

Global and Regional Drivers for Exceptional Climate Extremes in 2023-2024: Beyond the New Normal

Shoshiro Minobe

minobe@sci.hokudai.ac.jp

Hokkaido University <https://orcid.org/0000-0002-9487-9006>

Erik Behrens

The National Institute of Water and Atmospheric Research

Kirsten L. Findell

Geophysical Fluid Dynamics Laboratory

Norman G. Loeb

NASA Langley Research Center

Benoit Meyssignac

Université de Toulouse

Rowan Sutton

University of Reading and National Centre for Atmospheric Science

Research Article

Keywords:

Posted Date: November 14th, 2024

DOI: <https://doi.org/10.21203/rs.3.rs-5454786/v1>

License: This work is licensed under a Creative Commons Attribution 4.0 International License.

[Read Full License](#)

Additional Declarations: The authors declare no competing interests.

1 Global and Regional Drivers for Exceptional Climate Extremes 2 in 2023-2024: Beyond the New Normal

3
4 Shoshiro Minobe, Hokkaido University, Sapporo, Japan
5 Erik Behrens, The National Institute of Water and Atmospheric Research, New Zealand
6 Kirsten L. Findell, Geophysical Fluid Dynamics Laboratory, National Oceanic and
7 Atmospheric Administration, Princeton, New Jersey, USA
8 Norman G. Loeb, NASA Langley Research Center, Hampton, VA, USA
9 Benoit Meyssignac, Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), 31400
10 Toulouse, France
11 Rowan Sutton, University of Reading and National Centre for Atmospheric Science,
12 Reading, UK
13

14 Abstract

15 Climate records have been broken with alarming regularity in recent years, but the events of
16 2023-24 were exceptional even when accounting for recent climatic trends. Here we quantify
17 these events across multiple variables and show how excess energy accumulation in the
18 Earth system drove the exceptional conditions. Key factors were the positive decadal trend
19 in Earth's Energy Imbalance (EEI), persistent La Niña conditions beginning in 2020, and the
20 switch to El Niño in 2023. Between 2022 and 2023, the heating from EEI was over 75%
21 larger than during the onset of similar recent El Niño events. We show further how regional
22 processes shaped distinct patterns of record-breaking sea surface temperatures in individual
23 ocean basins. If the recent trend in EEI is maintained, we argue that natural fluctuations
24 such as ENSO cycles will increasingly lead to amplified, record-breaking impacts, with 2023-
25 2024 serving as a glimpse of future climate extremes.

26 27 Introduction

28 As climate change advances, each year brings numerous broken climate records and
29 uncharted climatic conditions¹⁻⁷, engendering the sense that climatological norms are no
30 longer representative of "normal"⁸. However, the conditions of 2023 and early 2024 stand
31 out as extraordinary, even in the context of a new normal. Unprecedented summertime heat
32 across the Northern Hemisphere brought catastrophic impacts to many regions of the globe,
33 including heat waves, droughts, wildfires, and extreme rainfall and flooding⁹⁻¹⁶. The Paris
34 Agreement established the objective to pursue efforts to limit global mean temperature
35 increase to 1.5°C above pre-industrial levels, but in 2023, more than two-thirds of individual
36 days surpassed this target (<https://climate.copernicus.eu/record-warm-november-consolidates-2023-warmest-year>) and in 2024 annual mean air-temperature is likely to
37 exceed this threshold for the first time (<https://climate.copernicus.eu/copernicus-2024-virtually-certain-be-warmest-year-and-first-year-above-15degc>). The ocean bore particularly
38 dramatic signatures of extreme temperatures, with between 30% and 40% of the global
39 ocean area experiencing a marine heat wave each month from April through December¹⁷⁻¹⁹,

42 and drastic decline of global sea-ice²⁰. Here we show that the climate conditions of 2023
 43 and early 2024 were exceptional even when recent climatic trends and large-scale climate
 44 variability are taken into account.

45 Whilst many timely publications provide important information about the anomalous
 46 conditions in 2023^{19,21-26}, further efforts are needed to understand these exceptional climate
 47 conditions, their implications, and the potential for recurrence. We contribute to this effort in
 48 three novel ways. First, we propose and apply an objective statistical analysis method to
 49 determine significance of the recent extreme conditions while accounting for recent climatic
 50 trends and past variability. The “Abnormal record-Breaking (AB) test” (**Methods**,
 51 **Supplementary Fig. 1**) provides a robust, simple, and versatile statistical test which can be
 52 widely applied to climate variables and indicators to evaluate extreme conditions. Next, we
 53 quantify the contribution of the Earth’s energy imbalance (EEI) to the exceptional heat
 54 extremes observed in the ocean and atmosphere in 2023-24 by comparing it to the onset of
 55 other major recent El Niño events. Our results show that the EEI contribution to the warming
 56 of the upper ocean and atmosphere exceeded previous events by 75%. Third, we provide
 57 further insight into two specific regions, the subtropical Northeastern Atlantic and the
 58 Southern Ocean, which show extreme conditions in 2023 linked to shortwave radiation and
 59 atmospheric circulation, respectively. We discuss the possible role of internal variability
 60 related to these events and highlight the need for further research on attribution of such
 61 extremes.

62 Exceptional climate conditions

63 Abnormal record-breaking conditions began in June of 2023 for two of the most widely used
 64 global climate indices: globally averaged surface air-temperature (SAT) (**Fig. 1a**) and sea-
 65 surface temperature (SST) (**Fig. 1b**). Global sea-ice extent (SIE) also exhibited abnormal
 66 record-breaking in mid-2023, mainly due to a reduction of sea ice around Antarctica (**Fig.**
 67 **1c**). These results emphasize that the global climate in 2023 not only broke records, but also
 68 broke records by wide margins—even when accounting for the recent progression of global
 69 warming. Similar results to those for SAT and SST are found for atmospheric heat content
 70 (AHC) (**Fig. 1d**) and near-surface (0-100 m) ocean heat content (OHC) (**Fig. 1e**). Although
 71 AHC technically represents atmospheric energy, this paper adopts the term 'AHC' following
 72 Ref. ⁶. These four variables (SAT, SST, AHC, and OHC) are highly correlated (correlation
 73 coefficients between any two are above 0.85 when considering a 3-month running average),
 74 however, near-surface OHC anomalies are ten times larger than typical AHC anomalies.
 75 This motivates our detailed OHC analyses in the subsequent sections as even small OHC
 76 changes have large impacts on AHC and SAT/SST and how they evolve with time
 77 (**Supplementary Fig. 2**). Net top-of-atmosphere (TOA) radiation observations from the
 78 Clouds and the Earth’s Radian Energy System (CERES) also exhibited abnormal record-
 79 breaking conditions in early 2023 (**Fig 1f**). In the next section, we show that this exceptional
 80 heat was predominantly stored in the top 100 m of the ocean, which led to rapid increase in
 81 top-100 m OHC during this period.

82
 83 Temperature anomalies during the latter half of 2023 (July-December) show a distinctive
 84 spatial structure (**Fig. 1g,h**) that is quite different from the much more spatially uniform
 85 pattern of warming over the last ~75 years (**Supplementary Fig. 3**) and resembles a

86 positive El Niño-Southern Oscillation (ENSO) phase in the tropics²⁷. Regional SSTs
 87 averaged over each of the four regions in **Fig. 1h** (indicated by boxes) highlight different
 88 times of emergence of abnormal record-breaking conditions for each region (**Fig. 2a-d**).
 89
 90 SSTs in the extratropical Northwestern Pacific first exhibited abnormal record-breaking
 91 conditions in early 2022, with most months since September 2022 continuing through June
 92 2024 passing the AB test. The subtropical Northeastern Atlantic first showed abnormal
 93 record-breaking conditions in May 2023, continuing unabated through May 2024. In the
 94 tropical Pacific, on the other hand, abnormal record-breaking condition occurred between
 95 June and October 2023, though the anomalous SSTs in this region were on par with those
 96 observed during the 2015/16 Super El Niño (dark blue lines). However, neither of the two
 97 most common El Niño indices (i.e., Niño 3.4 and Niño 3) were record breaking in 2023
 98 (**Supplementary Fig. 4**). The 2023 warming in the tropical Pacific is broader in latitude than
 99 the warming in the previous Super El Niños. Abnormal record-breaking conditions began in
 100 the Southern Ocean in February 2023, lasting through September 2023. The different timing
 101 for when the Northern and Southern hemispheres reach record breaking conditions might be
 102 related to the phase of the seasonal cycle, where Southern Ocean anomalies reach
 103 abnormal record-breaking conditions first as the timing aligns with the Southern hemisphere
 104 summer. The earlier emergence of AHC anomalies in the Southern hemisphere is evident in
 105 Supplementary Fig. 2.
 106

107 Global energy perspective

108 What led to the record-breaking warmth of 2023? A central factor is Earth's energy budget,
 109 which describes the difference between incoming solar radiant energy absorbed by Earth
 110 and outgoing thermal infrared radiation emitted to space (**Fig 3 a-b**). Both quantities show
 111 large fluctuations on interannual times scales associated with ENSO fluctuations, consistent
 112 with earlier literature²⁸⁻³⁰. During El Niño phases the EEI drops rapidly, even turning negative
 113 during the 2010 and 2016 events, indicating a net Earth's energy loss. However, over the
 114 past two decades, an exceptional trend in EEI (**Fig 3b**) has been observed from satellite
 115 TOA radiation, in-situ ocean, and satellite altimetry and space gravimetry
 116 measurements^{3,4,31,32}. This extra energy input has rendered the system significantly warmer,
 117 particularly within the ocean below 100 m (see **Fig. 3d**). This prolonged build-up of energy
 118 into the climate system is due to an unprecedented increase in TOA absorbed solar radiation
 119 (ASR) that is only partially compensated by a weaker increase in outgoing longwave
 120 radiation (**Fig 3a**). The ASR changes have been linked to decreases in low and middle cloud
 121 fraction in middle-to-high latitudes in the northern hemisphere and decreases in middle cloud
 122 fraction in the southern hemisphere¹.
 123

124 From mid-2020 to mid-2023, three consecutive years of La Niña conditions contributed to a
 125 further increase in TOA net downward radiation, injecting about 68 ZJ of energy into the
 126 system, equivalent to 23% of the total energy accumulation for 2000-2023 (**Fig. 3a,b**).
 127 During the first part of 2023, the net TOA flux set a record-breaking abnormal increase
 128 between December 2022 and June 2023 (**Fig. 1f**), followed by a decrease at the onset of the
 129 El Niño in May 2023. Near-surface OHC (top 100 m layer) within the ocean and AHC also

130 increased between December 2022 and June 2023, and then intensified further during the
 131 2023 El Niño event (**Fig. 1d,e**).
 132

133 These changes align with the expected energetic impacts associated with the growth and
 134 decay phases of ENSO in the tropics^{33–38}. Specifically, as is common during the transition
 135 from La Niña to El Niño conditions, early 2023 is marked by positive SST anomalies in the
 136 Eastern and Central Pacific, coinciding with a deepening of the thermocline in the eastern
 137 and central Pacific and a shallowing of the thermocline in the western Pacific, likely driven by
 138 wind forcing. This flattening of the thermocline (**Fig. 3d**) leads mechanically to an increase in
 139 the near-surface OHC (0–100 m) and a decrease between 100 m and 300 m
 140 (**Supplementary Fig. 5**) (see also Ref. ³⁹). Changes in AHC follow those in the 0–100 m OHC
 141 layer a few months later (**Fig. 3c, Supplementary Fig. 5**).
 142

143 While the vertical redistribution of heat within the ocean during the 2023 El Niño is similar to
 144 that observed during the 2010 and 2016 major El Niño events, heating of the near-surface
 145 layer is markedly different (**Fig. 4, Supplementary Table 1**). Our selection of the previous
 146 ENSO events is limited by the observed OHC record through Argo, which became
 147 operational in 2006⁴⁰ (**Supplementary Fig. 6**) The cooling between 100 m and 300 m
 148 depths and the integration of TOA net radiation are of similar magnitudes for the recent
 149 warming event. However, the increase in EEI between the current event and previous events
 150 is significantly larger than the increase in 100–300 m cooling. Specifically, the cooling
 151 between 100–300 m from November 2022 to November 2023 surpasses the previous
 152 maximum cooling (February 2009 to February 2010) by only 4.8 ZJ. In contrast, TOA net
 153 radiation from November 2022 to November 2023 is 13 ZJ higher than the previous peak
 154 heating (December 2014 to December 2015), marking an increase of over 75%. This extra
 155 heat is largely stored in the atmosphere and the upper ocean, as evidenced by the
 156 observation that the increases in combined AHC and 0–100 m OHC were over 50% larger in
 157 the 2023 El Niño than occurred during the 2010 and 2016 El Niños.
 158

159 The abnormal record-breaking conditions in 2023 thus resulted from the combination of the
 160 long-term positive EEI trend, the three year La Niña conditions, and the switch to El Niño.
 161 The long-term trend in EEI is due to a positive radiative forcing resulting from continued
 162 emissions of well-mixed greenhouse gases and reductions in aerosol emissions in some
 163 parts of the northern hemisphere due to air quality legislation^{21,41–43}. A recent assessment
 164 suggests that climate models fail to capture the exceptional global mean temperature
 165 increase in 2023⁴⁴ or the modeled probability is extremely low³⁸. A key reason may lie in the
 166 models' representation of the unprecedented observed changes in Earth's energy budget.
 167 Clearly, further analysis is required to fully test the models.
 168

169 Regional extreme events

170 In addition to its key role in the global heat budget, there is evidence in the CERES data that
 171 the exceptional TOA net radiation played an important role in regional SST anomalies over
 172 the subtropical Northeastern Atlantic (**Fig. 5a**) during boreal spring and summer 2023. When
 173 we examine shortwave and longwave radiation of CERES and latent and sensible heat
 174 fluxes from ERA5, the strongest heating is given by surface shortwave radiation, which is

175 abnormal record-breaking and larger than the latent heat flux (**Fig. 5b,c**). The surface
 176 shortwave-radiation anomaly is consistent with the TOA shortwave radiation (**Fig. 5d**), and is
 177 accompanied by substantial reduction in cloud fraction (**Fig. 5e**), suggesting weakened cloud
 178 reflection resulted in increased shortwave radiation reaching the ocean.

179

180 Further analyses suggest that the reduced cloud fraction was mainly due to a decrease in
 181 low cloud (**Supplementary Fig. 7**). Aerosol optical thickness also exhibited a decrease in
 182 the south of the analysis area, but the pattern does not overlap well with the increase of the
 183 TOA shortwave radiation (**Supplementary Fig. 7**). In addition, the mixed layer depth was
 184 unusually shallow, displaying an abnormal record-breaking condition (**Fig. 7f**), likely the
 185 result of anomalously low winds in this region²⁴ (**Supplementary Fig. 7**). This means that
 186 the surface temperature increase per unit heat flux (i.e. efficiency of the warming) was high
 187 in 2023. Although the ERA5 reanalysis data has some caveats^{45–52} in the analysed fields,
 188 the results show consistency between them and point to the combined effect of an
 189 exceptionally weak wind and high surface shortwave radiation, in association with shallow
 190 mixed layer, as key factors for the temperature extremes over the subtropical Northeastern
 191 Atlantic. We note that there were also concurrent anomalies in atmospheric circulation,
 192 which would have contributed to the low wind speed.

193

194 In contrast to the subtropical Northeastern Atlantic, the warming pattern in the Southern
 195 Ocean, which exhibited abnormal record-breaking conditions from February through
 196 September, does not have a direct connection to local TOA net radiation but was closely
 197 related to abnormal atmospheric circulation anomalies. **Figures 6a-d** indicates that the
 198 anomalously warm SST and SAT and reduced sea-ice averaged between March and August
 199 2023 were closely associated with a wave number 3 pattern in northerly wind anomalies in
 200 the Pacific, Atlantic and Indian sectors of the Southern Ocean. This pattern is known to play
 201 an important role in Southern Ocean climate including influencing Antarctic sea ice^{53–55}.

202

203 To better understand the wave number 3 pattern in 2023, an Empirical Orthogonal Function
 204 (EOF) analysis was conducted (**Fig. 6e**). It is found that the amplitude of the wave number 3
 205 pattern was exceptionally high between March and August in 2023, as shown by +3
 206 standard deviation of the principal component, far exceeding the previous highest value of
 207 +1 standard deviation, and well above an abnormal record-breaking condition. Abnormal
 208 record-breaking conditions occurred in all time series of the separate MAM and JJA seasons
 209 of 2023, as well (not shown). Moreover, the wave number 3 pattern is evident in AHC
 210 development in 2023 (**Supplementary Fig. 2**), indicating that this pattern plays an important
 211 role in shaping heat distribution in the atmosphere. A previous study²³ discussed the
 212 potential influence of atmospheric circulation anomalies on the low sea ice conditions, but
 213 the role of the wave number 3 pattern was not identified. The wave number 3 pattern is
 214 evident even if we apply the AB-test at each grid point of geopotential height at 500 hPa
 215 (**Supplementary Fig. 8**). Elsewhere over the globe, such prominent anomalies in
 216 atmospheric circulation anomalies are not found.

217

218 What might have caused the exceptional wave number 3 pattern in southern hemisphere
 219 atmospheric circulation? This pattern is known to be a leading feature of interannual
 220 variability in the region. A previous study⁵⁴ suggested that changes in tropical deep
 221 convection, whether due to natural variability or climate change, exert a strong influence on
 222 this pattern. However, it should be noted that the wave number 3 pattern itself may not fully

223 explain the exceptional condition of the Southern Ocean especially the overall decline of the
 224 sea-ice in 2023 (Fig. 1f). Further research is needed to fully understand the exceptional
 225 conditions in the Southern Ocean, including the role of tropical convection anomalies and the
 226 underlying causes of the overall sea-ice decline.

227
 228 The extratropical Northwestern Pacific is unusual in that abnormal record-breaking
 229 conditions also occurred for several months in 2022 (**Fig 2a**). The persistent warmth in this
 230 region is likely related to the ocean's response to an anomalously weak Aleutian low in the
 231 winters between 2021 and 2023, associated with the three-year La Niña (**Supplementary**
 232 **Fig. 9**). Weak Aleutian lows in multiple years cause warm anomalies in this region in
 233 association with a negative Pacific Decadal Oscillation^{56,57}. However, the transition to El
 234 Niño in 2023 has not resulted in an anticipated intensification of the Aleutian Low through
 235 atmospheric teleconnections⁵⁸, and therefore temperature anomalies in this region remain
 236 very high.

237

238 Discussion

239 While the observations used in this study capture the main features of the exchange of heat
 240 between space, the atmosphere, and the oceans during the anomalous 2023-24 period,
 241 open questions remain. There has been recent progress in identifying some of the causes of
 242 the positive trend in EEI^{1,18,19,31,42,59} but there are still large uncertainties, concerning for
 243 example the roles of anthropogenic aerosols and of changes in clouds. As in-situ
 244 observations in mid- and deep-ocean layers are sparse, there is also some uncertainty
 245 related to heating of these layers. Further questions concern the role of ocean heat
 246 transports, for example, the extratropical Northwestern Pacific (**Fig. 1**), where changes in the
 247 Kuroshio Current likely played a role.

248

249 Our results show that the 2023-24 extremes cannot be explained as simple extensions of
 250 long-term anthropogenic trends; instead, there was a critical role for regional processes,
 251 some of which are linked to interannual modes of variability (ENSO, wavenumber-3, Aleutian
 252 Low) which acted to amplify warming. There is a need for more detailed process and
 253 attribution studies to elucidate the causes and effects, including timing, of the exceptional
 254 warming in each of the regions we have highlighted. For example, why did exceptional
 255 warming appear first in the Southern Ocean (**Fig 2**)? Will the exceptional wavenumber 3
 256 pattern in atmospheric circulation recur in future years? Another aspect that merits further
 257 investigation concerns the changes in the tropical North Atlantic. Our analysis for this region
 258 showed a close link between cloud cover, TOA radiation and record-breaking SST
 259 anomalies, suggesting a potential positive feedback between reductions in low cloud and
 260 warmer SSTs in this region⁶⁰. How important was this feedback and might it recur in future
 261 years? An additional important question is whether the warming patterns observed in the
 262 different ocean basins in 2023 were causally connected, e.g. through changes in the
 263 atmospheric circulation; the answer to this question certainly influences how these patterns
 264 will further evolve.

265

266 Since the peak of the heat extremes in late 2023 and early 2024, SST anomalies have
 267 dropped in many regions (Fig 2 and **Supplementary Fig. 10**), except for the Northwest

268 Pacific where SST anomalies have further increased well above 2°C. Subseasonal-seasonal
 269 forecasts predict (**Supplementary Fig. 10**) that SSTs in this region will stay well above
 270 climatological values for the next 6 months and will extend further east towards the west
 271 coast of North America, associated with a weakening of the Aleutian Low. SST anomalies in
 272 the central tropical Pacific are predicted to turn negative, indicating La Niña-like conditions,
 273 with associated positive SST anomalies in the western tropical Pacific; these are forecasted
 274 to persist for the next 6 months. As the Northern hemisphere winter approaches, current high
 275 SSTs in the subpolar and subtropical Atlantic are predicted to drop after an active hurricane
 276 season and flooding events in Europe and northern Africa. In contrast, SSTs over the
 277 Southern Ocean are expected to increase again in response to a reoccurring wavenumber 3
 278 pattern.

279

280 A vital question is whether the exceptional events of 2023-24 have implications beyond 2024
 281 - for expected climate change in the years and decades ahead. A basic but crucial point is
 282 that the positive trend in EEI since 2000 means that global warming (measured by heat
 283 uptake by the Earth's climate system) is accelerating. What is not yet clear is to what extent
 284 this acceleration in heat uptake will influence trends in surface temperature over the years
 285 and the decade to come. On decadal timescales we expect a positive correlation between
 286 changes in EEI and changes in surface temperature; however, there is variability in this
 287 relationship associated with vertical redistribution of heat within the ocean⁶¹, which can
 288 temporarily enhance or offset the EEI influence. Nevertheless, in the presence of a positive
 289 trend in EEI, natural fluctuations that perturb the global energy budget - such as those
 290 associated with ENSO cycles - will sooner or later have larger and sometimes record-
 291 breaking impacts, including on surface temperatures, because the associated EEI anomalies
 292 will be larger than they were in the past. The 2023-24 period is a clear example of this, and
 293 similar events can be expected in future.

294

295

296

297 References

- 298 1. Loeb, N. G. *et al.* Observational Assessment of Changes in Earth's Energy Imbalance
 299 Since 2000. *Surv Geophys* (2024) doi:10.1007/s10712-024-09838-8.
- 300 2. Li, Z., England, M. H. & Groeskamp, S. Recent acceleration in global ocean heat
 301 accumulation by mode and intermediate waters. *Nat Commun* **14**, 6888 (2023).
- 302 3. Marti, F. *et al.* Monitoring the global ocean heat content from space geodetic
 303 observations to estimate the Earth energy imbalance. Preprint at
 304 <https://doi.org/10.5194/sp-2023-26> (2023).
- 305 4. Minière, A., Von Schuckmann, K., Sallée, J.-B. & Vogt, L. Robust acceleration of Earth
 306 system heating observed over the past six decades. *Sci Rep* **13**, 22975 (2023).

307 5. Storto, A. & Yang, C. Acceleration of the ocean warming from 1961 to 2022 unveiled by
308 large-ensemble reanalyses. *Nat Commun* **15**, 545 (2024).

309 6. Von Schuckmann, K. *et al.* Heat stored in the Earth system 1960–2020: where does the
310 energy go? *Earth Syst. Sci. Data* **15**, 1675–1709 (2023).

311 7. Richardson, M. T. Prospects for Detecting Accelerated Global Warming. *Geophysical*
312 *Research Letters* **49**, e2021GL095782 (2022).

313 8. Milly, P. C. D. *et al.* Stationarity Is Dead: Whither Water Management? *Science* **319**,
314 573–574 (2008).

315 9. Bezak, N., Panagos, P., Liakos, L. & Mikoš, M. Brief communication: A first hydrological
316 investigation of extreme August 2023 floods in Slovenia, Europe. *Nat. Hazards Earth*
317 *Syst. Sci.* **23**, 3885–3893 (2023).

318 10. Graham, E. *et al.* An atmospheric river and a quasi - stationary front lead to heavy
319 rainfall and flooding over Scotland, 6–8 October 2023. *Weather* **78**, 340–343 (2023).

320 11. Lemus-Canovas, M., Insua-Costa, D., Trigo, R. M. & Miralles, D. G. Record-shattering
321 2023 Spring heatwave in western Mediterranean amplified by long-term drought. *npj*
322 *Clim Atmos Sci* **7**, 25 (2024).

323 12. Gupta, V. *et al.* Hydrometeorological analysis of July-2023 floods in Himachal Pradesh,
324 India. *Nat Hazards* (2024) doi:10.1007/s11069-024-06520-5.

325 13. Qian, C. *et al.* Rapid attribution of the record-breaking heatwave event in North China in
326 June 2023 and future risks. *Environ. Res. Lett.* **19**, 014028 (2024).

327 14. Xiao, H., Xu, P. & Wang, L. The Unprecedented 2023 North China Heatwaves and Their
328 S2S Predictability. *Geophysical Research Letters* **51**, e2023GL107642 (2024).

329 15. Blunden, J. & Boyer, T. State of the Climate in 2023. *Bulletin of the American*
330 *Meteorological Society* **105**, S1–S484 (2024).

331 16. Zhang, W. *et al.* 2023: Weather and Climate Extremes Hitting the Globe with Emerging
332 Features. *Adv. Atmos. Sci.* **41**, 1001–1016 (2024).

333 17. WMO. *State of the Global Climate 2023*. (United Nations, Erscheinungsort nicht
334 ermittelbar, 2024).

335 18. Cheng, L. *et al.* Ocean heat content in 2023. *Nat Rev Earth Environ* **5**, 232–234 (2024).

336 19. Cheng, L. *et al.* New Record Ocean Temperatures and Related Climate Indicators in
337 2023. *Adv. Atmos. Sci.* (2024) doi:10.1007/s00376-024-3378-5.

338 20. Roach, L. A. & Meier, W. N. Sea ice in 2023. *Nat Rev Earth Environ* **5**, 235–237 (2024).

339 21. Hansen, J. E. *et al.* Global warming in the pipeline. *Oxford Open Climate Change* **3**,
340 kgad008 (2023).

341 22. Ripple, W. J. *et al.* The 2023 state of the climate report: Entering uncharted territory.
342 *BioScience* **73**, 841–850 (2023).

343 23. Gilbert, E. & Holmes, C. 2023's Antarctic sea ice extent is the lowest on record. *Weather*
344 wea.4518 (2024) doi:10.1002/wea.4518.

345 24. Kuhlbrodt, T., Swaminathan, R., Ceppi, P. & Wilder, T. A glimpse into the future: The
346 2023 ocean temperature and sea-ice extremes in the context of longer-term climate
347 change. *Bulletin of the American Meteorological Society* (2024) doi:10.1175/BAMS-D-
348 23-0209.1.

349 25. Rantanen, M. & Laaksonen, A. The jump in global temperatures in September 2023 is
350 extremely unlikely due to internal climate variability alone. *npj Clim Atmos Sci* **7**, 34
351 (2024).

352 26. Esper, J., Torbenson, M. & Büntgen, U. 2023 summer warmth unparalleled over the past
353 2,000 years. *Nature* **631**, 94–97 (2024).

354 27. McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an Integrating Concept in
355 Earth Science. *Science* **314**, 1740–1745 (2006).

356 28. Loeb, N., Thorsen, T., Norris, J., Wang, H. & Su, W. Changes in Earth's Energy Budget
357 during and after the "Pause" in Global Warming: An Observational Perspective. *Climate*
358 **6**, 62 (2018).

359 29. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth's Energy Imbalance. *Journal of*
360 *Climate* **27**, 3129–3144 (2014).

361 30. Trenberth, K. E. & Fasullo, J. T. Tracking Earth's Energy: From El Niño to Global
362 Warming. *Surv Geophys* **33**, 413–426 (2012).

363 31. Loeb, N. G. *et al.* Satellite and Ocean Data Reveal Marked Increase in Earth's Heating
364 Rate. *Geophysical Research Letters* **48**, e2021GL093047 (2021).

365 32. Hakuba, M. Z. *et al.* Trends and Variability in Earth's Energy Imbalance and Ocean Heat
366 Uptake Since 2005. *Surv Geophys* (2024) doi:10.1007/s10712-024-09849-5.

367 33. Ceppi, P. & Fueglistaler, S. The El Niño–Southern Oscillation Pattern Effect.
368 *Geophysical Research Letters* **48**, e2021GL095261 (2021).

369 34. Lutsko, N. J. & Takahashi, K. What Can the Internal Variability of CMIP5 Models Tell Us
370 about Their Climate Sensitivity? *J. Climate* **31**, 5051–5069 (2018).

371 35. Xie, S.-P., Kosaka, Y. & Okumura, Y. M. Distinct energy budgets for anthropogenic and
372 natural changes during global warming hiatus. *Nature Geosci* **9**, 29–33 (2016).

373 36. Cheng, L. *et al.* Evolution of Ocean Heat Content Related to ENSO. *Journal of Climate*
374 **32**, 3529–3556 (2019).

375 37. Wu, Q., Zhang, X., Church, J. A. & Hu, J. ENSO-Related Global Ocean Heat Content
376 Variations. *Journal of Climate* **32**, 45–68 (2019).

377 38. Raghuraman, S. P. *et al.* The 2023 global warming spike was driven by the El Niño–
378 Southern Oscillation. *Atmos. Chem. Phys.* **24**, 11275–11283 (2024).

379 39. Piecuch, C. G. & Quinn, K. J. El Niño, La Niña, and the global sea level budget. *Ocean
380 Sci.* **12**, 1165–1177 (2016).

381 40. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature,
382 salinity, and steric height in the global ocean from the Argo Program. *Progress in
383 Oceanography* **82**, 81–100 (2009).

384 41. Diamond, M. S. Detection of large-scale cloud microphysical changes within a major
385 shipping corridor after implementation of the International Maritime Organization 2020
386 fuel sulfur regulations. *Atmos. Chem. Phys.* **23**, 8259–8269 (2023).

387 42. Hodnebrog, Ø. *et al.* Recent reductions in aerosol emissions have increased Earth's
388 energy imbalance. *Commun Earth Environ* **5**, 166 (2024).

389 43. Yuan, T. *et al.* Abrupt reduction in shipping emission as an inadvertent geoengineering
390 termination shock produces substantial radiative warming. *Commun Earth Environ* **5**,
391 281 (2024).

392 44. Schmidt, G. Climate models can't explain 2023's huge heat anomaly — we could be in
393 uncharted territory. *Nature* **627**, 467–467 (2024).

394 45. Valdivieso, M. *et al.* An assessment of air–sea heat fluxes from ocean and coupled
395 reanalyses. *Clim Dyn* **49**, 983–1008 (2017).

396 46. Trenberth, K. E. & Fasullo, J. T. Applications of an Updated Atmospheric Energetics
397 Formulation. *J. Climate* **31**, 6263–6279 (2018).

398 47. Mayer, J., Mayer, M. & Haimberger, L. Consistency and Homogeneity of Atmospheric
399 Energy, Moisture, and Mass Budgets in ERA5. *Journal of Climate* **34**, 3955–3974
400 (2021).

401 48. Wolf, K., Bellouin, N., Boucher, O., Rohs, S. & Li, Y. Correction of temperature and
402 relative humidity biases in ERA5 by bivariate quantile mapping: Implications for contrail
403 classification. Preprint at <https://doi.org/10.5194/egusphere-2023-2356> (2023).

404 49. Krüger, K., Schäfler, A., Wirth, M., Weissmann, M. & Craig, G. C. Vertical structure of the
405 lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing
406 processes. *Atmos. Chem. Phys.* **22**, 15559–15577 (2022).

407 50. Silber, I. *et al.* Cloud Influence on ERA5 and AMPS Surface Downwelling Longwave
408 Radiation Biases in West Antarctica. *Journal of Climate* **32**, 7935–7949 (2019).

409 51. Wilczak, J. M., Akish, E., Capotondi, A. & Compo, G. P. Evaluation and Bias Correction
410 of the ERA5 Reanalysis over the United States for Wind and Solar Energy Applications.
411 *Energies* **17**, 1667 (2024).

412 52. Martens, B. *et al.* Evaluating the land-surface energy partitioning in ERA5. *Geosci.
413 Model Dev.* **13**, 4159–4181 (2020).

414 53. Raphael, M. N. A zonal wave 3 index for the Southern Hemisphere. *Geophysical
415 Research Letters* **31**, 2004GL020365 (2004).

416 54. Goyal, R., Jucker, M., Sen Gupta, A., Hendon, H. H. & England, M. H. Zonal wave 3
417 pattern in the Southern Hemisphere generated by tropical convection. *Nat. Geosci.* **14**,
418 732–738 (2021).

419 55. Wang, Y., Yuan, X. & Cane, M. A. Coupled mode of cloud, atmospheric circulation, and
420 sea ice controlled by wave-3 pattern in Antarctic winter. *Environ. Res. Lett.* **17**, 044053
421 (2022).

422 56. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific
423 Interdecadal Climate Oscillation with Impacts on Salmon Production. *Bull. Amer. Meteor.
424 Soc.* **78**, 1069–1079 (1997).

425 57. Minobe, S. A 50–70 year climatic oscillation over the North Pacific and North America.
426 *Geophysical Research Letters* **24**, 683–686 (1997).

427 58. Shiozaki, M., Tokinaga, H. & Mori, M. What Determines the East Asian Winter
428 Temperature during El Niño?—Role of the Early Onset El Niño and Tropical Indian
429 Ocean Warming. *Journal of Climate* **37**, 4031–4043 (2024).

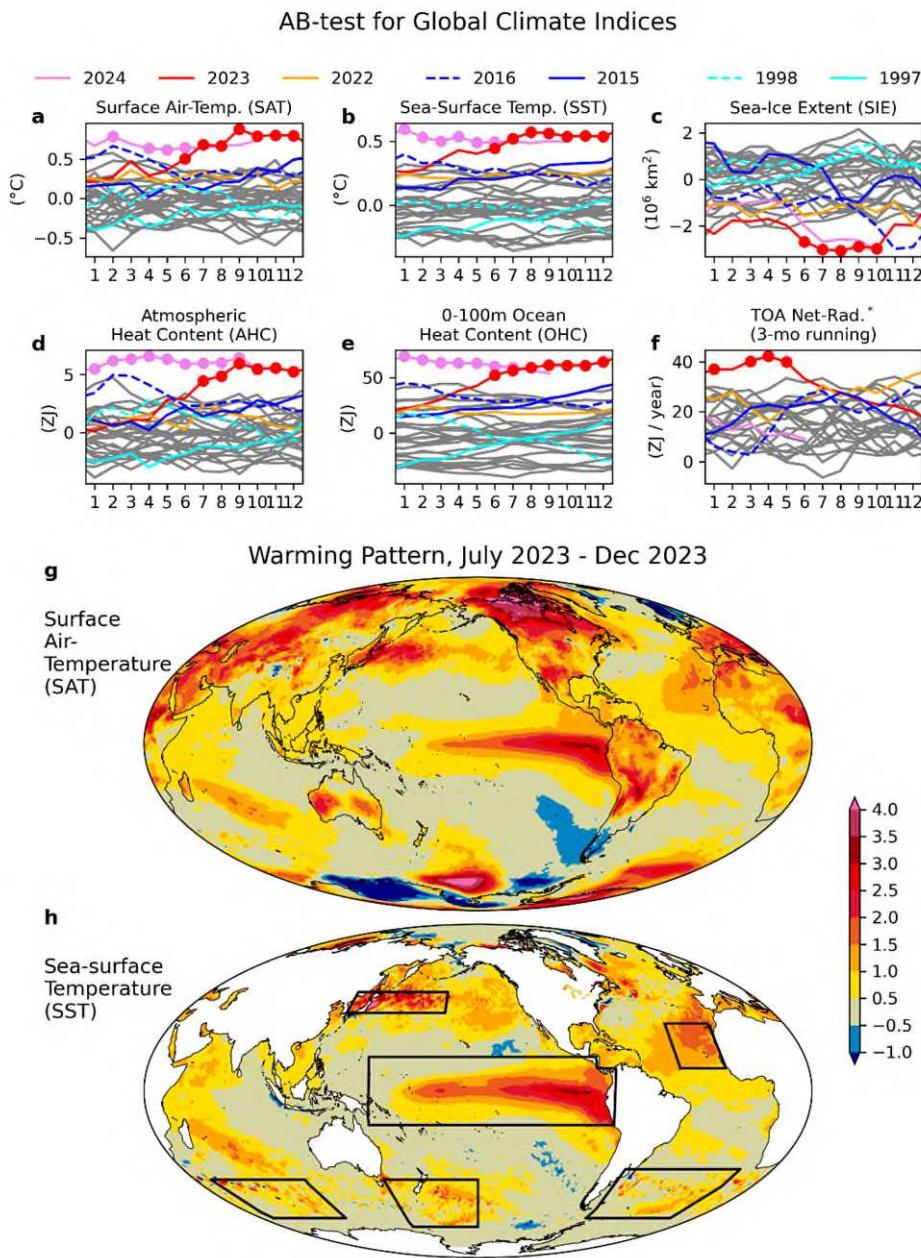
430 59. Raghuraman, S. P., Paynter, D. & Ramaswamy, V. Anthropogenic forcing and response
431 yield observed positive trend in Earth's energy imbalance. *Nat Commun* **12**, 4577
432 (2021).

433 60. Boehm, C. L. & Thompson, D. W. J. The Key Role of Cloud–Climate Coupling in
434 Extratropical Sea Surface Temperature Variability. *Journal of Climate* **36**, 2753–2762
435 (2023).

436 61. Palmer, M. D. & McNeall, D. J. Internal variability of Earth's energy budget simulated by
437 CMIP5 climate models. *Environ. Res. Lett.* **9**, 034016 (2014).

438

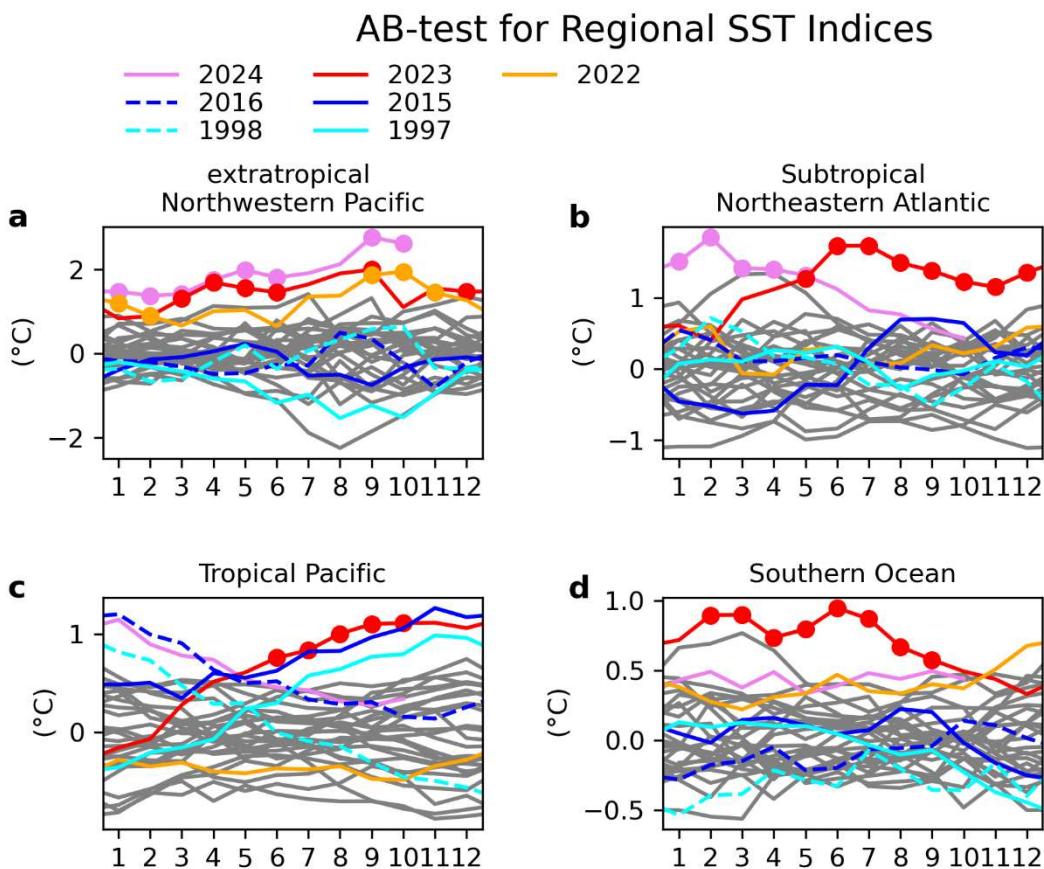
439


440

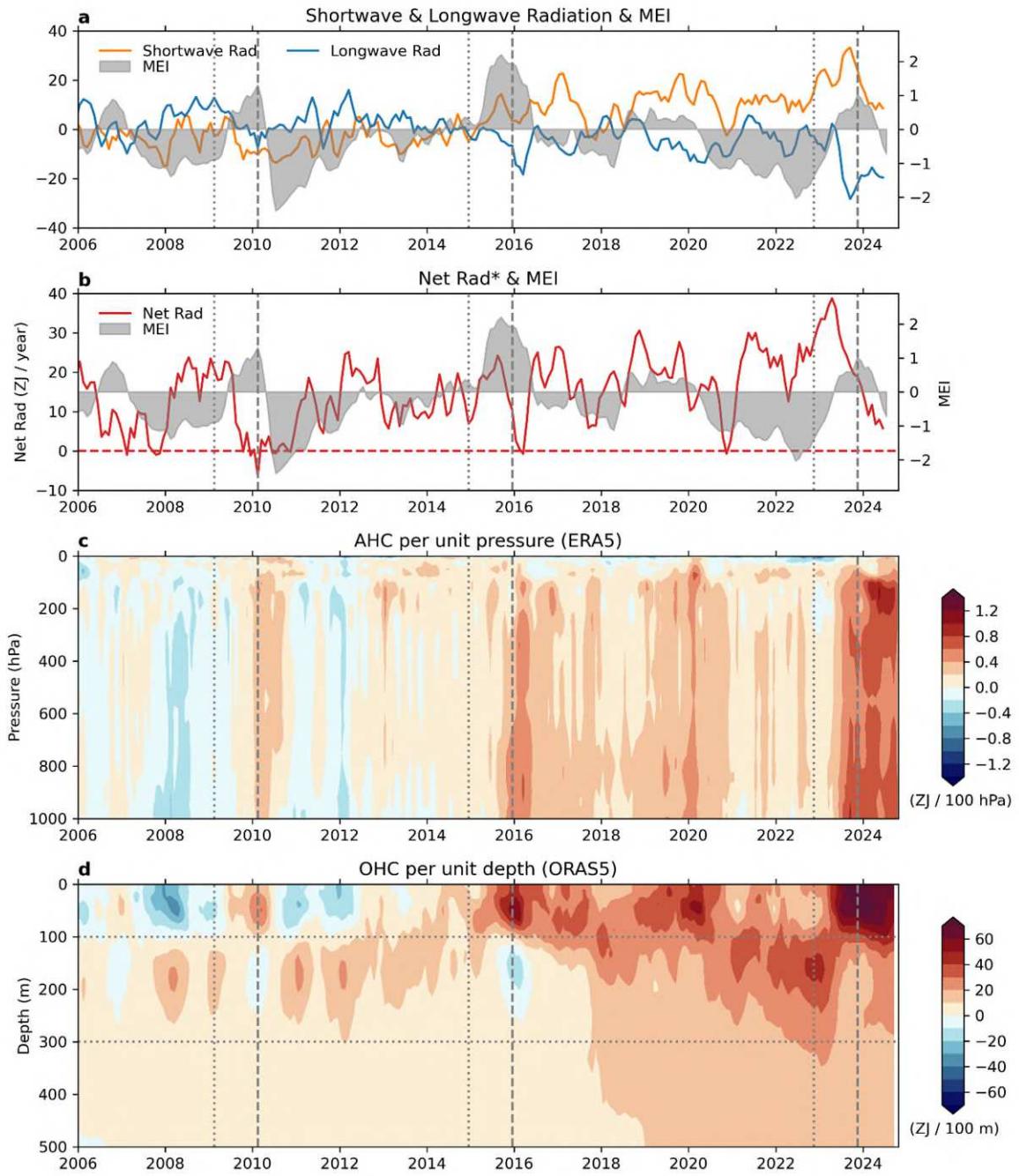
441

442

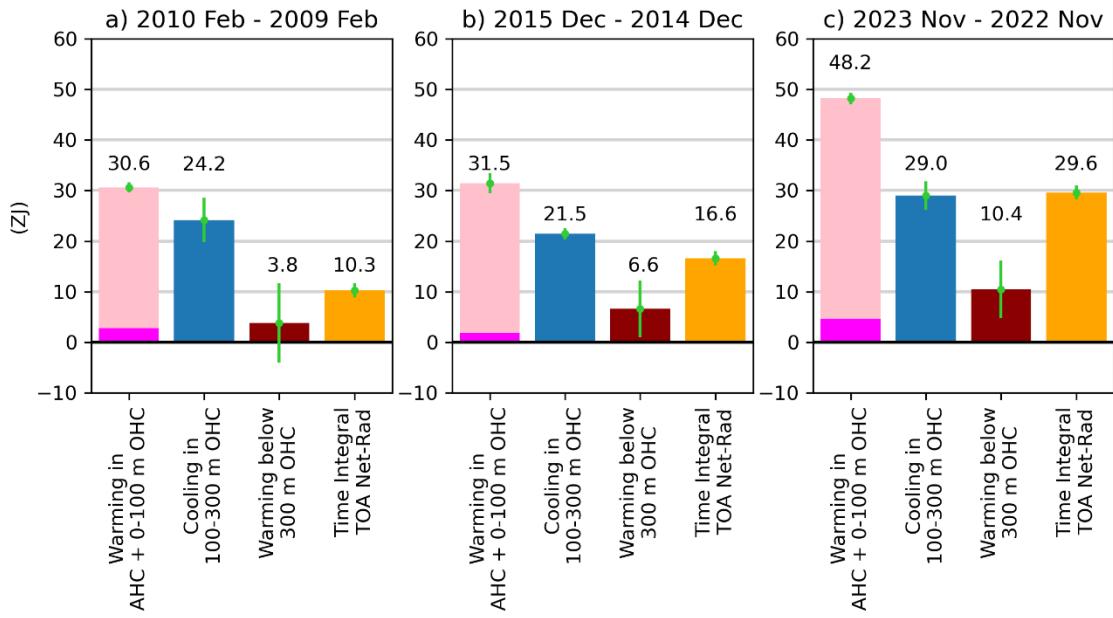
443


Figures and Figure Captions

444
445 **Fig. 1. Panels (a)-(f):** Monthly values of global climate indices of (a) SAT (b) SST, (c)
446 Sea-Ice Extent, (d) Atmospheric Heat Content, (e) Ocean Heat Content in upper 100 m,
447 and (f) TOA Net Radiation. Months that pass the AB-test are indicated by filled circles.
448 The data shown are global averages for panels (a) and (b), and global integrals for
449 panels (c)-(f). All fields are anomalies relative to the 1993-2022 climatology, except for
450 TOA net radiation in panel (f), which is shown as a mean-retained anomaly (see
451 Methods) to indicate the sign's importance as an indicator of energy accumulation or
452 loss, with a reference period of 2001-2022. The start year of the plot is 1993, except for
453 TOA net-radiation which starts in March 2000. Previous super El Niño years (1997/98
454 and 2015/16) and recent three years (2022, 2023, and 2024) are shown by coloured
455 lines as indicated by the legend.

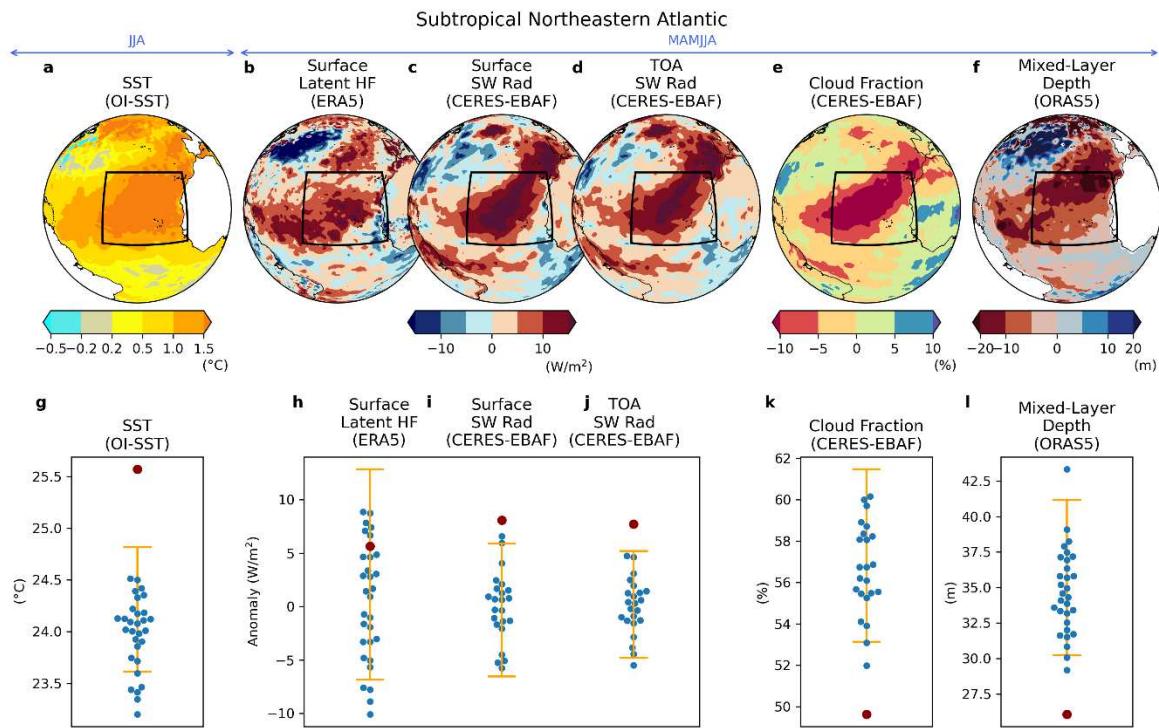

456 **Panels (g)-(h): July-December averaged (g) SAT and (h) SST anomalies over the**
 457 **globe.**

458
459
460
461
462

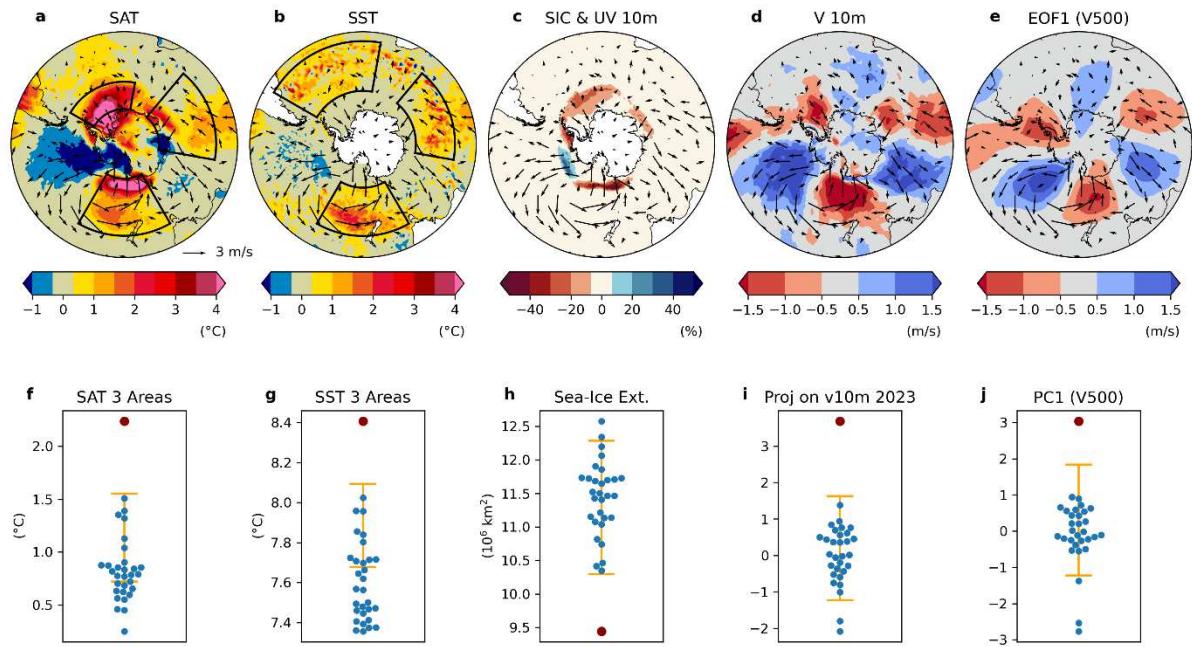


463
 464 **Fig. 2 Monthly anomaly time series of SSTs in selected regions, i.e., the extratropical**
 465 **Northwestern Pacific (a), the subtropical Northeastern Atlantic (b), the tropical Pacific**
 466 **(c), and three-areas in the Southern Ocean combined (d) relative to the 1993 to 2022**
 467 **climatology. The respective regions are shown by the boxes in Fig. 1h.**

468
469
470
471
472



473
 474 **Fig. 3. Global TOA radiation and heat content evolution. (a)** Anomalies of downward
 475 shortwave and downward longwave radiation and multivariate ENSO Index (MEI); **(b)**
 476 mean-retained anomalies of TOA downward net radiation or EEI and MEI; **(c)** AHC
 477 anomalies per unit pressure; and **(d)** OHC anomalies per unit depth for the Argo
 478 period since 2006. Anomalies in CERES data are calculated relative to 2001-2022,
 479 while anomalies in other data are calculated relative to 1993-2022. Time series
 480 shown in panels **(a)** and **(b)** are smoothed by a 3-month running average. The vertical
 481 grey dashed and dotted lines in each panel indicate the one-year period over which
 482 the heat budget analysis in Figure 4 is conducted for each of three El Niño events.


483
484 **Fig. 4. Warming in AHC (magenta) and OHC in the near-surface (0-100 m; pink) and**
485 **below 300 m (dark red), cooling in subsurface (100-300 m) OHC (blue), and time-**
486 **integrated TOA net radiation (orange) for one-year periods (2010 Feb - 2009 Feb, 2015**
487 **Dec - 2014 Dec, and 2023 Nov - 2022 Nov). These periods are selected to capture the**
488 **strongest one-year warming in 0-100 m OHC associated with each El Niño event. The**
489 **OHC changes are calculated from the difference between two three-month averages**
490 **separated by one year (e.g., the difference in panel a is between the mean of Jan-Feb-**
491 **March 2009 and that of 2010), while the TOA net radiation is integrated over the one-**
492 **year period between the midpoints of these three-month intervals. Uncertainty (see**
493 **methods) of each respective estimate is indicated by green lines. The number above**
494 **each bar indicates the height of the bar in units of ZJ.**

495

496
497 **Figure 5. (Top panels) Anomalies in the subtropical Northeastern Atlantic for (a) SST,**
498 **(b) surface latent heat flux, (c) surface short-wave radiation, (d) top-of-atmosphere**
499 **(TOA) shortwave radiation, (e) cloud fraction, (f) mixed-layer depth and (bottom**
500 **panels) area-averaged and seasonally-averaged data in each year with the red dot**
501 **indicating the 2023 value, blue dots indicating 1993-2022 values, and yellow bar**
502 **indicating the 5th-95th percentile of 2023 value estimation based on a linear**
503 **regression model for the learning period between 1993 and 2022 for SST and mixed**
504 **layer depth and between 2000 and 2022 for CERES-EBAF data (c-e) due to the limited**
505 **data availability and for latent HF for consistency. The average range is between 10°-**
506 **30°N and 40°-15°W.**

507

508
 509 **Fig. 6. (Top panels)** Southern Hemisphere anomalies from March to August 2023
 510 relative to the 1993-2022 climatology. Color shading for (a) Surface Air Temperature
 511 (SAT), (b) Sea Surface Temperature (SST), (c) Sea-Ice Concentration (SIC), (d) 10-m
 512 Meridional Wind Speeds (V10m), and (e) the first Empirical Orthogonal Function
 513 (EOF1) of 500 hPa meridional winds with 10-m wind speed anomalies represented as
 514 vectors. The bottom panels display the corresponding seasonally averaged data for
 515 each year, with the red dot indicating the 2023 value, blue dots indicating 1993-2022
 516 values, and the yellow bar representing the 5th-95th percentile range of the 2023 value
 517 estimation based on a linear regression model for the period 1993-2022. Panels (f) and
 518 (g) show area-averaged SAT and SST, respectively. Panel (h) presents sea-ice extent,
 519 panel (i) shows projection coefficients of 10-m meridional wind speeds onto its 2023
 520 pattern as shown in panel (d), and panel (j) displays the time coefficients of EOF1 as
 521 shown in panel (d).

522

523

524

525 **Methods**

526 **Datasets**

527 The datasets analysed in this study are listed in the Method Table 1.

528

529 **Table 1. Datasets analysed in this study.**

Data set name	Variables	Resolution	Period analyzed in this study	Reference No.
OI-SST, version 2.1	SST	0.25°×0.25°, daily	January 1993-October 2024	62
ERA5	three-dimensional temperature, geopotential, specific humidity, and wind speeds, and surface air-temperature, latent heat flux, sea-ice concentration	0.25°×0.25°, monthly	January 1993-October 2024	63
ORAS5	potential temperature, salinity, mixed-layer depth	curvilinear 1221×1441 grids, monthly	January 1993-September 2024	64
EN 4.2 Ocean Analysis	potential temperature and salinity	1°×1 °, monthly	January 1993-July 2024	65
IAP Ocean Heat Content Analysis, version 4	0-100 m and 0-300 m OHC	1°×1 °, monthly	January 1993-June 2024	66
JMA Ocean Analysis, version 7.3.1	temperature and salinity	1°×1 °, monthly	January 1993-December 2023	67
CERES-EBAF TOA, version 4.2	net, shortwave, and longwave radiation at TOA	1°×1 °, monthly	March 2000-July 2024	68
CERES-EBAF, version 4.2	cloud fraction, and shortwave radiation at the surface	1°×1 °, monthly	March 2000-May 2024	68
NOAA Multivariate ENSO Index, version 2	index for El Nino and La Nina	average of consecutive two months	January 1993-August 2024	69
NOAA Sea-Ice Index, Version 3	sea-ice extent	monthly	January 1993-October 2024	70

530

531

532 **Abnormal record-Breaking test**

533 We have introduced a simple statistical analysis, the “Abnormal record-Breaking (AB) test” –
 534 a time series analysis which examines whether a specific observations satisfies two
 535 conditions: (i) it is record-breaking, i.e., it is has an unprecedently high (e.g., for
 536 temperatures) or low (e.g., for sea-ice) value, and (ii) it is an outlier of the expected range
 537 estimated from the past trend, surpassing the threshold for the top 5%, thus deemed
 538 significant at the 5% level in a one-sided test.

539 The expected range is estimated by a linear regression analysis using data leading up to the
 540 year of interest. As global warming has accelerated in recent decades^{4,7}, it is appropriate to
 541 estimate the trend using recent data. It is important to note that we use the 30-year period of
 542 1993-2022 for the trend estimation. (Shorter time periods are used for selecting variables
 543 with datasets that begin after 1993.) The trend calculation period of 30 years is used to
 544 account for potential problems of too long and too short calculation period. If the trend is
 545 calculated over a much longer period (e.g., 100 years), due to the warming rate is stronger in
 546 recent years than 100 years ago, the recent temperature data will be judged as abnormal.
 547 On the other hand, if the trend is calculated over too short a time period, the uncertainty in
 548 the estimate may be too large. We believe that 30 years is an appropriate period to balance
 549 these two effects. The concept of the AB test is further explained in supplementary material
 550 using global air temperature as an example time series (**Supplementary Fig. 1**).

551 **Atmospheric Heat Content**

552 Atmospheric heat content (AHC) is calculated from ERA5 monthly air-temperature, specific
 553 humidity, geopotential, and surface pressure. We follow the formulation described in Ref. ⁶,
 554 who studied atmospheric heat content. They showed the equation of atmospheric energy per
 555 unit area, and geographically aggregated atmospheric energy is the atmospheric heat
 556 content. Their equation of atmospheric energy on height coordinate,

$$557 E_A = \int_{Z_s}^{Z_{TOA}} \rho \left(c_V T + g(z - z_s) + L_e q + \frac{V^2}{2} \right) dz \quad (1)$$

558 where E_A is the atmospheric energy, z is the height, Z_s is the surface height, Z_{TOA} is the
 559 height of the top of the atmosphere, T is the temperature, ρ is the density of the air, q is the
 560 specific humidity, V is the wind speed, g is the gravity acceleration, c_V is the specific heat at
 561 constant volume, L_e is the latent heat for condensation and evaporation for the temperature
 562 above 0 °C or the latent heat for sublimation for the temperature below it. In order to
 563 calculate the AHC using monthly data on pressure coordinate, Eq. (1) is converted to
 564 pressure coordinate with ignoring the velocity term (kinetic energy) as

$$565 E_A = \int_0^{p_s} \left(c_V \frac{T}{g} + (z - z_s) + L_e \frac{q}{g} \right) dp \quad (2)$$

566 We ignored kinetic energy in our calculation, because anomalies of kinetic energy over the
 567 globe is negligibly small ⁶. There are different formulations of atmospheric energy^{46,71}, but the
 568 difference is negligible for our study, where magnitudes of OHC and TOA radiation is one
 569 order larger than the AHC. We also examined different formulation of AHC by Ref. ⁴⁶ and
 570 found that the Fig. 1a calculated by both methods are identical.

572 The global AHC time series analyzed by Ref. ⁶ available at <https://www.wdc-climate.de/>. The
 573 RMSE between their AHC and ours is 0.2 ZJ, consistent with their uncertainty among
 574 different source data. Therefore, we estimate the uncertainty in AHC to be 0.2 ZJ.

575 Ocean Heat Content

576 We calculate the Ocean Heat Content (OHC) from spatially three-dimensional potential
 577 temperatures (ORAS5⁶⁴, EN4.2⁶⁵) or from in-situ temperatures provided by Japan
 578 Meteorological Agency (JMA)⁶⁷ (version 3.7.1) and respective salinity data using TEOS-10
 579 gsw python toolkit (<https://teos-10.github.io/GSW-Python/>). We also use OHC data for 0-100
 580 and 0-300 m layer thickness provided by Institute of Atmospheric Physics (IAP) (version 4) in
 581 China⁶⁶. We thus have four OHC estimates based on ocean temperature and salinity. In
 582 addition, the vertically integrated OHC over the entire ocean water column was estimated
 583 from satellite altimetry and space gravimetry³.

584 Ref³ directly provides the total ocean heat uptake (OHU), the time derivative of OHC, from
 585 the ocean surface to the bottom of ocean over the period 2002-2021. The top 300 m OHU is
 586 estimated using the four OHC data products. In **Figs 4a** and **4b** we compute the ocean heat
 587 uptake below 300 m depth by taking the difference between Ref. ³ estimate of the total OHU
 588 and the 0 to 300 m OHU computed from the four OHC products. The uncertainty for the
 589 entire ocean water column is derived from Ref. ³ OHU uncertainty estimate, and the 0-300 m
 590 OHU uncertainty is given by the standard deviation of the OHU estimates from the four OHC
 591 datasets. Considering both are independent, the OHU uncertainty below 300 m depth is
 592 estimated. Note that over the periods of interest (i.e. 2009-2010 for **Fig. 4a** and 2015-2016),
 593 the difference between TOA net radiation budget minus the AHC derived from ERA5 and
 594 Ref. ³ total OHU is less than 1 ZJ meaning that the global energy budget is closed with these
 595 datasets within the error bars.

596 For the global energy budget over the period 2022-2023, the total OHU is not available from
 597 Ref. ³ dataset because satellite altimetry data is not available yet over the second half of
 598 2023. Therefore, we adopt a different approach to estimate the OHU below 300 m depth in
 599 **Fig. 4c**. Given the precise closure of the energy budget over 2009-2010 and 2015-2016, we
 600 assume the energy budget is also closed in 2022-2023 and we infer the ocean heat uptake
 601 below 300 m depth by taking the difference between the TOA net radiation budget minus the
 602 AHC derived from ERA5 and the 0 to 300 m OHU computed from the four OHC products.
 603 We apply the same uncertainty to the 2022-2023 OHU below 300 m depth as the uncertainty
 604 in the 2015-2016 OHU below 300 m depth.

605 Mean-retained anomaly

606 In climate science research, the amplitude of seasonal variations often exceeds the
 607 magnitude of the climate variability or change being studied. To isolate climate variability or
 608 change, it is common to use anomalies, which represent the difference between observed
 609 values and climatology. The conventional anomaly for a monthly time series can be
 610 expressed as

611
$$u'(mo, yr) = u(mo, yr) - \frac{1}{Yr} \sum_{yr} u(mo, yr) \quad (3)$$

612 where u is the dependent variable being analysed, mo is the calendar month, yr is the year,
 613 and Yr is the number of years used to calculate the climatology. Prime (' \prime) indicates the
 614 anomaly.

615 However, for certain variables, it is important to know how the time-averaged value for a
 616 given period relates to zero. One such variable is the global TOA net radiation. Positive and
 617 negative time-averaged values of global TOA net radiation indicate whether the Earth is
 618 absorbing or releasing heat, respectively. This information is not directly discernible from the
 619 time mean of conventional anomalies. To address this in some cases, a 12-month running
 620 mean of observed value is shown (e.g., Fig. 21 of Ref. ²¹). The drawback using a 12-month
 621 running means is that it becomes difficult to know the contribution of individual months.

622 To avoid the limitations of both conventional anomalies and 12-month running means, we
 623 propose a mean-retained anomaly, defined as

624
$$u^*(mo, yr) = u'(mo, yr) + \frac{1}{12} \frac{1}{Yr} \sum_{yr} \sum_{mo=1}^{12} u(mo, yr) \quad (4)$$

625 where 12 is the denominator in the second term in the righthand side is number of calendar
 626 months, and the asterisk (*) indicates the mean-retained anomaly. The time average of
 627 mean-retained anomalies over single or multiple years is identical to the corresponding time
 628 average of raw values. This can be demonstrated using the sum of 12 months for a given
 629 year:

$$\begin{aligned} 630 \sum_{mo=1}^{12} u^*(mo, yr) &= \sum_{mo=1}^{12} \left\{ u'(mo, yr) + \frac{1}{12} \frac{1}{Yr} \sum_{yr} \sum_{mo=1}^{12} u(mo, yr) \right\} \\ 631 &= \sum_{mo=1}^{12} \left\{ u(mo, yr) - \frac{1}{Yr} \sum_{yr} u(mo, yr) + \frac{1}{12} \frac{1}{Yr} \sum_{yr} \sum_{mo=1}^{12} u(mo, yr) \right\} \\ 632 &= \sum_{mo=1}^{12} u(mo, yr) - \frac{1}{Yr} \sum_{mo=1}^{12} \sum_{yr} u(mo, yr) + \frac{1}{Yr} \sum_{yr} \sum_{mo=1}^{12} u(mo, yr) \\ 633 &= \sum_{mo=1}^{12} u(mo, yr). \end{aligned} \quad (5)$$

634 In this example, the sum is taken for 12 months of a calendar year for simplicity, but the
 635 identity of the 12-month sum of the mean-retained anomaly with the original data holds any
 636 sequential 12 months (e.g., from July to next year June), as the second and third terms in
 637 the right-hand side cancel each other out. Similarly, the identity holds for the sum or
 638 average of consecutive months whose length is a multiple of 12 months.

639 The mean-retained anomaly is particularly useful for variables for which zero is important
 640 and the observed value is close to zero, as global TOA net radiation. For this reason, we
 641 apply the mean-retained anomaly to this variable. Conversely, for variables with values far
 642 from zero, such as global shortwave radiation and longwave radiation, the mean-retained

anomaly offers no advantage over the conventional anomaly. The mean-retained anomaly may also be useful for other variables in climate science beyond those examined in this paper. In particular, it could be valuable for variables like precipitation in arid regions, where values near zero are significant.

647
648

649 Definitions of areas

650 The areas shown in **Fig. 1h** are as follows: for the extratropical Northwestern Pacific a box
651 over 35°-45°N, 130°E-170°W, for the subtropical Northeastern Atlantic a box over 10°-30°N,
652 40°-15°W, for the tropical Pacific a polygon of (15°S, 150°E), (15°S, 85°W), (10°N, 85°W),
653 (10°N, 80°W), (15°N, 80°W), (15°N, 15°E), for the Southern Ocean three boxes over 60°-
654 40°S, 40°-100°E, 65°-45°S, 150°E-150°W, and 60°-35°S, 60°W-10°E.
655

656 Copernicus Climate Change Service (C3S) subseasonal to 657 seasonal forecasts

658 Freely available monthly mean ensemble anomalies from 8 modelling centres (ECMWF,
659 NCEP, DWD, CMCC, METEO-France, JMA, ECCO and UKMO) were used to compile the
660 multi-model mean SST and sea level pressure anomalies in **Supplementary Figure 10**.
661 These monthly updated forecasted products for SST and other physical variables have a
662 horizontal resolution of nominal 1 degree and allow forecasts of up to 6 months ahead of
663 time. Area-averaged anomalies are provided for some selected regions, following the area
664 definitions above.
665
666

667 References for Methods

- 668 62. Huang, B. *et al.* Improvements of the Daily Optimum Interpolation Sea Surface
669 Temperature (DOISST) Version 2.1. *Journal of Climate* **34**, 2923–2939 (2021).
- 670 63. Hersbach, H. *et al.* The ERA5 global reanalysis. *Quart J Royal Meteorol Soc* **146**, 1999–
671 2049 (2020).
- 672 64. Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF
673 operational ensemble reanalysis–analysis system for ocean and sea ice: a description of
674 the system and assessment. *Ocean Sci.* **15**, 779–808 (2019).
- 675 65. Good, S. A., Martin, M. J. & Rayner, N. A. EN4: Quality controlled ocean temperature
676 and salinity profiles and monthly objective analyses with uncertainty estimates. *JGR
677 Oceans* **118**, 6704–6716 (2013).
- 678 66. Cheng, L. *et al.* IAPv4 ocean temperature and ocean heat content gridded dataset. *Earth
679 Syst. Sci. Data* **16**, 3517–3546 (2024).
- 680 67. Ishii, M. *et al.* Accuracy of Global Upper Ocean Heat Content Estimation Expected from
681 Present Observational Data Sets. *SOLA* **13**, 163–167 (2017).

682 68. Loeb, N. G. *et al.* Clouds and the Earth's Radiant Energy System (CERES) Energy
 683 Balanced and Filled (EBAF) Top-of-Atmosphere (TOA) Edition-4.0 Data Product. *J.
 684 Climate* **31**, 895–918 (2018).

685 69. Wolter, K. & Timlin, M. S. El Niño/Southern Oscillation behaviour since 1871 as
 686 diagnosed in an extended multivariate ENSO index (MEI.ext). *Intl Journal of Climatology*
 687 **31**, 1074–1087 (2011).

688 70. Fetterer, F.; Knowles K.; Meier W.; Savoie M.; Windnagel A. Sea Ice Index, Version 3.
 689 NSIDC <https://doi.org/10.7265/N5K072F8> (2017).

690 71. Mayer, M. *et al.* Assessment of Atmospheric and Surface Energy Budgets Using
 691 Observation-Based Data Products. *Surv Geophys* (2024) doi:10.1007/s10712-024-
 692 09827-x.

693

694 Data Availability

695 Data are available from the following sites:

696 OI-SST, <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html>;

697 ERA5, <https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5>;

698 SIE, <https://nsidc.org/arcticseaicenews/sea-ice-tools/>;

699 ORAS5, <https://www.ecmwf.int/en/elibrary/80763-ocean5-ecmwf-ocean-reanalysis-system-and-its-real-time-analysis-component>;

700 701 Grid-cell information of ORAS5, <https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/oras5/ORCA025/mesh/catalog.html>;

702 703 CERES-EBAF, https://asdc.larc.nasa.gov/data/CERES/EBAF/TOA_Edition4.2/;

704 Multivariate ENSO index, <https://psl.noaa.gov/enso/mei/>;

705 Total ocean heat content from satellite altimetry,
<https://www.aviso.altimetry.fr/en/data/products/ocean-indicators-products/ocean-heat-content-and-earth-energy-imbalance/global-ocean-heat-content-change-and-earth-energy-imbalance.html>;

706 707 Copernicus Climate Change Service (C3S) seasonal forecast data,
<https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-postprocessed-single-levels?tab=overview> .

708 712

713 Code Availability

714 The sample code of AB-test is available through a repository (detailed information will be
 715 added).

716 Acknowledgements

717 S. M. is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI
 718 Grant Numbers JP19H05704 and JP24H01502. B.M. and K.F. supported by the ESA

719 Climate space Programme under the Cross-ECV project MOTCUSOMA and by the CNRS
720 TOSCA project for the use of sentinel 6 data. R.S. was supported by the UK National Centre
721 for Atmospheric Science and the EU EXPECT project. E.B. was supported by the Ministry of
722 Business, Innovation and Employment through the Deep South National Science Challenge
723 (C01X1902).

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- [SupplmentExceptional202424241114.docx](#)