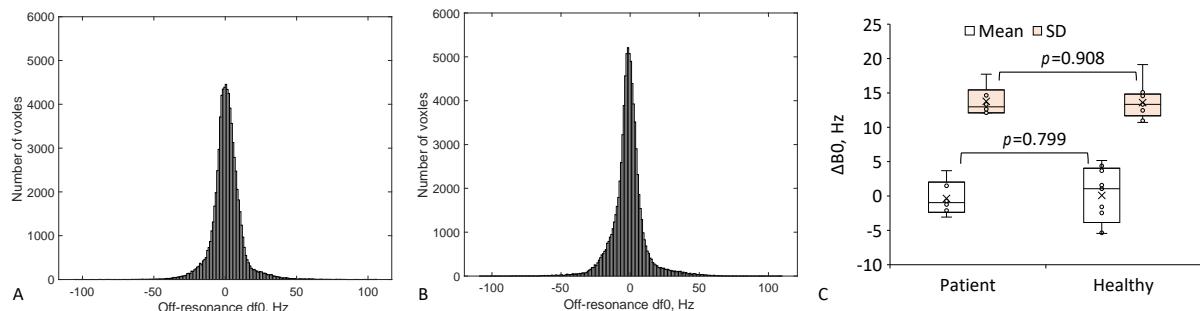


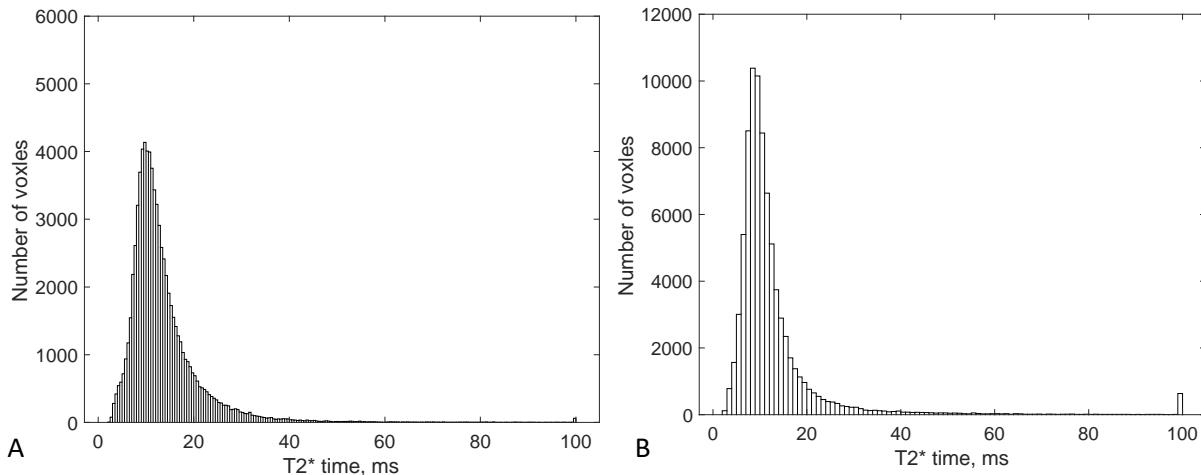
Fig. S4. Whole brain histograms of ΔB_0 mapping at $\text{TE}_1/\text{TE}_2 = 0.5/5\text{ms}$ under a manual shimming procedure (3 iterations). (A) A representative histogram from a healthy subject (52 years old, male), with $\text{mean} \pm \text{SD} = 1.0 \pm 10.7$ Hz. (B) A representative from a patient with epilepsy (31 years old, male), with $\text{mean} \pm \text{SD} = -1.2 \pm 12.1$ Hz. (C) Mean and SD distribution of whole brain ΔB_0 histograms from all the 15 study subjects (circles o) including 9 healthy and 6 patients, showing no significant difference between the two groups (healthy vs. patient), $P = 0.799$ for the mean and $P = 0.908$ for the SD.

113

114 **Invisibility of CSF T_2^* peaks in the spectrum: single T_2^* mapping**

115 Cerebrospinal fluid (CSF) in the brain is known to have a T_2^* value of ~50 ms as seen in single-
116 T_2^* maps (Figs. 7, 8). But this sodium population was not observed in the T_2^* spectra. This
117 phenomenon might be caused by small volume of CSF relative to whole brain. To confirm this
118 cause, Fig. S5 presents two representative whole-brain histograms of single- T_2^* mapping, with
119 very small numbers of voxels (invisible bins) for CSF at T_2^* around 50ms.

120
121 **Fig. S5. Invisibility of CSF T_2^* peak in the spectrum: single T_2^* mapping.**



122 **Fig. S5.** Representative whole-brain histograms of single- T_2^* mapping at $TE_1/TE_2 = 0.5/5\text{ms}$. **(A)** A healthy subject (52 years old, male). **(B)** An epilepsy patient (31 years old, male). These, as well as the other healthy subjects and patients we studied, showed very small numbers (invisible bins) of voxels for CSF at $T_2^* \sim 50\text{ms}$. Note: a visible bin at $T_2^* = 100\text{ms}$ counts for voxels of T_2^* values $\geq 100\text{ms}$.