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[bookmark: _Toc180188159]Brief introduction
The aim of our work is to infer the optimal solution from limited data. We present a deep active learning pipeline that combines deep neural networks with a novel tree search to find superior solutions in complex systems with non-cumulative objectives and limited data availability. Our pipeline addresses a wide range of scenarios, covering a huge range of low- to high-dimensional problems, from easy to hard data acquisition tasks, and from simple to complex systems. Our work distinguishes itself from traditional derivative-free optimization methods, which are typically evaluated based on function evaluations rather than data acquisition. It also differs from deep-learning-based tree search models like AlphaGo, AlphaZero, and AlphaStar, which assume access to large datasets and focus on cumulative objectives. Although we cannot provide a formal statistical model due to the inherent complexity of deep learning combined with the stochastic nature of tree search (similar to AlphaGo), we provide well-reasoned motivations and extensive benchmark study and additional real-world tasks supporting our claims that our new approach DANTE (Deep Active Learning with Neural-Surrogate-Guided Tree Exploration) significantly outperforms current state-of-the-art (SOTA) methods by orders of magnitude in benchmark studies and demonstrates broad applicability across various scientific domains.
[bookmark: _Toc180188160]Evaluations on synthetic functions
We evaluated DANTE alongside 11 other state-of-the-art optimization algorithms spanning key categories, including exact and heuristic algorithms, Bayesian methods, and tree-based strategies. These evaluations were conducted under two distinct experimental setups: one where node values were assigned based on exact function values and another where values were based on predictions from a surrogate model.
1. In the exact function scenario, we set the batch size for each algorithm to 1 to focus on sample efficiency. Consequently, each iteration involved a solitary expansion, search, or evolutionary step, followed by acquiring the exact function values for the offspring nodes, which served as feedback for the next iteration. The results are displayed in Supplementary Fig. 3-4.
2. In the surrogate model prediction scenario, the batch size was set to 20 for each algorithm to accommodate the time-consuming nature of model training and prediction. Here, the algorithms optimized based on the surrogate model's predicted values, selecting 20 sample points accordingly. The ground truth for these selected points was then ascertained via the exact function, and these new data points were incorporated into the dataset for training a subsequent surrogate model. This iterative process, emblematic of self-driving virtual laboratories, advances to the next iteration with the updated model. The results are displayed in Supplementary Fig. 2.
Setup for synthetic functions: Besides Ackley, Rosenbrock, and Rastrigin functions introduced in Methods, we also test three other synthetic functions (Griewank, Schwefel, Michalewicz) for evaluating and analyzing the computational optimization approaches.
The Schwefel function can be written as:

		(1)

Where d is the dimension. The function is evaluated on the hypercube , for all i = 1, …, d with a discrete search space of a step size of 1.
The Griewank function can be written as:


		(2)

Where d is the dimension. The function is evaluated on the hypercube , for all i = 1, …, d with a discrete search space of a step size of 1.
The Michalewicz function can be written as:


		(3)

Where d is the dimension. The function is evaluated on the hypercube , for all i = 1, …, d with a discrete search space of a step size of 0.0001. The parameter settings of the synthetic functions in this study are also listed in Supplementary Table 2.
Machine learning surrogate models: Supplementary Fig. 41 shows the model architecture of 1D convolutional neural networks (1D-CNN) for the evaluations on synthetic functions. The model architecture and hyperparameters are determined by trial and error based on R-Squared value. Specifically, for the Ackley function, the 1D-CNN comprises 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8 respectively, each using a kernel size of 3. It also includes 2 max-pooling layers with a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 2 fully connected layers with 128 and 64 units respectively, and an output layer. The loss function utilized is the mean square error (MSE). Supplementary Fig. 44 shows the model performance while evaluations on synthetic functions.
For the Rastrigin function, the 1D-CNN consists of 6 convolutional layers with filter sizes of 256, 128, 64, 32, 16, and 8 respectively. The kernel sizes are 5, 5, 3, 3, 3, and 3 respectively, with strides of 1, 2, 2, 1, 1, and 1 respectively. Following these convolutional layers is a flatten layer, 2 fully connected layers with 128 and 64 units respectively, and an output layer. The loss function used in this case is the mean absolute percentage error (MAPE).
For the Rosenbrock function, the 1D-CNN comprises 6 convolutional layers with filter sizes of 128, 64, 32, 16, 8, and 4 respectively, each using a kernel size of 3. Additionally, there are 3 max-pooling layers with a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 1 fully connected layer with 64 units, and an output layer. The loss function for this function is the MSE.
Moreover, the learning rate for the Adam Optimizer is set at 0.001, and the activation function utilized is the Exponential Linear Unit (ELU). The 1D-CNN model is trained for 500 epochs with an early stopping patience of 30, and a batch size of 64.
Other benchmark machine learning models, namely GBDT (Gradient Boosting Decision Tree), RF (Random Forest), and SVR (Epsilon-Support Vector Regression), are also assessed. The GBDT and RF models are implemented using the lightgbm 3.3.5 package, with the hyperparameters detailed in Supplementary Table 16. The SVR model is implemented using the scikit-learn 1.2.2 package with default hyperparameters.
Hyperparameter settings for all algorithms in benchmarks: We evaluated DANTE against a diverse array of state-of-the-art baseline algorithms spanning multiple categories, including Bayesian Optimization (TuRBO5 (1)), Evolutionary Algorithm (CMA-ES (2), Differential Evolution (Diff-Evo) (3), Shiwa (4)), MCTS (DOO (5), SOO (5), VOO (6), LAMCTS (7)), MCMC (8), Dual Annealing (DA) (9), and Random Search. Additionally, we assessed variations of DANTE, specifically DANTE-Greedy (which omits backpropagation) and DANTE-eGreedy (which also omits backpropagation but introduces an epsilon parameter to increase random expansions). The implementations of VOO, SOO, and DOO were sourced from an established repository (https://github.com/beomjoonkim/voot), while the methods including CMA-ES, Differential Evolution, and Dual Annealing were derived from the Scipy optimize module, and Shiwa was obtained from Nevergrad (https://github.com/facebookresearch/nevergrad). The implementation of TuRBO5 is from https://github.com/uber-research/TuRBO. The implementation of LAMCTS is from https://github.com/facebookresearch/LaMCTS.
In the context of surrogate model prediction, we initiated the process with 200 randomly selected data points to train a 1D Convolutional Neural Network (1D-CNN), necessitating data preprocessing to optimize 1D-CNN performance. For the Ackley, Rastrigin, and Rosenbrock functions, the input x did not do modification as it fell within the -5 to 5 range. However, the function value f(x) conversion was necessary for surrogate model training to avoid gradient explosion, these conversion formulas are defined as follows:

		(4)

		(5)

		(6)
where d represents the dimension, F(x) is the convert function value. Moreover, in each iteration, the selection of the root node is based on the best function value: for Ackley and Rastrigin functions, a single data point is chosen, whereas for other functions, top three data points are selected as starting root nodes. Further details on hyperparameter settings for all algorithms in the benchmarks are provided in Supplementary Table 1.
Runtime: In the exact function scenario, all methods—including DANTE, DANTE-Greedy, DANTE-eGreedy, VOO, DOO, SOO, CMA-ES, Diff-Evo, DA, Shiwa, and MCMC—are fairly fast when dimensions are below 200, this setup allows for the efficient collection of thousands of samples in a matter of minutes on an AMD R7 5800X CPU. However, in an evaluation of the 100-dimensional Rosenbrock function over 105 iterations, VOO required roughly one day, DOO and SOO needed several hours, and the other methods were able to complete the process within an hour.
In the surrogate model prediction scenario, the majority of the time is devoted to training the model and utilizing it for predictions. Specifically, during an assessment of the 100-dimensional Rosenbrock function over 500 iterations (with 104 samples), all methods—excluding TuRBO5 and LAMCTS—concluded the task within a day when employing a 3090ti GPU for model training and predictions, and a CPU for other computations. In contrast, TuRBO5 and LAMCTS required several days to accumulate thousands of samples on a CPU, as these methods generate only one sample per iteration.
Ablations on hyperparameters: Exploration weight ratio (c0) This parameter controls the weight of exploration during tree search. A large c0 prompts DANTE to more frequently explore uncharted regions (exploration). As shown in Supplementary Fig. 14, too small c0 results in poor performance on the Rosenbrock function, underscoring the significance of exploration. Conversely, a large c0 leads to over-exploration which is likewise undesirable. We recommend setting c0 to 0.2 to 1. Expansion actions This parameter dictates how the tree's nodes expand. Supplementary Fig. 11 illustrates that relying solely on deterministic moves (e.g., ± 0.1 for the Ackley function) for node expansion results in poor optimization performance since it is hard to jump out from the local minimum. Similarly, stochastic moves alone also led to relatively bad optimization results., Combining deterministic and stochastic moves enhances optimal performance across all functions, establishing this approach as the default setting. Further evaluations are presented in Supplementary Fig. 12-13.
[bookmark: _Toc180188161]Real world tasks with easy data acquisition
1. Neural network architecture search
Neural architecture search (NAS) is an automated method for discovering optimal neural network architectures by systematically exploring and evaluating various network configurations to achieve the best performance on a given task. We evaluated DANTE compared to six other optimization algorithms: Random Search, MCMC, CMA-ES, Dual Annealing, LA-MCTS, and TuRBO5.
Dataset and optimization Target: To benchmark the efficacy of DANTE in optimizing neural network structures within the context of active learning, we choose the NAS-Bench-101 dataset (10), which contains over 400,000 unique convolutional neural networks along with their corresponding performance metrics, trained on the CIFAR-10 dataset (11). Each neural network is represented by a 7×7 upper-triangular adjacency matrix with up to 9 edges, where nodes represent specific operations and edges denote the connection relationships between these operations. The first operation represents the input, and the last represents the output, while the remaining five components can be selected from 3×3 convolution, 1×1 convolution, or 3×3 max-pooling. The objective of the NAS task is to identify an optimized neural network structure that achieves the highest classification accuracy on the test set (test acc). 
Neural network architecture encoding: We adopt a truncated 40-bit path-based encoding scheme (12) to represent the neural network structure, where each bit corresponds to a specific path from the input layer to the output layer, incorporating various operators along the way. For optimization algorithms like CMA-ES, Dual Annealing, LA-MCTS, and TuRBO5, which require a well-defined search domain, we parameterize the neural network structure into a 36-dimensional vector within the continuous [0, 1] space, as adopted from prior work (13). The first 21 entries correspond to the adjacency matrix, where the largest values set the respective elements in the matrix to 1. The remaining 15 entries represent the one-hot encoding of 5 components, each with three possible operations. For DANTE, MCMC, and Random Search, optimization is performed directly at the adjacency matrix level.
Surrogate model: We train a 1D-CNN model to map the path encoding into the test acc. The 1D-CNN consists of 5 convolutional layers with filter sizes of 128, 64, 32, 16, and 8, respectively, each using a kernel size of 3. It also includes 2 max-pooling layers with a pooling size of 2, 2 dropout layers with a dropout rate of 0.2, followed by a flatten layer, 2 fully connected layers with 128 and 64 units, respectively, and a final output layer. The loss function used is mean square error (MSE).
Active learning loop: The optimization process begins by generating 200 random initial data points from NAS-Bench-101, which are used to train the initial surrogate model. In the active learning loop, optimization algorithms then sample 20 optimized successors by refining the surrogate model, expanding the dataset. The updated surrogate model is subsequently used in the next iteration of the loop, continually improving the optimization process.
DANTE settings: The exploration weight ratio is set to 1, with 100 rollout rounds. These rollouts include stochastic moves in the adjacency matrix, stochastic moves in operations, and stochastic moves in both the adjacency matrix and operations, each with equal probability. The ratio between max, visit, and random sampling is 5:1:1.
MCMC settings: The acceptance rate is defined as exp(-δ/T), where δ represents the difference between the proposal point and the current best point. If δ > 0, indicating the proposal point is better than the current best, the proposal is accepted outright; otherwise, it is accepted with the calculated acceptance rate. The temperature parameter, T, decreases exponentially with each iteration, starting at an initial value of 0.01, with a half-life of 200 iterations.
CMA-ES settings: 0.25 sigma0, 300 maxfevals, with other parameters using default settings.
Dual Annealing setting: 5 maxiter, 300 maxfun, with other parameters using default settings.
La-MCTS settings: 40 ninits, 0.1 Cp, 100 iterations, with other parameters using default settings.
TuRBO5 settings: 50 n_init, 300 max_evals, 5 n_trust_regionsm, 10 batch_size, 2000 max_cholesky_size, 50 n_training_steps, with other parameters using default settings.
2. Soft magnetic alloy design
Soft magnets are extensively applied in electrical power generation and transformation, as well as sensors. Beyond the traditional soft magnets like Permalloy, high-entropy alloys (HEAs) offer a new plethora for the design of soft magnets with potentially multi-functionality. The soft magnets usually require high magnetization saturation, high electrical resistivity for reduced energy loss in application, and low coercivity. Owing to the complexity of addressing the coercivity more of an extrinsic property, in this work we focus on maximizing simultaneously the magnetization saturation and electrical resistivity. We evaluated DANTE compared to two other optimization algorithms: Random Search and MCMC, since they can efficiently conform to the multi-constraints of alloy design tasks.
Feature engineering: We adopt 27 elements: Fe, Co, Ni, Ta, Al, Ti, Nb, Ge, Au, Pd, Zn, Ga, Mo, Cu, Pt, Sn, Cr, Mn, Mg, Si, Ru, Rh, Hf, W, Re, Ir, and Bi, to design 6-element CCAs with fcc structure. For Fe, Co, and Ni, the atomic ratio ranges from 0 to 100 at.%, while for other elements, it ranges from 0 to 40 at.%, with 0.5 at.% interval. Additionally, the total atomic percentage of Fe, Co, and Ni is designed to fall between 60 at.% to 80 at.%. For CCAs with a fcc crystal structure, the Fe / (Co + Ni) ratio is required to be less than or equal to 1.5.
Optimization Target: The optimization target is to maximize the following target:

		
M stands for magnetic moment and rho resistivity.
Surrogate model: The 1D-CNN comprises 4 convolutional layers with filter sizes of 64, 32, 16, and 8 respectively, each using a kernel size of 3. The convolutional layers with 64 and 32 layers are using a stride of 2. One batch normalization layer and a dropout layer are employed to prevent overfitting. Before the output layer, there is a flatten layer and a fully connected layer with 128 units. The loss function utilized is MSE. Moreover, the learning rate for the Adam Optimizer is set at 0.001, and the activation function is ELU. The 1D-CNN model is trained for 5000 epochs with an early stopping patience of 100, and a batch size of 50. 
DANTE settings: The exploration weight ratio c0 is set to 0.5. Each iteration selects 4 data points that exhibit the best properties, alongside one randomly selected data point, to serve as initial root nodes for the rollout process. For each root node, DANTE conducts 200 rollouts, selecting 30 samples for further consideration. Of these, 15 are chosen for their highest predicted M * rho values, 10 for their high feature rankings (ranked by their predicted scores and Euclidean distance from the original data points), 3 for being the most frequently visited, and 2 randomly. The rollouts include three equally probable types of expansion actions: element variation, content variation, and a blend of both. Node values are determined by averaging the predictions from five surrogate models. 20 samples are finally selected in each iteration for DFT calculations, chosen based on their feature rankings and predicted scores. 
MCMC settings: MCMC selects the node with highest M * rho value as initial root node, and conducts 1000 rollouts. The expansion actions are same as DANTE. 20 samples are finally selected in each iteration, chosen based on their feature rankings and predicted scores.
Random Search settings: For each iteration, 100,000 data points are randomly generated and evaluated by the surrogate model. Then, 20 samples are finally selected based on their feature rankings and predicted scores.
3. Lunar landing control problem
The Lunar Lander problem is a well-established benchmark environment in the OpenAI Gym toolkit, commonly used in the field of reinforcement learning (RL) to evaluate control strategies. The objective is to control a simulated lunar module to ensure a safe landing on the moon’s surface, specifically within a designated target zone located between two flags. The task presents multiple challenges, including the need to optimize the use of fuel, manage thrust efficiently, and maintain stability to avoid crashes, all while adhering to the system’s dynamic constraints. This problem serves as a test bed for evaluating the performance of RL algorithms in control tasks. The state space is an 8-dimensional vector representing: X and Y positions of the lander; X and Y velocities; Angle of the lander; Angular velocity; Boolean values indicating if the left or right legs have made contact with the ground. The actions are discrete and include: Do nothing; Fire left engine; Fire main engine; Fire right engine. The agent gets rewards based on how close the lander is to the target landing zone: Positive reward for landing close to the target; Negative reward for crashing; Penalty for using fuel (firing engines); Rewards for coming to rest.
This problem is typically framed as a trajectory planning task with cumulative objectives; however, by fixing the initial conditions, we reformulate it as a non-cumulative problem, where the goal is to design an optimal sequence of actions to maximize the reward. We evaluated DANTE compared to 9 other optimization algorithms: Random Search, DOO, SOO, VOO, Shiwa, CMA-ES, Differential Evolution, Dual Annealing, and MCMC.
Feature engineering: We adopt a 100-dimension sequence as the input actions, each action is discrete and includes: 0 denotes do nothing, 1 denotes fire left engine, 2 denotes fire main engine, 3 denotes fire right engine. The seed of environment reset is set to 42 to get a fixed initial state of the lunar landing problem.
Optimization Target: The goal is to design an optimal sequence of actions to maximize the reward.
DANTE settings: The exploration weight ratio c0 is set to 0.5. The rollouts include 6 equally probable types of expansion actions: stochastic moves of 1, 2, 5, 10, 20, 33 elements of the 100d sequence.
Random Search settings: Random seed is set to 42.
DOO settings: 0.1 explr_p with other parameters using default settings.
SOO settings: Default settings.
VOO settings: 1 explr_p with other parameters using default settings.
Shiwa settings: Default settings.
CMA-ES settings: Default settings.
Differential Evolution settings: Default settings.
Dual Annealing settings: Default settings.
MCMC settings: Default settings.
4. Electron ptychography
Electron ptychography, a phase-contrast imaging technique, has emerged as a promising solution to overcome these challenges and achieve sub-angstrom resolution and three-dimensional depth sectioning in samples thicker than 20 nm (14). The goal of ptychographic reconstruction is to quantify the phase of the transmission function within the atomic lattice. The quality of this reconstruction relies on a careful selection of various reconstruction parameters, including physical, optimization, and experimental parameters, which collectively affect the quality and accuracy of the retrieved transmission function. The parameter space can be vast and complex, and the optimal choice depends on the specific dataset and measurement conditions. Currently, the parameter selection is mainly based on expert knowledge and trial-and-error, which limits the efficiency and applicability of electron ptychography. Therefore, it is advantageous to employ an automated pipeline for the experimental parameter calibration with minimal human effort. Specifically, this optimization task involves finding the optimal reconstruction parameters to retrieve the underlying transmission function. This task is equivalent to solving a non-convex problem in an 8-dimensional parameter space. The objective is to iteratively minimize the normalized mean square error (NMSE) between the measured and modeled diffraction patterns (Supplementary Figure 6).
Scanning transmission electron microscopes (STEM) with aberration correctors have been capable of characterizing nanostructures at a sub-angstrom resolution (15), it is a powerful tool to discover and design new materials. However, atomic-resolution imaging of nanostructures by STEM is often hindered by multiple electron scattering in samples thicker than a monolayer (16), as well as by beam-induced damage in sensitive materials (17).
Feature engineering: The feature vector consists of 8 variables: beam energy, defocus, maximum number of iterations, number of iterations with identical slices, probe-forming semi-angle, update step size, slice thickness and number of slices. Detailed values and their bounds are listed in Supplementary Table 14.
Optimization Target: The objective function NMSE is calculated between the positive square-root of the measured diffraction pattern IM and the modulus of the Fourier-transformed simulated exit-wave Ψ, which can be formulated as: 

		
where r and u denote the real- and reciprocal-space coordinate vectors, respectively, and N is the total number of the measured diffraction patterns.
Correlation index: The degree of matching for a given template T by intensity function P is characterized by a correlation index, which can be defined by the following relation:

		
where (xi, yi) is the coordinate of pixel i. 
Dataset simulation: abTEM (18), an open-source package, is used for the simulation of a transmission electron microscopy experiment. For this case study, we simulated a 4D dataset of 18-nm-thick silicon along the [110] direction with Poisson noise.
Ptychographic reconstruction: The analysis is performed using py4DSTEM (19), a versatile open-source package for different modes of STEM data analysis. See Supplementary Figure 6 and 43 for more details about the reconstruction process.
DANTE settings: The exploration weight ratio c0 is set to 0.5. We use 20 samples for the initialization and rollout for 2,500 iterations. The value of each node is ascertained by ground truth (NMSE). These rollouts include two categories of expansion actions: stochastic moves, with a 2/3 probability, and deterministic moves, comprising the remaining 1/3. Within the stochastic category, three potential variations are considered: altering a single variable in x, modifying d/3 variables in x, and adjusting d/2 variables in x. where d is 8 in this case, x is the parameter matrix.
TuRBO5 settings: 20 initial samples, 5 independent trust regions, with other parameters use default settings in the reference implementation.
Bayesian Optimization settings: 20 initial samples, other parameters use the default setting in package bayes_opt.
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DANTE settings: The exploration weight ratio c0 is set to 0.2. In each iteration, 8 data points characterized by suitable elastic modulus and the highest yield strength, in addition to two randomly selected data points, are chosen as starting root nodes for the individual rollout process. For every root node, DANTE performs 100 rollouts, from which 7 samples are selected: 5 exhibiting the highest predicted yield strength, one most frequently visited, and one selected at random. These rollouts encompass two types of expansion actions: stochastic moves, with a 2/3 probability, and deterministic moves (± 0.1), comprising the remaining 1/3. Within the stochastic category, three potential variations are considered: altering a single variable in x, modifying d/5 variables in x, and adjusting d/10 variables in x. where d is 27 in this case, x is the density matrix. Node values are derived by averaging the predictions from five surrogate models. The t-SNE technique is utilized to project both sampling and original data points into a 2-dimensional space, subsequently organizing the sampling points according to their Euclidean distance from the original data points in this space for feature ranking. Each iteration culminates in the selection of 20 samples for FE simulation; 15 of these are chosen based on their feature and predicted yield strength rankings, while 5 are selected randomly. Further information is available on GitHub.
GAD-MALL settings: The settings can be found in (20)
Surrogate model: Supplementary Fig. 16 shows the model architecture of 3D convolutional neural networks (3D-CNN) for the prediction of the architected material’s yield strength and elastic modulus. The 3D-CNN comprises 3 convolutional layers with filter sizes of 8, 4, and 2 respectively, each using a kernel size of 3. Each convolutional layer is followed by a max-pooling layer with a pooling size of 2. Before the output layer, there is a flatten layer and 3 fully connected layers with 128, 64, and 32 units respectively. The loss function utilized is MSE. Moreover, the learning rate for the Adam Optimizer is set at 0.001, and the activation function utilized is ELU. The 3D-CNN model is trained for 5000 epochs with an early stopping patience of 100, and a batch size of 32. Supplementary Fig. 17 shows the model performance of the self-driving virtual laboratory.
[bookmark: _Toc180188163]Real world task 2: Compositionally complex alloy design
DANTE settings: The exploration weight ratio c0 is set to 0.2. Each iteration selects 8 data points that exhibit the best properties, alongside two randomly selected data points, to serve as initial root nodes for the rollout process. For each root node, DANTE conducts 100 rollouts, selecting seven samples for further consideration. Of these, five are chosen for their highest predicted AHA*AHC values, three for their high feature rankings (ranked by their predicted scores and Euclidean distance from the original data points), one for being the most frequently visited, and another randomly. The rollouts include three equally probable types of expansion actions: element variation, content variation, and a blend of both. Node values are determined by averaging the predictions from five surrogate models. 20 samples are finally selected in each iteration for DFT calculations, chosen based on their feature rankings and predicted scores. More details can be found at GitHub.
MCMC settings: Similar to DANTE, yet without setting the exploration weight ratio c0.
Surrogate model: Supplementary Fig. 20 shows the model architecture of 1D-CNN for the prediction of CCA’s formation energy, AHA, and AHC. The 1D-CNN comprises 4 convolutional layers with filter sizes of 64, 32, 16, and 8 respectively, each using a kernel size of 3 and a stride of 2. One batch normalization layer and a dropout layer are employed to prevent overfitting. Before the output layer, there is a flatten layer and a fully connected layer with 128 units. The loss function utilized is MSE. Moreover, the learning rate for the Adam Optimizer is set at 0.001, and the activation function is ELU. The 1D-CNN model is trained for 5000 epochs with an early stopping patience of 1000, and a batch size of 50. Supplementary Fig. 21-24 shows the model performance of the self-driving virtual laboratory.
Density functional calculation: The calculated anomalous Hall resistivity (AHR) for fcc Al0.25CrFeCoNi and bcc Al1.25CrFeCoNi are 0.879 and 1.699 , respectively, which are in reasonably good agreement with experimentally measured AHRs of 0.5 and 1.5  (21). Moreover, as reported in Ref. (22), for disordered Fe50Pd50 and Ni50Pd50 alloys, the calculated  with vertex corrections are 0.541 and -1.400 . In comparison, the experimental values are 0.303 and -1.293 , respectively. 
In the calculation of the conductivity tensor , a fully relativistic Dirac four-component scheme for the basis functions was used throughout with an angular momentum cutoff of . The self-consistent field (SCF) potential was obtained by employing the Vosko-Wilk-Nussair (VWN) parametrization (23) for the exchange-correlation functional in the local density approximation (LDA). The energy integration was performed on a semicircle on the complex energy plane using 64 energy points and 363 k-points in the Brillouin zone (BZ) for bcc and fcc CCAs. The atomic sphere approximation (ASA) was employed as a shape approximation for the potential. Using the optimized SCF potentials, subsequent KB conductivity tensor calculations were performed using 106 k-points to ensure convergence. The lattice parameters of CCAs were calculated by averaging the experimental volume of each constituent element over atomic concentration, as validated in Ref. (24).
Besides the transport properties, we also evaluated the formation energy of the CCAs with respect to the (meta-)stable single elements using the Exact Muffin-tin Orbitals (EMTO) package (25). The reason for the selection of meta-stable crystal structure for some single elements as reference is owing to the relatively lower accuracy of the KKR-based approach in handling low-symmetry structures (see Supplementary Table 17).
Smearing of Bloch spectral function: The degree of smearing is quantified following the work of Szotek et al. (26) and Robarts et al. (27), where the momentum spectral function is considered as Lorentzian,
		 (7)
where  is the location in energy and  the lifetime of a band near Fermi energy. By integrating  over energy, we obtain,
		(8)
In practice, as implemented in Ref. (27), the  curves were fitted with tanh functions via two parameters  and ,
		(9)
In other words,  was fitted by a sum of tanh functions centered at  with broadening width . Based on this equation, the curve fitting was performed as follows,
		 (10)
i.e., the variation of  along the selected k-path is normalized. In fcc system, the selected k-path was along [110] direction and the value of N was selected to be three; in bcc system, the selected k-path was along [001] direction and  The smearing corresponding to each material was then obtained by averaging over , i.e., .
Supplementary results: We list in Supplementary Tables 7-10 some representative compositions of fcc and bcc CCAs predicted by DANTE and MCMC algorithms, respectively. In general, the CCAs provided by DANTE demonstrate superior combinatorial properties in terms of AHC and AHA. It is apparent that the predicted compositions by MCMC, especially for the bcc CCAs, are way more dispersed. Moreover, we find that the bcc and fcc CCAs optimized by DANTE consist of similar elements, that is, FeCoNiZnIrAl(Si). Driven by this observation, we further investigate both the bcc and fcc binary Fe1-xIrx systems. The calculated formation energies suggest that when x > 0.3, fcc phase is more thermodynamically stable than bcc phase. As demonstrated in Fig. 2, the bcc Fe0.7Ir0.3 exhibits the largest AHA of about 0.062, which is however smaller than the predicted bcc CCAs (~0.085). Similarly, in binary FeIr alloys with the fcc structure, the AHA is maximally 0.032, whereas the maximal AHA of fcc CCAs is approximately 0.070. 
Furthermore, the electronic structure, which can most easily be described through the k-resolved density of states known as the Bloch spectral function (BSF, ), is investigated to elucidate the distinctions between binary alloys and CCAs. The fcc Fe43.5Co18.5Ni10Al4.5Zn9.5Ir14 and Fe65Ir35, as well as bcc Fe61.5Co0.5Ni0.5Si2.5Zn19Ir16 and Fe80Ir20 are chosen as representative examples for comparative analysis (see Supplementary Fig. 26-27). It can be obviously seen that the BSFs are more strongly smeared out in CCAs than in binary FeIr alloys, especially in the majority spin channel. The smearing indicates strong electron scattering due to atomic disorder and can be used to estimate the quasiparticle coherent length and further the electrical conductivity (27). The stronger smearing in CCAs leads to lower electrical conductivity and hence larger AHA.
Another intriguing aspect introduced by chemical disorder is the vertex correction that captures extrinsic (side jump and skew scattering) contributions to the transport tensors. As listed in Supplementary Table 11, vertex correction plays a dominant role particularly in the off-site Fermi surface term . Even more notably, the degree to which the induced increase of in CCAs by the vertex correction exceeds that in binary alloys is more than double. Furthermore, by comparing the AHC and AHA of the predicted CCAs in this work, i.e.,  and up to 0.093, with other AHE alloys, e.g., L10 FePt thin film with  and , we conclude the substantial potential of utilizing DANTE for the efficient design of CCAs with multiple target properties.
[bookmark: _Toc180188164]Real world task 3: De novo cyclic peptide binder design
DANTE settings: In the context of cyclic peptide design, our approach incorporates a two-stage optimization process utilizing the DANTE. Initially, we generate a random peptide sequence to serve as the root node for the Monte Carlo tree. This stage involves conducting 15 rollouts from the initial node to explore potential sequences. Following this initial optimization phase, we identify and select three sequences for further analysis: these include the sequences with the highest and second-highest target values, as well as the sequence that was most frequently visited during the rollouts. These selected sequences then serve as the root nodes for a second round of tree search, during which another set of 15 rollouts is performed for each tree to refine our search for optimal sequences. In the final step of our optimization process, we compare the outcomes of the two iterations, selecting the sequence that demonstrates the highest target value as the optimized cyclic peptide sequence.
Molecular dynamics simulation: The MD simulations were performed based on the CHARMM36 forcefield and using NAMD engine. For each MD simulation, the complex was solvated in a truncated periodic TIP3P water box, and the minimum distance from the surfaces of the box to the complex atoms was set to 10 Å. Counter ions were added to neutralize systems, and the initial configuration was decided using a short Monte Carlo simulation. The Cyclic peptide topology and parameter file were generated using the ParamChem cyclic service. The simulation temperature was maintained at 303.15 K. 1.25 ns NVT (constant volume and temperature) was set for the equilibrating stage before 45 ns NPT (constant pressure and temperature) simulation with the time step of 0.1ns was performed. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF) and hydrogen bond analysis are performed by open-source package MDAnalysis. When calculating RMSD the backbone of the protein is aligned with the first frame of the molecular dynamic trajectory, while it is aligned with the average structure of all frames when calculating the RMSF.
[bookmark: _Toc180188165]Supplementary Figures
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[bookmark: _Toc161944691][bookmark: _Toc180188166]Supplementary Figure 1: Evaluations on synthetic functions of DANTE equipped with various machine learning model
We use different machine learning models as the surrogate model of DANTE and do the evaluations on Ackley, Rastrigin, and Rosenbrock functions. In this figure, Ackley-20d means the tests on 20-dimension Ackley function. The benchmark study shows that the convolutional neural network outperforms the other three machine learning models, e.g. GBDT (Gradient Boosting Decision Tree), RF (Random Forest), and SVM (Support Vector Machine). Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc143787669][bookmark: _Toc161944694][bookmark: _Toc180188167]Supplementary Figure 2: Evaluations on synthetic functions using surrogate model
We run extensive tests on well-known non-convex functions (Ackley, Rastrigin, Rosenbrock) of diverse types using surrogate model predictions and compare the performance of DANTE with other state-of-the-art algorithms. DANTE-based methods outperform other benchmark methods. In this figure, Ackley-20d means the tests on 20-dimension Ackley function. Supplementary Fig. 38 shows the curve of each evaluation on Rosenbrock. Data are presented as mean values ± SD, n = 5.

[image: ]
[bookmark: _Toc180188168]Supplementary Figure 3: Evaluations on synthetic functions (Ackley, Rastrigin, Rosenbrock) using exact function
We run extensive evaluations on Ackley, Rastrigin, and Rosenbrock functions using exact function. DANTE outperforms other benchmark methods. In this figure, Ackley-20d means the tests on 20-dimension Ackley function. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188169]Supplementary Figure 4: Evaluations on synthetic functions (Schwefel, Griewank, Michalewicz) using exact function
We also run extensive evaluations on Schwefel, Griewank, and Michalewicz functions using exact function,  where DANTE demonstrated superior performance compared to other benchmarked methods. In this context, "Schwefel-20d" refers to the tests conducted on the 20-dimensional Schwefel function. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188170]Supplementary Figure 5: Interaction diagram and 3D conformation of  the CK2α1−335/Pc cocrystals (PDBID: 4ib5)
(a) Interaction diagram shows that Pc as a native cyclic peptide binder binds CK2α1−335 subunit A via the known CK2β-binding site at the outer surface of the N-terminal β-sheet. The binding site features a distinctive architecture where a hydrophobic cavity is situated adjacent to a solvent-accessible surface. (b) 3D conformation of cyclic peptide at the pocket shows that this cavity is encircled by key residues, including Y37, V65, V99, and A108. The Pc ligand plunges deeply into the hydrophobic cavity with a phenyl group of residue F2. Within the native cyclic peptide binder Pc, the hydrophilic amino acids Y13, K3, and H5 are pivotal, engaging in interactions with crucial CK2 residues including Q34, E50, and L39.
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[bookmark: _Toc180188171]Supplementary Figure 6: Ptychographic reconstruction procedure and the computing of normalized mean squared error.
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[bookmark: _Toc180188172]Supplementary Figure 7: Ablation study of DANTE on synthetic functions with different intervals
(a) exact functions, (b) surrogate model predictions. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188173]Supplementary Figure 8: Phases of the Monte Carlo tree search algorithm
Monte Carlo tree search (MCTS) is grown through repeated application of the above four phases: selection, expansion, simulation, and backpropagation.
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[bookmark: _Toc180188174]Supplementary Figure 9: Distributions of the 2-D synthetic functions.
Rastrigin, Ackley, Rosenbrock, Griewank, Schwefel, and Michalewicz functions in a 2-D form are displayed here. Among these, the Rastrigin, Ackley, Griewank, and Schwefel functions are characterized by numerous local minima. In contrast, the Rosenbrock function exhibits a valley-like shape, while the Michalewicz function resembles a steep ridge.
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[bookmark: _Toc180188175]Supplementary Figure 10: Ablation study of DANTE on synthetic functions with various configurations
We assess the performance of the DANTE algorithm under various configurations (DANTE, without top-visit sampling, without adaptive exploration weight, without conditional selection, and without backpropagation) on the Ackley, Rastrigin, and Rosenbrock functions through surrogate model predictions. DANTE serves as the standard configuration. Without visit sampling entails the absence of selection based on the most visited nodes during each iteration, resulting in 18 samples chosen for their highest predictive values and 2 samples selected randomly, with all other settings remaining default. Without conditional selection will replace the root node with the child node with the highest DUCB value in each rollout. Without adaptive exploration weight sets the exploration weight statically at 10, without any adjustments throughout the evaluation, while maintaining other default settings. Without backpropagation, also referred to as DANTE-Greedy, fixes the exploration weight at 0, with all other configurations default. In this figure, Ackley-20d means the tests on 20-dimension Ackley function. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188176]Supplementary Figure 11: Ablation study of DANTE on synthetic functions with different expansion actions
We evaluated the DANTE algorithm's performance across different expansion actions—stochastic expansion, deterministic expansion, and a combination of both—on the Ackley, Rastrigin, and Rosenbrock functions using exact function. Utilizing both expansion strategies represents the standard configuration for DANTE. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188177]Supplementary Figure 12: Evaluations on synthetic functions with only stochastic expansion
We run DANTE variants with only stochastic moves on Ackley, Rastrigin, and Rosenbrock functions using exact function. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188178]Supplementary Figure 13: Evaluations on synthetic functions with only deterministic expansion
We run DANTE variants with only deterministic moves on Ackley, Rastrigin, and Rosenbrock functions using exact function. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188179]Supplementary Figure 14: Ablation study of DANTE on synthetic functions with different exploration weight ratios c0
We evaluated the performance of the DANTE algorithm across different exploration weight ratios on the Ackley, Rastrigin, and Rosenbrock functions, using exact function. The default ratios are set at 0.01 for Ackley and Rastrigin functions, 1 for Rosenbrock and Schwefel functions, and 0.1 for Griewank and Michalewicz functions. Data are presented as mean values ± SD, n = 5.
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[bookmark: _Toc180188180][bookmark: _Hlk161959296]Supplementary Figure 15: DANTE performance on Rosenbrock-100d using surrogate model
(a) Ablation study on the individual mechanism. Each has been performed 10 times, and the shadowed regions indicate the variance. (b-e) 10-time individual tests’ results: (b) DANTE, (c) without local backpropagation, (d) without conditional selection (e) without adaptive exploration, (f) without top-visit sampling.
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[bookmark: _Toc180188181]Supplementary Figure 16: Model architecture of 3D-CNN for architected material property predictions
This figure details the model architectures of 3D convolutional neural networks used for elastic modulus and yield strength predictions of architected materials. The hyperparameters and model architectures were determined by trial and error.
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[bookmark: _Toc180188182]Supplementary Figure 17: Model performance of 3D-CNNs
(a, b) MAPE in iteration: Panels (a) and (b) illustrate the MAPE for yield strength (Y) and elastic modulus (E) predictions respectively, of the architected materials. The DANTE indicate the MAPE between Finite Element (FE) simulation results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions, demonstrating a rapid decline in MAPE, reminiscent of a natural learning curve. (c, d) R2 in iteration: Panels (c) and (d) present the R2 values for Y and E, respectively. The dots depict the R2 values comparing FE simulations to predictions. (e, f) Regression plots for Y predictions: Panels (e) and (f) display regression plots for the initial and final rounds of iteration, respectively, focusing on the prediction of Y. (g, h) Regression plots for E predictions: Panels (g) and (h) showcase regression plots for the first and last rounds of iteration, respectively, aimed at predicting the E. All R2 and MAPE values are calculated using the validation dataset, providing a robust measure of model accuracy and learning efficiency of the self-driving virtual laboratories.
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[bookmark: _Toc180188183]Supplementary Figure 18: Analysis of architected materials
Density matrices, scaffold models, Von Mises stress, and hydrostatic pressure of the architected materials labeled DANTE #1, DANTE #2, GAD-MALL #1, GAD-MALL #2, and Uniform. Density is defined as one minus the porosity. 
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[bookmark: _Toc180188184]Supplementary Figure 19: Results of AVL-DANTE
(a) Architected materials design (b, c) Compositionally complex alloy design: (b) fcc, (c) bcc. Initial data points are displayed using gray circles. The sampled data points of DANTE are displayed using five-pointed stars, and different colors denote different iterations. The sampled data points of SOTA methods are displayed using triangles. “DANTE R1” denotes the sampled data points of DANTE in the first iteration. The unit of AHC () is 
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[bookmark: _Toc180188185]Supplementary Figure 20: Model architecture of 1D-CNN for CCA property predictions
This figure details the model architectures of 1D convolutional neural networks used for formation energy, AHA, and AHC predictions of CCAs. The hyperparameters and model architectures were determined by trial and error.
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[bookmark: _Toc180188186]Supplementary Figure 21: Model performance of 1D-CNNs utilizing DANTE for bcc CCA design
(a-c) MAPE in iteration: Panels (a), (b), and (c) illustrate the MAPE for the formation energy, AHC, and AHA predictions respectively, of the CCAs. The dots indicate the MAPE between DFT results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions, demonstrating a rapid decline in MAPE, reminiscent of a natural learning curve. (d-f) R2 in iteration: Panels (d), (e) and (f) present the R2 values for the formation energy, AHC, and AHA, respectively. The dots depict the R2 values comparing DFT results to predictions. All R2 and MAPE values are calculated using the validation dataset.
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[bookmark: _Toc180188187]Supplementary Figure 22: Model performance of 1D-CNNs utilizing DANTE for fcc CCA design
(a-c) MAPE in iteration: Panels (a), (b), and (c) illustrate the MAPE for the formation energy, AHC, and AHA predictions respectively, of the CCAs. The dots indicate the MAPE between DFT results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions, demonstrating a rapid decline in MAPE, reminiscent of a natural learning curve. (d-f) R2 in iteration: Panels (d), (e) and (f) present the R2 values for the formation energy, AHC, and AHA, respectively. The dots depict the R2 values comparing DFT results to predictions. All R2 and MAPE values are calculated using the validation dataset.
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[bookmark: _Toc180188188]Supplementary Figure 23: Model performance of 1D-CNNs utilizing MCMC for bcc CCA design
(a-c) MAPE in iteration: Panels (a), (b), and (c) illustrate the MAPE for the formation energy, AHC, and AHA predictions respectively, of the CCAs. The dots indicate the MAPE between DFT results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions, demonstrating a rapid decline in MAPE, reminiscent of a natural learning curve. (d-f) R2 in iteration: Panels (d), (e) and (f) present the R2 values for the formation energy, AHC, and AHA, respectively. The dots depict the R2 values comparing DFT results to predictions. All R2 and MAPE values are calculated using the validation dataset.
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[bookmark: _Toc180188189]Supplementary Figure 24: Model performance of 1D-CNNs utilizing MCMC for fcc CCA design
(a-c) MAPE in iteration: Panels (a), (b), and (c) illustrate the MAPE for the formation energy, AHC, and AHA predictions respectively, of the CCAs. The dots indicate the MAPE between DFT results and the model predictions. Five statistically independent (orthogonal) models are utilized for these predictions, demonstrating a rapid decline in MAPE, reminiscent of a natural learning curve. (d-f) R2 in iteration: Panels (d), (e) and (f) present the R2 values for the formation energy, AHC, and AHA, respectively. The dots depict the R2 values comparing DFT results to predictions. All R2 and MAPE values are calculated using the validation dataset.
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[bookmark: _Toc180188190]Supplementary Figure 25: Calculated AHC and AHA of bcc and fcc Fe1-xIrx. 
Calculated (a) AHC () and (b) AHA () of bcc and fcc Fe1-xIrx. The shadow marks the critical composition from which the fcc phase is more thermodynamically stable based on the calculated formation energy.
[image: ]
[bookmark: _Toc180188191]Supplementary Figure 26: Bloch spectral functions (E = EFermi) in the (001) plane through Γ corresponding to minority and majority spin channels of fcc (a) Fe43.5Co18.5Ni10Al4.5Zn9.5Ir14 and (b) Fe65Ir35.

[image: ]
[bookmark: _Toc180188192]Supplementary Figure 27: Bloch spectral functions (E = EFermi) in the (001) plane through Γ corresponding to minority and majority spin channels of bcc (a) Fe61.5Co0.5Ni0.5Si2.5Zn19Ir16 and (b) Fe80Ir20.
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[bookmark: _Toc180188193]Supplementary Figure 28: Fitting of n(k) for CCAs
Fitting of n(k) for (a) fcc and (b) bcc CCAs predicted by DANTE and MCMC at the 5th iteration. The degrees of smearing corresponding to DANTE and MCMC in fcc CCAs are 0.24 and 0.15, respectively. The degrees of smearing corresponding to DANTE and MCMC in bcc CCAs are 0.16 and 0.13, respectively.
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[bookmark: _Toc180188194]Supplementary Figure 29: Band structures of fcc CCAs
(a) Band structures of fcc Fe43.5Co19Ni9.5Ir14.5Al5Zn8.5 (predicted by DANTE at the 5th iteration) for minority (left panel) and majority (right panel) spin channels (b) Band structures of fcc Fe47Co17Ni14.5Ir7Al5.5Pt9 (predicted by MCMC at the 5th iteration) for minority (left panel) and majority (right panel) spin channels.
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[bookmark: _Toc180188195]Supplementary Figure 30: Band structures of bcc CCAs
(a) Band structures of bcc Fe63.5Co0.5Ni0.5Ir18.5Al9Zn8 (predicted by DANTE at the 5th iteration) for minority (left panel) and majority (right panel) spin channels (b) Band structures of bcc Fe58.5Co1Mg1.5Ir5Al5Pt29 (predicted by MCMC at the 5th iteration) for minority (left panel) and majority (right panel) spin channels.

[bookmark: _Hlk114870265][bookmark: _Hlk114870196][bookmark: _Toc143784925] [image: ]
[bookmark: _Toc162382032][bookmark: _Toc180188196]Supplementary Figure 31: RMSD of backbone atoms of peptide in native and DANTE-designed complex (PDB ID: 4ib5)
The mean RMSD for the native complex is 1.34 Å, compared to 0.60 Å for the DANTE-designed complex.
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[bookmark: _Toc162382033][bookmark: _Toc180188197]Supplementary Figure 32: RMSF of c alpha atoms of native and DANTE-designed complex structures (PDB ID: 4ib5)
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[bookmark: _Toc162382035][bookmark: _Toc180188198]Supplementary Figure 33: 3D interaction plot of complex with PDB ID: 7k2j
Black dash shows the hydrogen bond. (A) Native complex with SC = 0.65, dSASA = 865Å². (B) DANTE-designed complex and numbering DANTE_3 with SC = 0.66, dSASA = 956Å². A benzene ring of F2 inserts into the cavity and increase the size of the interface.
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[bookmark: _Toc162382036][bookmark: _Toc180188199]Supplementary Figure 34: 2D interaction plot of complex with PDB ID: 7k2j
Some interactions are not shown in the graph due to space limitations. The blue dash represents a hydrogen bond, while the oval-shaped residue indicates its involvement in hydrophobic interactions. Left: native 7k2j complex. Right: DANTE-designed complex.
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[bookmark: _Toc162382037][bookmark: _Toc180188200]Supplementary Figure 35: RMSD of backbone atoms of peptide in native and DANTE-designed complex (PDB ID: 7k2j)
The mean RMSD for the native complex is 0.74 Å, compared to 0.43 Å for the DANTE-designed complex.
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[bookmark: _Toc162382038][bookmark: _Toc180188201]Supplementary Figure 36: RMSF of c alpha atoms of native and DANTE-designed complex structures (PDB ID: 7k2j)
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[bookmark: _Toc162382040][bookmark: _Toc180188202]Supplementary Figure 37: 3D interaction plot of complex with PDB ID: 1smf. 
Black dash shows the hydrogen bond. (A) Native complex with SC = 0.75, dSASA = 1005Å². (B) DANTE-designed complex and numbering DANTE_2 with SC = 0.76, dSASA = 1137Å². A Phenol ring of Y9 replacing the native alkyl chain of K9 inserts into the cavity and increase the size of the interface.
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[bookmark: _Toc162382041][bookmark: _Toc180188203]Supplementary Figure 38: 2D interaction plot of complex with PDB ID: 1smf. 
Some interactions are not shown in the graph due to space limitations. The blue dash represents a hydrogen bond, while the oval-shaped residue indicates its involvement in hydrophobic interactions. Left: native 1smf complex. Right: DANTE-designed complex.
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[bookmark: _Toc180188204]Supplementary Figure 39: RMSD of backbone atoms of peptide in native and DANTE-designed complex (PDB ID: 1smf)
The mean RMSD for the native complex is 0.54 Å, compared to 0.83 Å for the DANTE-designed complex.
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[bookmark: _Toc180188205]Supplementary Figure 40: RMSF of c alpha atoms of native and DANTE-designed complex structures (PDB ID: 1smf)
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[bookmark: _Toc180188206]Supplementary Figure 41: Model architecture of 1D-CNN for evaluations on synthetic functions
This figure details the model architectures of 1D convolutional neural networks used for evaluations on Ackley, Rastrigin, and Rosenbrock functions. The hyperparameters and model architectures were empirically optimized to ensure good model performance. It is important to note that the model architecture is exclusively related to the synthetic function and is independent of the optimization algorithm, with the exception that TuRBO5 and LAMCTS default to using Support Vector Machines (SVM). 
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[bookmark: _Toc180188207]Supplementary Figure 42: FE simulation calibration
[bookmark: _Hlk161932837]The simulation curve agrees well with the experiment compression curves. Three replicates were tested to ensure reproducibility. The error of the elastic modulus (E) and yield strength (Y) between the FE simulation and experimental results is less than 10%. 
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[bookmark: _Toc180188208]Supplementary Figure 43: Electron ptychography reconstruction process
Reconstructed object phase, reconstructed Fourier probe, and NMSE evolution curve while reconstruction using py4DSTEM of (a) expert, (b) DANTE, (c) TuRBO5, and (d) BO.


[image: ]
[bookmark: _Toc180188209]Supplementary Figure 44: R2 versus number of iterations while evaluations on synthetic functions using surrogate model.
Data are presented as mean values ± SD, n = 5.
[image: ]
[bookmark: _Toc180188210]Supplementary Figure 45: Evaluation of 1D-CNN Performance for Schwefel Function Prediction
We conducted extensive testing on various 1D-CNN architectures to assess their performance in predicting the 100-dimensional Schwefel function. We found that 1D-CNNs struggle to accurately predict the Schwefel function, primarily due to their difficulty in learning the function's gradient.
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[bookmark: _Toc180188211]Supplementary Figure 46: Surrogate model performance with and without top-visit sampling
(pink and brown line, respectively). It can be observed that the loss without top-visit sampling is considerably higher and oscillates much more than the one with top-visit sampling.  




[bookmark: _Toc180188212]Supplementary Tables
[bookmark: _Toc180188213]Supplementary Table 1: Hyperparameters settings for all optimization algorithms in benchmarks
In this table, the asterisk (*) denotes the samples with the highest prediction values. The double asterisk (**) represents the randomly chosen samples. The triple asterisk (***) means the most frequently visited nodes. These hyperparameters are fine-tuned such that the methods can be performed within 1 day on current hardware settings
	Algorithm
	Objective
	#Samples per iteration
	Hyperparameters settings

	DANTE
	Exact function
	1
	
The exploration weight is defined as , where the c0 is set at 0.01 for Ackley, Rastrigin and Schwefel functions, 1 for Rosenbrock, and 0.1 for Griewank and Michalewicz functions. Two types of expansion actions are possible: a stochastic move and a deterministic move (e.g., an adjustment of ± 0.1 for Ackley), each with an equal probability of 50%. 

	
	Surrogate model
	20
(15* + 2** + 3***)
	
The exploration weight is defined as , where the c0 is set at 0.1 for Ackley and 1 for other functions. In each iteration, the process involves 200 rollouts for Ackley and Rastrigin functions, and 100 rollouts for other functions. In each rollout, two expansion action categories are considered: stochastic moves, with a likelihood of 2/3, and deterministic moves (± 0.1), accounting for the remaining 1/3. Within the stochastic category, three probable variations are identified: altering a single variable in x, modifying d/5 variables in x, and adjusting d/10 variables in x.

	DANTE-Greedy
	Exact function
	1
	Similar to DANTE, yet without backpropagation (i.e., exploration weight equals 0)

	
	Surrogate model
	20
(20*)
	

	DANTE-eGreedy
	Exact function
	1
	Similar to DANTE-Greedy, yet introduces an epsilon parameter to increase the possibility to choose random nodes, set to 0.2.

	
	Surrogate model
	20
(16* + 4**)
	

	TuRBO5
	Surrogate model
	1
	The configuration includes five independent trust regions, with all other settings adhering to the defaults specified in the reference implementation (https://github.com/uber-research/TuRBO).

	LAMCTS
	Surrogate model
	1
	Default settings in the reference implementation (https://github.com/facebookresearch/LaMCTS).

	CMA-ES
	Exact function
	1
	The initial standard deviation is set to 1, and the rest parameters default in Scipy.

	
	Surrogate model
	20
(16* + 4**)
	The initial standard deviation is set to 0.5, the maximum iteration is set to 10 for time consideration. The rest parameters are default in Scipy.

	Diff-Evo
	Exact function
	1
	Default settings in Scipy.

	
	Surrogate model
	20
(16* + 4**)
	The maximum iteration is set to 1, and popsize is defined as MAX(1, 100/d). The rest parameters are default in Scipy.

	DA
	Exact function
	1
	Default settings in Scipy.

	
	Surrogate model
	20
(16* + 4**)
	The initial temperature is set to 0.05. The maximum number of function calls is set to 200 for Ackley and Rastrigin, and 100 for other functions. The rest parameters are default in Scipy.

	Shiwa
	Exact function
	1
	The budget is set to 20, other settings are default as in Nevergrad (https://github.com/facebookresearch/nevergrad).

	
	Surrogate model
	20
(16* + 4**)
	

	MCMC
	Exact function
	1
	Similar to DANTE-Greedy, yet with only one child node in each rollout.

	
	Surrogate model
	20
(20*)
	

	DOO
	Exact function
	1
	Default settings in the reference implementation (https://github.com/beomjoonkim/voot).

	
	Surrogate model
	20
	

	SOO
	Exact function
	1
	

	
	Surrogate model
	20
	

	VOO
	Exact function
	1
	

	
	Surrogate model
	20
	



[bookmark: _Toc180188214]Supplementary Table 2: Setup for synthetic functions
The asterisk (*) represents the global minimum of the function
	Feature
	Ackley
	Rastrigin
	Rosenbrock
	Schwefel
	Griewank
	Michalewicz
	Levy

	Upper bound
	5
	5
	5
	500
	600
	

	10

	Lower bound
	-5
	-5
	-5
	-500
	-600
	0
	-10

	Step size
	0.1
	0.1
	0.1
	1
	1
	0.0001
	0.1

	f(x*)
	0
	0
	0
	0
	0
	-9.66015 at d = 10
	0

	x*
	(0, …, 0)
	(0, …, 0)
	(1, …, 1)
	(420.9687, …, 420.9687)
	(0, …, 0)
	(2.20, 1.57, …)
	(1, …, 1)





[bookmark: _Toc180188215]Supplementary Table 3: Convergence ratio of evaluations using exact function
In this table, "R" denotes the convergence ratio obtained from five repeated evaluations. The asterisk (*) represents the maximum number of data aquisition, while the double asterisk (**) indicates the average number of data points required to achieve the global minimum, accompanied by the corresponding standard deviation ("std"). "None" means not be tested. For the Michalewicz function, determining convergence is challenging due to the use of discrete xi values. Therefore, convergence is assumed if f(x) is less than or equal to the certified global minimum of the Michalewicz function (fg (28)) plus 0.05 at the end of the process.
	Algorithm
	f(x)
	Ackley
	Rastrigin
	Rosenbrock
	Schwefel
	Griewank
	Michalewicz

	
	d
	20
	100
	1000
	20
	100
	1000
	20
	60
	100
	20
	100
	1000
	20
	100
	1000
	20
	60
	100

	
	*
	500
	1000
	5000
	2000
	3000
	10000
	20000
	60000
	100000
	1000
	2000
	10000
	2000
	2000
	10000
	5000
	10000
	20000

	DANTE
	R
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	0.8
	1
	1
	1
	1
	1

	
	**
	158
	393
	2796
	795
	1506
	3943
	4775
	21282
	45165
	327
	965
	8756
	891+
	1131
	6852
	-
	-
	-

	
	std
	20
	28
	58
	92
	259
	142
	2403
	13605
	5337
	18
	37
	542
	-
	67
	999
	-
	-
	-

	DANTE-Greedy
	R
	1
	1
	1
	1
	1
	1
	0
	0
	0
	None

	
	**
	115
	311
	2025
	717
	980
	2956
	-
	-
	-
	

	
	std
	20
	8
	24
	134
	152
	309
	-
	-
	-
	

	DANTE-eGreedy
	R
	1
	1
	1
	1
	1
	1
	0
	0.4
	0
	None

	
	**
	150
	398
	2820
	943
	1649
	4084
	-
	6846+
	-
	

	
	std
	29
	14
	39
	515
	509
	243
	-
	-
	-
	

	CMA-ES
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Diff-Evo
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DA
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Shiwa
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	MCMC
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0.2
	0
	0
	0
	0
	0

	
	**
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	714+
	-
	-
	-
	-
	-

	DOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	None

	SOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	None

	VOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	None

	Random
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0




[bookmark: _Toc180188216]Supplementary Table 4: Convergence ratio of evaluations using surrogate model
In this table, "R" denotes the convergence ratio obtained from five repeated evaluations. The asterisk (*) represents the maximum number of data aquisition, while the double asterisk (**) indicates the average number of data points required to achieve the global minimum, accompanied by the corresponding standard deviation ("std"). TuRBO5 and LAMCTS are time-consuming and exhibit significant slowdowns in high-dimensional spaces using CPU; Consequently, for Ackley-200d, only about 2000-3000 samples were collected; for Rastrigin-1000d, around 500-2000 samples; and for Rosenbrock-60d and -100d, around 2000 samples. The detailed number of samples is available in Source Data.
	Algorithm
	f(x)
	Ackley
	Rastrigin
	Rosenbrock

	
	d
	20
	100
	200
	20
	100
	1000
	20
	60
	100

	
	*
	1600
	2800
	4000
	1000
	2000
	5000
	6300
	10500
	10500

	DANTE
	R
	1
	1
	1
	1
	1
	1
	0.6
	0.8
	0.8

	
	**
	477
	1979
	3584
	412
	636
	2568
	3172+
	1651+
	2225+

	
	std
	64
	136
	235
	70
	51
	330
	-
	-
	-

	DANTE-Greedy
	R
	1
	1
	1
	1
	1
	1
	0
	0
	0

	
	**
	428
	1476
	3954
	328
	539
	3215
	-
	-
	-

	
	std
	46
	285
	287
	16
	107
	298
	-
	-
	-

	DANTE-eGreedy
	R
	1
	1
	1
	1
	1
	1
	0
	0.2
	0

	
	**
	448
	1982
	4152
	345
	646
	2345
	-
	4656+
	-

	
	std
	40
	115
	334
	47
	27
	533
	-
	-
	-

	TuRBO5
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	LAMCTS
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	CMA-ES
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Diff-Evo
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DA
	R
	1
	0
	0
	0
	0
	0
	0
	0
	0

	
	**
	621
	-
	-
	-
	-
	-
	-
	-
	-

	
	std
	113
	-
	-
	-
	-
	-
	-
	-
	-

	Shiwa
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	MCMC
	R
	1
	0
	0
	0
	0
	0
	0
	0
	0

	
	**
	603
	-
	-
	-
	-
	-
	-
	-
	-

	
	std
	62
	-
	-
	-
	-
	-
	-
	-
	-

	DOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	SOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	VOO
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Random
	R
	0
	0
	0
	0
	0
	0
	0
	0
	0





[bookmark: _Toc180188217]Supplementary Table 5: The convergence table of  the benchmark functions.
This table shows the max dimension at which DANTE converge to global optimum in our tests. "None" means not be tested. All results can be found at the GitHub, Source Data file folder. Schwefel and Michalewicz functions are not be tested using surrogate model since we find their gradient are hard to learn using neural networks.
	Objective
	Ackley
	Rastrigin
	Rosenbrock
	Griewank
	Schwefel
	Michalewicz
	Levy

	Exact function
	5000
	5000
	1000
	5000
	5000
	500
	5000

	Surrogate model
	1500
	2000
	200
	500
	None
	None
	None




[bookmark: _Toc180188218][bookmark: _Toc143787700][bookmark: _Hlk114871034]Supplementary Table 6: Density matrices and corresponding mechanical properties of architected materials. 
The porosity matrix is equal to 1 minus the density matrix. # Iteration 0 means initial data. E means elastic modulus. Y means yield strength.
	Iteration
	E (MPa)
	Y(MPa)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27

	0
	1283
	24.4
	0.1
	0.1
	0.1
	0.6
	0.1
	0.6
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1
	0.4
	0.1
	0.4
	0.6
	0.1
	0.6
	0.6
	0.1
	0.6
	0.1
	0.1
	0.1
	0.4
	0.1
	0.4

	0
	2710
	63.1
	0.1
	0.2
	0.1
	0.5
	0.6
	0.5
	0.2
	0.6
	0.2
	0.1
	0.2
	0.1
	0.2
	0.2
	0.2
	0.5
	0.2
	0.5
	0.5
	0.6
	0.5
	0.1
	0.6
	0.1
	0.2
	0.2
	0.2

	0
	2597
	60.0
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6
	0.3
	0.3
	0.3
	0.6
	0.6
	0.6
	0.3
	0.3
	0.3
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6

	0
	2581
	50.5
	0.1
	0.3
	0.1
	0.3
	0.2
	0.3
	0.6
	0.2
	0.6
	0.1
	0.3
	0.1
	0.6
	0.3
	0.6
	0.3
	0.3
	0.3
	0.3
	0.2
	0.3
	0.1
	0.2
	0.1
	0.6
	0.3
	0.6

	0
	2192
	50.7
	0.1
	0.3
	0.3
	0.1
	0.3
	0.3
	0.1
	0.3
	0.3
	0.4
	0.4
	0.4
	0.3
	0.3
	0.3
	0.4
	0.4
	0.4
	0.1
	0.3
	0.3
	0.1
	0.3
	0.3
	0.1
	0.3
	0.3

	0
	3808
	83.0
	0.1
	0.3
	0.5
	0.1
	0.3
	0.5
	0.1
	0.3
	0.5
	0.5
	0.5
	0.5
	0.6
	0.6
	0.6
	0.5
	0.5
	0.5
	0.1
	0.3
	0.5
	0.1
	0.3
	0.5
	0.1
	0.3
	0.5

	0
	1226
	27.5
	0.1
	0.4
	0.1
	0.1
	0.4
	0.1
	0.1
	0.4
	0.1
	0.1
	0.1
	0.1
	0.4
	0.4
	0.4
	0.1
	0.1
	0.1
	0.1
	0.4
	0.1
	0.1
	0.4
	0.1
	0.1
	0.4
	0.1

	0
	3495
	85.9
	0.1
	0.4
	0.1
	0.4
	0.6
	0.4
	0.1
	0.4
	0.1
	0.4
	0.6
	0.4
	0.6
	0.2
	0.6
	0.4
	0.6
	0.4
	0.1
	0.4
	0.1
	0.4
	0.6
	0.4
	0.1
	0.4
	0.1

	0
	2124
	53.2
	0.1
	0.4
	0.2
	0.4
	0.2
	0.4
	0.2
	0.4
	0.1
	0.4
	0.2
	0.4
	0.2
	0.3
	0.2
	0.4
	0.2
	0.4
	0.2
	0.4
	0.1
	0.4
	0.2
	0.4
	0.1
	0.4
	0.2

	0
	1686
	36.3
	0.1
	0.4
	0.3
	0.1
	0.4
	0.3
	0.1
	0.4
	0.3
	0.2
	0.2
	0.2
	0.3
	0.3
	0.3
	0.2
	0.2
	0.2
	0.1
	0.4
	0.3
	0.1
	0.4
	0.3
	0.1
	0.4
	0.3

	0
	1765
	46.2
	0.1
	0.4
	0.5
	0.4
	0.1
	0.4
	0.5
	0.4
	0.1
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1
	0.4
	0.1
	0.4
	0.5
	0.4
	0.1
	0.4
	0.1
	0.4
	0.1
	0.4
	0.5

	0
	1513
	26.5
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.1
	0.1
	0.3
	0.3
	0.3
	0.1
	0.1
	0.1
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6

	0
	1979
	52.6
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1
	0.5
	0.5
	0.5
	0.1
	0.1
	0.1
	0.5
	0.5
	0.5
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1

	0
	1228
	31.1
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2

	0
	3752
	84.9
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.6
	0.6
	0.6
	0.5
	0.5
	0.5
	0.6
	0.6
	0.6
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2
	0.1
	0.5
	0.2

	0
	1876
	34.7
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.2
	0.2
	0.2
	0.3
	0.3
	0.3
	0.2
	0.2
	0.2
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5

	0
	2213
	58.0
	0.1
	0.6
	0.1
	0.2
	0.3
	0.2
	0.4
	0.3
	0.4
	0.1
	0.6
	0.1
	0.4
	0.6
	0.4
	0.2
	0.6
	0.2
	0.2
	0.3
	0.2
	0.1
	0.3
	0.1
	0.4
	0.6
	0.4

	0
	2434
	56.2
	0.1
	0.6
	0.5
	0.1
	0.6
	0.5
	0.1
	0.6
	0.5
	0.3
	0.3
	0.3
	0.4
	0.4
	0.4
	0.3
	0.3
	0.3
	0.1
	0.6
	0.5
	0.1
	0.6
	0.5
	0.1
	0.6
	0.5

	0
	1192
	26.8
	0.2
	0.1
	0.2
	0.1
	0.3
	0.1
	0.2
	0.1
	0.2
	0.1
	0.3
	0.1
	0.3
	0.5
	0.3
	0.1
	0.3
	0.1
	0.2
	0.1
	0.2
	0.1
	0.3
	0.1
	0.2
	0.1
	0.2

	0
	1235
	32.6
	0.2
	0.1
	0.2
	0.1
	0.4
	0.1
	0.2
	0.1
	0.2
	0.1
	0.4
	0.1
	0.4
	0.2
	0.4
	0.1
	0.4
	0.1
	0.2
	0.1
	0.2
	0.1
	0.4
	0.1
	0.2
	0.1
	0.2

	0
	872
	19.5
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2
	0.2
	0.1
	0.2

	0
	3565
	76.5
	0.2
	0.1
	0.3
	0.2
	0.1
	0.3
	0.2
	0.1
	0.3
	0.6
	0.6
	0.6
	0.5
	0.5
	0.5
	0.6
	0.6
	0.6
	0.2
	0.1
	0.3
	0.2
	0.1
	0.3
	0.2
	0.1
	0.3

	0
	913
	22.9
	0.2
	0.1
	0.6
	0.1
	0.1
	0.1
	0.6
	0.1
	0.2
	0.1
	0.1
	0.1
	0.1
	0.5
	0.1
	0.1
	0.1
	0.1
	0.6
	0.1
	0.2
	0.1
	0.1
	0.1
	0.2
	0.1
	0.6

	0
	980
	23.0
	0.2
	0.2
	0.2
	0.1
	0.6
	0.1
	0.1
	0.6
	0.1
	0.2
	0.2
	0.2
	0.1
	0.2
	0.1
	0.1
	0.2
	0.1
	0.1
	0.6
	0.1
	0.2
	0.6
	0.2
	0.1
	0.2
	0.1

	0
	2211
	59.9
	0.2
	0.2
	0.5
	0.2
	0.4
	0.2
	0.5
	0.2
	0.2
	0.2
	0.4
	0.2
	0.4
	0.4
	0.4
	0.2
	0.4
	0.2
	0.5
	0.2
	0.2
	0.2
	0.4
	0.2
	0.2
	0.2
	0.5

	0
	2328
	54.8
	0.2
	0.3
	0.1
	0.3
	0.4
	0.3
	0.1
	0.3
	0.2
	0.3
	0.4
	0.3
	0.4
	0.3
	0.4
	0.3
	0.4
	0.3
	0.1
	0.3
	0.2
	0.3
	0.4
	0.3
	0.2
	0.3
	0.1

	0
	2431
	67.8
	0.2
	0.3
	0.1
	0.3
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.5
	0.3
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.2
	0.3
	0.1

	0
	1354
	36.9
	0.2
	0.3
	0.2
	0.1
	0.2
	0.1
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.3
	0.3
	0.1
	0.3
	0.1
	0.1
	0.2
	0.1
	0.2
	0.2
	0.2
	0.3
	0.3
	0.3

	0
	1289
	35.7
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.1
	0.2
	0.1
	0.2
	0.3
	0.2
	0.1
	0.3
	0.1
	0.3
	0.3
	0.3
	0.3
	0.2
	0.3
	0.2
	0.2
	0.2
	0.1
	0.3
	0.1

	0
	2898
	73.1
	0.2
	0.4
	0.2
	0.2
	0.4
	0.2
	0.2
	0.4
	0.2
	0.4
	0.4
	0.4
	0.5
	0.5
	0.5
	0.4
	0.4
	0.4
	0.2
	0.4
	0.2
	0.2
	0.4
	0.2
	0.2
	0.4
	0.2

	0
	2543
	61.4
	0.2
	0.4
	0.2
	0.3
	0.5
	0.3
	0.3
	0.5
	0.3
	0.2
	0.4
	0.2
	0.3
	0.4
	0.3
	0.3
	0.4
	0.3
	0.3
	0.5
	0.3
	0.2
	0.5
	0.2
	0.3
	0.4
	0.3

	0
	1522
	34.6
	0.2
	0.4
	0.4
	0.2
	0.4
	0.4
	0.2
	0.4
	0.4
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.2
	0.4
	0.4
	0.2
	0.4
	0.4
	0.2
	0.4
	0.4

	0
	3455
	76.0
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.4
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5

	0
	975
	21.1
	0.2
	0.5
	0.2
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.2
	0.5
	0.2
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1
	0.1
	0.1
	0.1
	0.2
	0.1
	0.2
	0.1
	0.5
	0.1

	0
	2382
	54.0
	0.2
	0.5
	0.2
	0.3
	0.6
	0.3
	0.2
	0.6
	0.2
	0.2
	0.5
	0.2
	0.2
	0.5
	0.2
	0.3
	0.5
	0.3
	0.3
	0.6
	0.3
	0.2
	0.6
	0.2
	0.2
	0.5
	0.2

	0
	3685
	84.0
	0.2
	0.5
	0.2
	0.6
	0.6
	0.6
	0.1
	0.6
	0.1
	0.2
	0.5
	0.2
	0.1
	0.5
	0.1
	0.6
	0.5
	0.6
	0.6
	0.6
	0.6
	0.2
	0.6
	0.2
	0.1
	0.5
	0.1

	0
	2131
	60.7
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.1
	0.1
	0.1
	0.5
	0.5
	0.5
	0.1
	0.1
	0.1
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3

	0
	4272
	95.4
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1
	0.6
	0.6
	0.6
	0.6
	0.6
	0.6
	0.6
	0.6
	0.6
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1
	0.2
	0.6
	0.1

	0
	3023
	68.4
	0.2
	0.6
	0.4
	0.2
	0.6
	0.4
	0.2
	0.6
	0.4
	0.4
	0.4
	0.4
	0.2
	0.2
	0.2
	0.4
	0.4
	0.4
	0.2
	0.6
	0.4
	0.2
	0.6
	0.4
	0.2
	0.6
	0.4

	0
	868
	23.4
	0.3
	0.1
	0.3
	0.3
	0.1
	0.3
	0.1
	0.1
	0.1
	0.3
	0.1
	0.3
	0.1
	0.1
	0.1
	0.3
	0.1
	0.3
	0.3
	0.1
	0.3
	0.3
	0.1
	0.3
	0.1
	0.1
	0.1

	0
	1630
	38.9
	0.3
	0.1
	0.5
	0.1
	0.3
	0.1
	0.5
	0.1
	0.3
	0.1
	0.3
	0.1
	0.3
	0.5
	0.3
	0.1
	0.3
	0.1
	0.5
	0.1
	0.3
	0.1
	0.3
	0.1
	0.3
	0.1
	0.5

	0
	1276
	34.8
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.1
	0.1
	0.1
	0.2
	0.2
	0.2
	0.1
	0.1
	0.1
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3

	0
	1697
	41.8
	0.3
	0.2
	0.4
	0.2
	0.2
	0.2
	0.4
	0.2
	0.3
	0.2
	0.2
	0.2
	0.2
	0.3
	0.2
	0.2
	0.2
	0.2
	0.4
	0.2
	0.3
	0.2
	0.2
	0.2
	0.3
	0.2
	0.4

	0
	2430
	64.4
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.3
	0.3
	0.4
	0.4
	0.4
	0.3
	0.3
	0.3
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5
	0.3
	0.2
	0.5

	0
	2362
	56.0
	0.4
	0.4
	0.3
	0.4
	0.1
	0.4
	0.3
	0.4
	0.4
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1
	0.4
	0.1
	0.4
	0.3
	0.4
	0.4
	0.4
	0.1
	0.4
	0.4
	0.4
	0.3

	0
	2612
	61.1
	0.4
	0.4
	0.3
	0.4
	0.1
	0.4
	0.3
	0.4
	0.4
	0.4
	0.1
	0.4
	0.1
	0.3
	0.1
	0.4
	0.1
	0.4
	0.3
	0.4
	0.4
	0.4
	0.1
	0.4
	0.4
	0.4
	0.3

	0
	3159
	79.8
	0.4
	0.4
	0.4
	0.2
	0.2
	0.2
	0.5
	0.2
	0.5
	0.4
	0.4
	0.4
	0.5
	0.4
	0.5
	0.2
	0.4
	0.2
	0.2
	0.2
	0.2
	0.4
	0.2
	0.4
	0.5
	0.4
	0.5

	0
	2299
	52.5
	0.4
	0.4
	0.4
	0.3
	0.2
	0.3
	0.1
	0.2
	0.1
	0.4
	0.4
	0.4
	0.1
	0.4
	0.1
	0.3
	0.4
	0.3
	0.3
	0.2
	0.3
	0.4
	0.2
	0.4
	0.1
	0.4
	0.1

	0
	3080
	74.0
	0.4
	0.5
	0.1
	0.4
	0.5
	0.1
	0.4
	0.5
	0.1
	0.5
	0.5
	0.5
	0.4
	0.4
	0.4
	0.5
	0.5
	0.5
	0.4
	0.5
	0.1
	0.4
	0.5
	0.1
	0.4
	0.5
	0.1

	0
	3197
	68.4
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.3
	0.3
	0.3
	0.6
	0.6
	0.6
	0.3
	0.3
	0.3
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5

	0
	1394
	40.1
	0.5
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.5
	0.2
	0.2
	0.2
	0.2
	0.1
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.5
	0.2
	0.2
	0.2
	0.5
	0.2
	0.2

	0
	1464
	40.1
	0.5
	0.2
	0.3
	0.2
	0.1
	0.2
	0.3
	0.2
	0.5
	0.2
	0.1
	0.2
	0.1
	0.6
	0.1
	0.2
	0.1
	0.2
	0.3
	0.2
	0.5
	0.2
	0.1
	0.2
	0.5
	0.2
	0.3

	0
	3723
	82.1
	0.5
	0.2
	0.3
	0.5
	0.2
	0.3
	0.5
	0.2
	0.3
	0.5
	0.5
	0.5
	0.4
	0.4
	0.4
	0.5
	0.5
	0.5
	0.5
	0.2
	0.3
	0.5
	0.2
	0.3
	0.5
	0.2
	0.3

	0
	3877
	78.8
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.5
	0.5
	0.3
	0.3
	0.3
	0.5
	0.5
	0.5
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4

	0
	1852
	43.1
	0.5
	0.2
	0.5
	0.2
	0.2
	0.2
	0.5
	0.2
	0.5
	0.2
	0.2
	0.2
	0.2
	0.1
	0.2
	0.2
	0.2
	0.2
	0.5
	0.2
	0.5
	0.2
	0.2
	0.2
	0.5
	0.2
	0.5

	0
	3540
	79.5
	0.5
	0.2
	0.6
	0.2
	0.5
	0.2
	0.6
	0.2
	0.5
	0.2
	0.5
	0.2
	0.5
	0.5
	0.5
	0.2
	0.5
	0.2
	0.6
	0.2
	0.5
	0.2
	0.5
	0.2
	0.5
	0.2
	0.6

	0
	2550
	65.5
	0.5
	0.3
	0.1
	0.3
	0.3
	0.3
	0.1
	0.3
	0.5
	0.3
	0.3
	0.3
	0.3
	0.5
	0.3
	0.3
	0.3
	0.3
	0.1
	0.3
	0.5
	0.3
	0.3
	0.3
	0.5
	0.3
	0.1

	0
	3210
	64.2
	0.5
	0.3
	0.6
	0.3
	0.2
	0.3
	0.6
	0.3
	0.5
	0.3
	0.2
	0.3
	0.2
	0.5
	0.2
	0.3
	0.2
	0.3
	0.6
	0.3
	0.5
	0.3
	0.2
	0.3
	0.5
	0.3
	0.6

	0
	3349
	67.9
	0.5
	0.4
	0.5
	0.1
	0.1
	0.1
	0.5
	0.1
	0.5
	0.5
	0.4
	0.5
	0.5
	0.4
	0.5
	0.1
	0.4
	0.1
	0.1
	0.1
	0.1
	0.5
	0.1
	0.5
	0.5
	0.4
	0.5

	0
	4934
	99.8
	0.5
	0.4
	0.5
	0.1
	0.4
	0.1
	0.6
	0.4
	0.6
	0.5
	0.4
	0.5
	0.6
	0.4
	0.6
	0.1
	0.4
	0.1
	0.1
	0.4
	0.1
	0.5
	0.4
	0.5
	0.6
	0.4
	0.6

	0
	3982
	76.0
	0.5
	0.4
	0.5
	0.3
	0.1
	0.3
	0.5
	0.1
	0.5
	0.5
	0.4
	0.5
	0.5
	0.4
	0.5
	0.3
	0.4
	0.3
	0.3
	0.1
	0.3
	0.5
	0.1
	0.5
	0.5
	0.4
	0.5

	0
	4010
	92.0
	0.5
	0.4
	0.5
	0.4
	0.3
	0.4
	0.5
	0.4
	0.5
	0.4
	0.3
	0.4
	0.3
	0.1
	0.3
	0.4
	0.3
	0.4
	0.5
	0.4
	0.5
	0.4
	0.3
	0.4
	0.5
	0.4
	0.5

	0
	1927
	38.7
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.3
	0.3
	0.3
	0.2
	0.2
	0.2
	0.3
	0.3
	0.3
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1

	0
	2191
	44.9
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.4
	0.4
	0.4
	0.1
	0.1
	0.1
	0.4
	0.4
	0.4
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1

	0
	3474
	72.6
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.5
	0.4
	0.4
	0.4
	0.5
	0.5
	0.5
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1

	0
	2870
	71.4
	0.5
	0.5
	0.5
	0.1
	0.5
	0.1
	0.2
	0.5
	0.2
	0.5
	0.5
	0.5
	0.2
	0.5
	0.2
	0.1
	0.5
	0.1
	0.1
	0.5
	0.1
	0.5
	0.5
	0.5
	0.2
	0.5
	0.2

	0
	4653
	80.4
	0.5
	0.5
	0.5
	0.5
	0.1
	0.5
	0.5
	0.5
	0.5
	0.5
	0.1
	0.5
	0.1
	0.1
	0.1
	0.5
	0.1
	0.5
	0.5
	0.5
	0.5
	0.5
	0.1
	0.5
	0.5
	0.5
	0.5

	0
	4845
	89.9
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.1
	0.1
	0.1
	0.2
	0.2
	0.2
	0.1
	0.1
	0.1
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5
	0.5

	0
	2815
	58.6
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4
	0.4
	0.4
	0.4
	0.3
	0.3
	0.3
	0.4
	0.4
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4
	0.6
	0.1
	0.4

	0
	1781
	44.3
	0.6
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.6
	0.2
	0.2
	0.2
	0.2
	0.6
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.6
	0.2
	0.2
	0.2
	0.6
	0.2
	0.2

	0
	3820
	80.6
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3
	0.5
	0.5
	0.5
	0.4
	0.4
	0.4
	0.5
	0.5
	0.5
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3

	0
	3068
	63.6
	0.6
	0.2
	0.6
	0.2
	0.3
	0.2
	0.5
	0.3
	0.5
	0.6
	0.2
	0.6
	0.5
	0.2
	0.5
	0.2
	0.2
	0.2
	0.2
	0.3
	0.2
	0.6
	0.3
	0.6
	0.5
	0.2
	0.5

	0
	3054
	53.3
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.1
	0.1
	0.1
	0.4
	0.4
	0.4
	0.1
	0.1
	0.1
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6

	0
	3202
	57.7
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.3
	0.3
	0.3
	0.2
	0.2
	0.2
	0.3
	0.3
	0.3
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6
	0.6
	0.2
	0.6

	0
	2417
	67.3
	0.6
	0.3
	0.1
	0.3
	0.3
	0.3
	0.1
	0.3
	0.6
	0.3
	0.3
	0.3
	0.3
	0.4
	0.3
	0.3
	0.3
	0.3
	0.1
	0.3
	0.6
	0.3
	0.3
	0.3
	0.6
	0.3
	0.1

	0
	3661
	90.9
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.4
	0.4
	0.6
	0.6
	0.6
	0.4
	0.4
	0.4
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2
	0.4
	0.5
	0.2

	0
	1578
	45.3
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.3
	0.3
	0.3
	0.6
	0.6
	0.6
	0.3
	0.3
	0.3
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1
	0.1

	0
	2821
	60.8
	0.2
	0.3
	0.2
	0.1
	0.4
	0.1
	0.6
	0.4
	0.6
	0.2
	0.3
	0.2
	0.6
	0.3
	0.6
	0.1
	0.3
	0.1
	0.1
	0.4
	0.1
	0.2
	0.4
	0.2
	0.6
	0.3
	0.6

	0
	1552
	37.4
	0.1
	0.2
	0.1
	0.4
	0.1
	0.4
	0.5
	0.1
	0.5
	0.1
	0.2
	0.1
	0.5
	0.2
	0.5
	0.4
	0.2
	0.4
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1
	0.5
	0.2
	0.5

	0
	2235
	59.4
	0.6
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.6
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.3
	0.6
	0.3
	0.2
	0.3
	0.6
	0.3
	0.2

	0
	2314
	57.0
	0.6
	0.4
	0.2
	0.4
	0.1
	0.4
	0.2
	0.4
	0.6
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1
	0.4
	0.1
	0.4
	0.2
	0.4
	0.6
	0.4
	0.1
	0.4
	0.6
	0.4
	0.2

	0
	3062
	60.6
	0.6
	0.4
	0.1
	0.6
	0.4
	0.1
	0.6
	0.4
	0.1
	0.5
	0.5
	0.5
	0.2
	0.2
	0.2
	0.5
	0.5
	0.5
	0.6
	0.4
	0.1
	0.6
	0.4
	0.1
	0.6
	0.4
	0.1

	0
	4087
	80.7
	0.5
	0.6
	0.5
	0.5
	0.1
	0.5
	0.1
	0.1
	0.1
	0.5
	0.6
	0.5
	0.1
	0.6
	0.1
	0.5
	0.6
	0.5
	0.5
	0.1
	0.5
	0.5
	0.1
	0.5
	0.1
	0.6
	0.1

	0
	2266
	45.5
	0.6
	0.2
	0.6
	0.2
	0.2
	0.2
	0.6
	0.2
	0.6
	0.2
	0.2
	0.2
	0.2
	0.4
	0.2
	0.2
	0.2
	0.2
	0.6
	0.2
	0.6
	0.2
	0.2
	0.2
	0.6
	0.2
	0.6

	0
	2294
	49.1
	0.3
	0.1
	0.3
	0.5
	0.3
	0.5
	0.4
	0.3
	0.4
	0.3
	0.1
	0.3
	0.4
	0.1
	0.4
	0.5
	0.1
	0.5
	0.5
	0.3
	0.5
	0.3
	0.3
	0.3
	0.4
	0.1
	0.4

	0
	1243
	33.6
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	0.2
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	0.4
	0.4
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	0.4
	0.4
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	0.4
	0.2
	0.1
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	0.3
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	0.1
	0.3
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	62.2
	0.3
	0.4
	0.1
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	0.4
	0.1
	0.3
	0.4
	0.1
	0.3
	0.3
	0.3
	0.6
	0.6
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	0.3
	0.3
	0.3
	0.3
	0.4
	0.1
	0.3
	0.4
	0.1
	0.3
	0.4
	0.1
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	2648
	61.6
	0.3
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3
	0.6
	0.2
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
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	0.3
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	0.2
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	0.2
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	0.3
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	0.4
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	0.3
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	35.8
	0.1
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	0.5
	0.3
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	0.3
	0.5
	0.3
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	70.7
	0.3
	0.4
	0.5
	0.4
	0.2
	0.4
	0.5
	0.4
	0.3
	0.4
	0.2
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	0.2
	0.2
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	0.4
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	0.6
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	0.4
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	0.4
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	0.4
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	0.5
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	2107
	52.0
	0.1
	0.8
	0.1
	0.6
	0.2
	0.8
	0.1
	0.5
	0.2
	0.4
	0.2
	0.2
	0.2
	0.2
	0.6
	0.2
	0.2
	0.2
	0.4
	0.1
	0.5
	0.1
	0.5
	0.2
	0.3
	0.8
	0.2
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	1932
	47.7
	0.1
	0.2
	0.7
	0.4
	0.3
	0.4
	0.3
	0.7
	0.1
	0.3
	0.4
	0.2
	0.3
	0.2
	0.2
	0.6
	0.3
	0.2
	0.3
	0.1
	0.3
	0.4
	0.1
	0.5
	0.7
	0.1
	0.3
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	2349
	52.5
	0.1
	0.6
	0.2
	0.2
	0.2
	0.8
	0.7
	0.2
	0.1
	0.7
	0.3
	0.2
	0.1
	0.3
	0.6
	0.1
	0.3
	0.6
	0.2
	0.1
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	0.4
	0.3
	0.3
	0.3
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	0.1
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	0.6
	0.4
	0.1
	0.3
	0.2
	0.1
	0.6
	0.1
	0.1
	0.1
	0.1
	0.2
	0.7
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	0.1
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	2722
	70.3
	0.4
	0.3
	0.2
	0.4
	0.1
	0.3
	0.1
	0.4
	0.5
	0.3
	0.3
	0.3
	0.5
	0.5
	0.4
	0.4
	0.3
	0.2
	0.2
	0.3
	0.8
	0.4
	0.3
	0.3
	0.6
	0.3
	0.1

	1
	2704
	69.0
	0.7
	0.3
	0.2
	0.3
	0.1
	0.3
	0.1
	0.3
	0.4
	0.3
	0.3
	0.3
	0.6
	0.5
	0.4
	0.4
	0.3
	0.2
	0.1
	0.3
	0.8
	0.4
	0.3
	0.3
	0.7
	0.4
	0.1

	1
	2738
	64.9
	0.2
	0.8
	0.1
	0.3
	0.1
	0.3
	0.1
	0.7
	0.2
	0.1
	0.4
	0.3
	0.5
	0.7
	0.5
	0.1
	0.4
	0.3
	0.2
	0.3
	0.6
	0.4
	0.7
	0.4
	0.1
	0.8
	0.2

	1
	2441
	65.3
	0.2
	0.3
	0.1
	0.4
	0.2
	0.5
	0.1
	0.3
	0.8
	0.4
	0.3
	0.3
	0.3
	0.7
	0.4
	0.1
	0.3
	0.3
	0.4
	0.3
	0.8
	0.3
	0.1
	0.4
	0.7
	0.3
	0.1
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	2750
	61.8
	0.3
	0.2
	0.5
	0.3
	0.2
	0.3
	0.3
	0.3
	0.5
	0.3
	0.3
	0.3
	0.4
	0.4
	0.6
	0.3
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	0.3
	0.2
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	0.2
	0.5

	1
	2735
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	0.3
	0.7
	0.3
	0.1
	0.1
	0.2
	0.1
	0.5
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	0.3
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	0.2
	0.6
	0.8
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	0.3
	0.3
	0.4
	0.4
	0.1
	0.4
	0.3
	0.4
	0.4
	0.8
	0.1
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	66.6
	0.6
	0.3
	0.1
	0.3
	0.3
	0.3
	0.1
	0.3
	0.7
	0.4
	0.3
	0.3
	0.6
	0.4
	0.3
	0.3
	0.3
	0.3
	0.1
	0.3
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	0.3
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	0.3
	0.8
	0.3
	0.1
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	2763
	73.6
	0.7
	0.2
	0.3
	0.4
	0.3
	0.2
	0.1
	0.3
	0.5
	0.3
	0.3
	0.3
	0.7
	0.6
	0.4
	0.3
	0.3
	0.3
	0.4
	0.2
	0.8
	0.3
	0.2
	0.3
	0.8
	0.2
	0.1

	1
	2733
	66.2
	0.3
	0.1
	0.4
	0.4
	0.1
	0.4
	0.2
	0.3
	0.1
	0.3
	0.3
	0.3
	0.4
	0.4
	0.6
	0.3
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	0.3
	0.3
	0.2
	0.8
	0.4
	0.3
	0.5
	0.7
	0.2
	0.2
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	2731
	66.3
	0.2
	0.2
	0.1
	0.3
	0.2
	0.3
	0.2
	0.3
	0.2
	0.2
	0.5
	0.3
	0.5
	0.7
	0.5
	0.4
	0.6
	0.3
	0.1
	0.3
	0.2
	0.3
	0.8
	0.3
	0.4
	0.3
	0.1

	1
	2777
	68.4
	0.3
	0.4
	0.1
	0.1
	0.2
	0.1
	0.2
	0.8
	0.3
	0.2
	0.3
	0.3
	0.4
	0.7
	0.5
	0.3
	0.4
	0.3
	0.3
	0.4
	0.6
	0.3
	0.4
	0.3
	0.2
	0.8
	0.2

	1
	3030
	59.0
	0.3
	0.8
	0.1
	0.1
	0.2
	0.2
	0.1
	0.7
	0.3
	0.3
	0.3
	0.3
	0.4
	0.8
	0.5
	0.2
	0.4
	0.3
	0.3
	0.4
	0.7
	0.2
	0.7
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	0.2
	0.8
	0.2
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	0.2
	0.1
	0.3
	0.3
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	0.3
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	0.3
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	0.3
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	0.3
	0.3
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	0.1
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	59.6
	0.3
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	0.7
	0.3
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	0.3
	0.4
	0.8
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	0.3
	0.3
	0.4
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	0.2
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	2826
	60.2
	0.3
	0.8
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	0.2
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	0.3
	0.4
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	0.3
	0.2
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	0.2
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	69.1
	0.6
	0.3
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	0.2
	0.1
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	0.5
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	0.2
	0.3
	0.6
	0.4
	0.4
	0.3
	0.3
	0.2
	0.1
	0.3
	0.8
	0.6
	0.3
	0.4
	0.8
	0.3
	0.1
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	2562
	60.1
	0.3
	0.6
	0.1
	0.1
	0.4
	0.1
	0.3
	0.4
	0.2
	0.4
	0.3
	0.3
	0.6
	0.6
	0.7
	0.3
	0.3
	0.3
	0.3
	0.4
	0.1
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	0.4
	0.1
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	0.4
	0.1
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	68.7
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	0.3
	0.1
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	0.3
	0.3
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	0.3
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	0.3
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	0.3
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	0.3
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	0.2
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	0.2
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	0.4
	0.4
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	0.3
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	0.3
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	0.1

	1
	2886
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	0.2
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	0.4
	0.2
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	0.1
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	71.0
	0.8
	0.2
	0.2
	0.3
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	0.4
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	0.4
	0.4
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	0.2
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	0.3
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	0.2
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	0.8
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	0.2
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	0.5
	0.3
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	0.2
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	0.4
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	0.3
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	0.2
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	0.6
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	0.3
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	0.1
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	0.3
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	0.3
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	0.4
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	0.4
	0.3
	0.3
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	0.1
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	66.9
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	0.3
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	0.3
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	0.3
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	0.3
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	0.3
	0.5
	0.3
	0.3
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	69.4
	0.6
	0.4
	0.1
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	0.8
	0.3
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	0.3
	0.5
	0.3
	0.3
	0.4
	0.3
	0.2
	0.3
	0.1
	0.1
	0.3
	0.5
	0.4
	0.4
	0.3
	0.8
	0.3
	0.1
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	2634
	65.2
	0.3
	0.2
	0.1
	0.5
	0.4
	0.3
	0.1
	0.5
	0.6
	0.4
	0.8
	0.3
	0.3
	0.5
	0.3
	0.3
	0.1
	0.1
	0.1
	0.3
	0.4
	0.4
	0.1
	0.3
	0.7
	0.3
	0.1

	2
	2362
	76.8
	0.8
	0.3
	0.3
	0.4
	0.7
	0.3
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	0.6
	0.7
	0.2
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	0.3
	0.4
	0.5
	0.3
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	0.1
	0.1
	0.2
	0.3
	0.2
	0.3
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	0.4
	0.8
	0.3
	0.1
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	60.1
	0.8
	0.3
	0.1
	0.1
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	0.2
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	0.8
	0.3
	0.6
	0.4
	0.3
	0.3
	0.3
	0.2
	0.1
	0.3
	0.4
	0.3
	0.3
	0.3
	0.5
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	0.1
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	60.7
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	0.2
	0.1
	0.5
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	0.3
	0.5
	0.4
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	0.7
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	0.4
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	0.1
	0.2
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	0.2
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	0.3
	0.6
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	0.1
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	0.4
	0.1
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	0.1
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	68.2
	0.8
	0.5
	0.2
	0.3
	0.2
	0.4
	0.1
	0.6
	0.8
	0.3
	0.5
	0.3
	0.4
	0.4
	0.5
	0.2
	0.5
	0.2
	0.1
	0.3
	0.1
	0.6
	0.2
	0.4
	0.1
	0.7
	0.1

	3
	3050
	66.6
	0.8
	0.5
	0.4
	0.4
	0.3
	0.2
	0.1
	0.8
	0.7
	0.4
	0.6
	0.1
	0.5
	0.4
	0.7
	0.1
	0.7
	0.2
	0.1
	0.2
	0.1
	0.4
	0.2
	0.2
	0.1
	0.3
	0.1

	3
	2872
	64.5
	0.8
	0.4
	0.3
	0.4
	0.3
	0.4
	0.1
	0.5
	0.8
	0.1
	0.5
	0.3
	0.5
	0.6
	0.4
	0.1
	0.7
	0.2
	0.1
	0.3
	0.1
	0.4
	0.2
	0.4
	0.1
	0.4
	0.1

	3
	2635
	70.7
	0.8
	0.5
	0.2
	0.3
	0.1
	0.4
	0.1
	0.6
	0.8
	0.3
	0.5
	0.3
	0.4
	0.4
	0.5
	0.2
	0.5
	0.1
	0.1
	0.3
	0.4
	0.6
	0.2
	0.3
	0.1
	0.6
	0.1

	3
	2917
	67.0
	0.7
	0.5
	0.2
	0.3
	0.1
	0.4
	0.1
	0.6
	0.8
	0.3
	0.5
	0.3
	0.4
	0.4
	0.5
	0.2
	0.5
	0.1
	0.1
	0.3
	0.4
	0.6
	0.2
	0.3
	0.1
	0.6
	0.1

	3
	2783
	58.3
	0.8
	0.4
	0.3
	0.7
	0.1
	0.4
	0.1
	0.8
	0.8
	0.2
	0.5
	0.3
	0.5
	0.2
	0.6
	0.1
	0.4
	0.2
	0.2
	0.2
	0.1
	0.3
	0.5
	0.4
	0.1
	0.4
	0.1

	3
	2130
	59.2
	0.8
	0.5
	0.3
	0.3
	0.2
	0.3
	0.1
	0.5
	0.8
	0.3
	0.5
	0.3
	0.3
	0.5
	0.3
	0.1
	0.5
	0.4
	0.4
	0.2
	0.3
	0.3
	0.3
	0.3
	0.2
	0.3
	0.1

	3
	2650
	68.2
	0.8
	0.6
	0.3
	0.4
	0.2
	0.4
	0.1
	0.8
	0.8
	0.3
	0.5
	0.3
	0.4
	0.2
	0.7
	0.1
	0.1
	0.3
	0.1
	0.3
	0.2
	0.4
	0.5
	0.3
	0.1
	0.6
	0.1

	3
	2904
	61.4
	0.8
	0.4
	0.3
	0.3
	0.2
	0.4
	0.1
	0.8
	0.8
	0.1
	0.4
	0.3
	0.5
	0.5
	0.8
	0.1
	0.5
	0.3
	0.2
	0.4
	0.1
	0.2
	0.1
	0.4
	0.2
	0.5
	0.1

	3
	2533
	72.0
	0.3
	0.3
	0.1
	0.3
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.3
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.2
	0.3
	0.1

	3
	2667
	65.4
	0.8
	0.6
	0.3
	0.4
	0.2
	0.4
	0.1
	0.6
	0.8
	0.3
	0.5
	0.3
	0.4
	0.2
	0.7
	0.1
	0.1
	0.3
	0.1
	0.3
	0.2
	0.4
	0.5
	0.3
	0.1
	0.6
	0.1

	3
	2651
	66.5
	0.8
	0.4
	0.1
	0.4
	0.3
	0.2
	0.1
	0.6
	0.3
	0.1
	0.7
	0.3
	0.5
	0.6
	0.6
	0.3
	0.5
	0.1
	0.1
	0.2
	0.2
	0.3
	0.5
	0.3
	0.2
	0.4
	0.1

	3
	2894
	61.4
	0.8
	0.4
	0.3
	0.3
	0.2
	0.3
	0.1
	0.8
	0.8
	0.1
	0.3
	0.3
	0.5
	0.5
	0.8
	0.2
	0.5
	0.3
	0.2
	0.4
	0.1
	0.2
	0.1
	0.4
	0.2
	0.4
	0.1

	3
	2358
	62.5
	0.8
	0.6
	0.2
	0.4
	0.1
	0.3
	0.1
	0.8
	0.8
	0.2
	0.4
	0.3
	0.4
	0.5
	0.4
	0.1
	0.8
	0.3
	0.6
	0.2
	0.1
	0.4
	0.4
	0.3
	0.2
	0.1
	0.1

	3
	2580
	58.7
	0.8
	0.4
	0.3
	0.4
	0.1
	0.3
	0.1
	0.8
	0.8
	0.3
	0.5
	0.3
	0.4
	0.4
	0.7
	0.1
	0.6
	0.2
	0.3
	0.3
	0.1
	0.3
	0.2
	0.3
	0.1
	0.5
	0.1

	3
	2553
	61.0
	0.8
	0.5
	0.3
	0.7
	0.1
	0.2
	0.1
	0.7
	0.8
	0.3
	0.5
	0.3
	0.5
	0.5
	0.3
	0.1
	0.7
	0.3
	0.4
	0.3
	0.1
	0.4
	0.1
	0.4
	0.1
	0.1
	0.1

	3
	2677
	64.1
	0.8
	0.4
	0.4
	0.3
	0.2
	0.2
	0.1
	0.8
	0.8
	0.2
	0.5
	0.2
	0.3
	0.4
	0.4
	0.3
	0.3
	0.3
	0.7
	0.3
	0.1
	0.3
	0.4
	0.4
	0.1
	0.2
	0.3

	3
	2042
	60.6
	0.8
	0.6
	0.1
	0.4
	0.3
	0.4
	0.1
	0.6
	0.8
	0.2
	0.3
	0.2
	0.4
	0.5
	0.3
	0.1
	0.8
	0.3
	0.6
	0.3
	0.1
	0.4
	0.4
	0.3
	0.3
	0.2
	0.1

	3
	2783
	58.3
	0.8
	0.4
	0.3
	0.7
	0.1
	0.4
	0.1
	0.8
	0.8
	0.2
	0.5
	0.3
	0.5
	0.2
	0.6
	0.1
	0.4
	0.2
	0.2
	0.2
	0.1
	0.3
	0.5
	0.4
	0.1
	0.4
	0.1

	3
	2812
	59.5
	0.8
	0.5
	0.3
	0.2
	0.1
	0.3
	0.1
	0.8
	0.8
	0.2
	0.5
	0.3
	0.5
	0.5
	0.6
	0.1
	0.4
	0.3
	0.6
	0.3
	0.1
	0.3
	0.5
	0.2
	0.1
	0.1
	0.1

	4
	2574
	73.2
	0.3
	0.3
	0.1
	0.4
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.3
	0.4
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.2
	0.3
	0.1

	4
	3009
	73.5
	0.2
	0.7
	0.1
	0.4
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.3
	0.3
	0.5
	0.5
	0.6
	0.1
	0.7
	0.3
	0.3
	0.3
	0.2
	0.4
	0.5
	0.3
	0.8
	0.5
	0.1

	4
	3037
	77.3
	0.8
	0.6
	0.2
	0.2
	0.2
	0.1
	0.1
	0.2
	0.7
	0.2
	0.4
	0.3
	0.4
	0.5
	0.5
	0.1
	0.7
	0.3
	0.4
	0.4
	0.4
	0.4
	0.2
	0.4
	0.8
	0.3
	0.1

	4
	2967
	77.7
	0.8
	0.4
	0.4
	0.4
	0.6
	0.3
	0.1
	0.5
	0.8
	0.2
	0.4
	0.3
	0.4
	0.5
	0.2
	0.1
	0.4
	0.3
	0.4
	0.4
	0.2
	0.3
	0.1
	0.4
	0.8
	0.3
	0.1

	4
	3261
	77.6
	0.8
	0.7
	0.3
	0.4
	0.6
	0.4
	0.1
	0.6
	0.7
	0.3
	0.5
	0.3
	0.3
	0.5
	0.1
	0.1
	0.1
	0.5
	0.1
	0.2
	0.2
	0.4
	0.2
	0.4
	0.8
	0.6
	0.1

	4
	3373
	78.6
	0.8
	0.6
	0.2
	0.3
	0.4
	0.1
	0.3
	0.2
	0.7
	0.2
	0.4
	0.2
	0.2
	0.4
	0.6
	0.1
	0.8
	0.8
	0.1
	0.3
	0.2
	0.4
	0.1
	0.3
	0.8
	0.5
	0.1

	4
	3010
	78.7
	0.3
	0.6
	0.1
	0.5
	0.5
	0.1
	0.1
	0.2
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.1
	0.6
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.3
	0.8
	0.3
	0.2

	4
	3004
	82.1
	0.8
	0.5
	0.1
	0.4
	0.5
	0.3
	0.1
	0.3
	0.4
	0.3
	0.5
	0.3
	0.4
	0.4
	0.5
	0.1
	0.8
	0.4
	0.4
	0.2
	0.4
	0.4
	0.3
	0.2
	0.8
	0.3
	0.2

	4
	2918
	73.1
	0.5
	0.3
	0.1
	0.3
	0.5
	0.4
	0.1
	0.3
	0.1
	0.3
	0.4
	0.3
	0.3
	0.5
	0.5
	0.1
	0.8
	0.4
	0.1
	0.3
	0.3
	0.7
	0.2
	0.3
	0.7
	0.6
	0.1

	4
	2904
	78.8
	0.8
	0.5
	0.3
	0.4
	0.6
	0.3
	0.1
	0.2
	0.6
	0.1
	0.5
	0.3
	0.4
	0.5
	0.3
	0.1
	0.5
	0.4
	0.2
	0.3
	0.2
	0.5
	0.2
	0.4
	0.8
	0.3
	0.1

	4
	2993
	73.1
	0.8
	0.6
	0.2
	0.4
	0.2
	0.3
	0.2
	0.2
	0.7
	0.2
	0.5
	0.2
	0.4
	0.3
	0.5
	0.1
	0.8
	0.3
	0.2
	0.3
	0.4
	0.4
	0.3
	0.3
	0.8
	0.6
	0.1

	4
	2941
	70.3
	0.8
	0.5
	0.3
	0.4
	0.6
	0.1
	0.1
	0.3
	0.6
	0.3
	0.4
	0.3
	0.4
	0.5
	0.2
	0.1
	0.6
	0.4
	0.4
	0.3
	0.2
	0.5
	0.2
	0.4
	0.8
	0.3
	0.2

	4
	2709
	77.7
	0.2
	0.4
	0.1
	0.4
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.3
	0.3
	0.3
	0.7
	0.6
	0.1
	0.8
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.3
	0.8
	0.6
	0.1

	4
	2859
	69.3
	0.8
	0.5
	0.2
	0.4
	0.2
	0.3
	0.1
	0.2
	0.7
	0.3
	0.5
	0.2
	0.4
	0.3
	0.5
	0.1
	0.7
	0.2
	0.3
	0.3
	0.4
	0.4
	0.3
	0.3
	0.8
	0.6
	0.1

	4
	3004
	81.0
	0.4
	0.6
	0.1
	0.4
	0.5
	0.1
	0.1
	0.2
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.1
	0.7
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.3
	0.8
	0.3
	0.2

	4
	2858
	73.2
	0.8
	0.5
	0.2
	0.2
	0.2
	0.2
	0.1
	0.5
	0.7
	0.3
	0.8
	0.3
	0.4
	0.4
	0.5
	0.2
	0.3
	0.2
	0.2
	0.3
	0.4
	0.3
	0.2
	0.4
	0.8
	0.3
	0.1

	4
	2786
	74.5
	0.2
	0.4
	0.2
	0.4
	0.5
	0.2
	0.1
	0.2
	0.2
	0.3
	0.3
	0.3
	0.5
	0.6
	0.4
	0.1
	0.8
	0.5
	0.4
	0.2
	0.2
	0.4
	0.4
	0.3
	0.8
	0.6
	0.1

	4
	3026
	79.0
	0.2
	0.7
	0.1
	0.4
	0.5
	0.3
	0.2
	0.2
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.1
	0.8
	0.3
	0.2
	0.3
	0.2
	0.3
	0.5
	0.3
	0.8
	0.3
	0.1

	4
	3024
	74.6
	0.8
	0.6
	0.1
	0.3
	0.5
	0.3
	0.2
	0.3
	0.8
	0.3
	0.5
	0.3
	0.3
	0.4
	0.5
	0.1
	0.8
	0.2
	0.4
	0.2
	0.4
	0.4
	0.3
	0.3
	0.8
	0.3
	0.1

	4
	2741
	73.6
	0.8
	0.7
	0.2
	0.4
	0.5
	0.1
	0.1
	0.3
	0.8
	0.3
	0.3
	0.3
	0.4
	0.5
	0.5
	0.1
	0.7
	0.2
	0.3
	0.3
	0.3
	0.6
	0.2
	0.3
	0.8
	0.1
	0.3

	5
	3180
	63.9
	0.1
	0.4
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.1
	0.3
	0.5
	0.2
	0.5
	0.7
	0.8
	0.3
	0.4
	0.2
	0.1
	0.3
	0.4
	0.3
	0.1
	0.2
	0.2
	0.3
	0.5

	5
	2988
	69.3
	0.1
	0.5
	0.1
	0.4
	0.8
	0.5
	0.1
	0.2
	0.1
	0.3
	0.5
	0.3
	0.5
	0.7
	0.7
	0.1
	0.4
	0.3
	0.1
	0.3
	0.2
	0.4
	0.3
	0.3
	0.3
	0.1
	0.5

	5
	2830
	63.4
	0.1
	0.4
	0.2
	0.4
	0.8
	0.4
	0.1
	0.2
	0.1
	0.3
	0.5
	0.3
	0.4
	0.6
	0.6
	0.2
	0.5
	0.3
	0.1
	0.3
	0.2
	0.4
	0.4
	0.3
	0.2
	0.2
	0.4

	5
	2814
	68.2
	0.1
	0.3
	0.1
	0.4
	0.5
	0.5
	0.1
	0.1
	0.1
	0.1
	0.5
	0.3
	0.5
	0.6
	0.6
	0.3
	0.5
	0.3
	0.3
	0.6
	0.3
	0.4
	0.1
	0.3
	0.2
	0.1
	0.4

	5
	2619
	74.6
	0.6
	0.3
	0.2
	0.3
	0.7
	0.5
	0.1
	0.6
	0.3
	0.2
	0.4
	0.3
	0.4
	0.5
	0.5
	0.1
	0.1
	0.2
	0.1
	0.3
	0.4
	0.4
	0.2
	0.3
	0.8
	0.3
	0.1

	5
	2780
	76.9
	0.1
	0.3
	0.1
	0.4
	0.5
	0.4
	0.1
	0.3
	0.2
	0.2
	0.5
	0.3
	0.5
	0.7
	0.6
	0.3
	0.3
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.2
	0.2
	0.2
	0.4

	5
	3008
	63.4
	0.2
	0.4
	0.2
	0.4
	0.5
	0.6
	0.1
	0.3
	0.1
	0.3
	0.4
	0.2
	0.2
	0.5
	0.7
	0.4
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.4
	0.3
	0.3
	0.1
	0.8

	5
	2761
	74.5
	0.1
	0.3
	0.1
	0.4
	0.5
	0.4
	0.1
	0.2
	0.2
	0.2
	0.5
	0.3
	0.5
	0.7
	0.6
	0.3
	0.3
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.2
	0.2
	0.2
	0.4

	5
	2705
	73.4
	0.1
	0.3
	0.1
	0.4
	0.5
	0.4
	0.1
	0.3
	0.2
	0.2
	0.5
	0.3
	0.5
	0.6
	0.6
	0.3
	0.3
	0.4
	0.4
	0.3
	0.2
	0.4
	0.3
	0.2
	0.2
	0.2
	0.4

	5
	2797
	67.9
	0.1
	0.5
	0.4
	0.4
	0.5
	0.5
	0.1
	0.2
	0.1
	0.3
	0.6
	0.3
	0.4
	0.6
	0.6
	0.2
	0.2
	0.2
	0.1
	0.5
	0.2
	0.4
	0.2
	0.3
	0.2
	0.3
	0.5

	5
	2883
	68.6
	0.3
	0.4
	0.1
	0.4
	0.6
	0.4
	0.1
	0.2
	0.1
	0.3
	0.5
	0.3
	0.4
	0.7
	0.6
	0.2
	0.4
	0.4
	0.1
	0.3
	0.2
	0.4
	0.2
	0.3
	0.2
	0.2
	0.4

	5
	2522
	63.5
	0.7
	0.3
	0.3
	0.4
	0.6
	0.3
	0.1
	0.6
	0.5
	0.1
	0.5
	0.3
	0.3
	0.5
	0.3
	0.1
	0.1
	0.1
	0.1
	0.5
	0.2
	0.4
	0.1
	0.4
	0.8
	0.3
	0.2

	5
	2327
	59.2
	0.3
	0.3
	0.1
	0.4
	0.3
	0.1
	0.1
	0.4
	0.4
	0.1
	0.5
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.2
	0.1
	0.6
	0.4
	0.4
	0.1
	0.3
	0.8
	0.3
	0.4

	5
	2575
	64.0
	0.5
	0.3
	0.1
	0.4
	0.5
	0.2
	0.1
	0.5
	0.5
	0.2
	0.5
	0.3
	0.3
	0.7
	0.3
	0.1
	0.1
	0.2
	0.2
	0.6
	0.2
	0.4
	0.1
	0.4
	0.8
	0.3
	0.3

	5
	3030
	60.0
	0.1
	0.5
	0.1
	0.4
	0.7
	0.5
	0.1
	0.3
	0.1
	0.3
	0.4
	0.2
	0.4
	0.6
	0.8
	0.2
	0.3
	0.1
	0.2
	0.3
	0.4
	0.4
	0.1
	0.2
	0.2
	0.7
	0.8

	5
	2898
	73.0
	0.1
	0.5
	0.1
	0.4
	0.7
	0.5
	0.1
	0.2
	0.1
	0.3
	0.5
	0.3
	0.5
	0.7
	0.7
	0.1
	0.4
	0.3
	0.2
	0.3
	0.2
	0.4
	0.3
	0.3
	0.3
	0.1
	0.5

	5
	2499
	65.3
	0.6
	0.1
	0.2
	0.4
	0.2
	0.4
	0.1
	0.7
	0.5
	0.1
	0.4
	0.1
	0.4
	0.6
	0.5
	0.1
	0.1
	0.2
	0.3
	0.6
	0.4
	0.3
	0.2
	0.3
	0.8
	0.3
	0.1

	5
	2309
	70.5
	0.8
	0.3
	0.2
	0.4
	0.7
	0.3
	0.1
	0.7
	0.6
	0.2
	0.5
	0.3
	0.4
	0.5
	0.3
	0.1
	0.1
	0.3
	0.2
	0.4
	0.2
	0.3
	0.1
	0.4
	0.8
	0.2
	0.1

	5
	2879
	66.3
	0.1
	0.6
	0.2
	0.4
	0.5
	0.5
	0.1
	0.1
	0.1
	0.3
	0.5
	0.3
	0.2
	0.7
	0.7
	0.4
	0.4
	0.2
	0.2
	0.2
	0.3
	0.4
	0.3
	0.3
	0.2
	0.2
	0.6

	5
	2489
	76.5
	0.8
	0.3
	0.3
	0.4
	0.7
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.4
	0.5
	0.3
	0.1
	0.1
	0.2
	0.3
	0.4
	0.2
	0.3
	0.1
	0.4
	0.8
	0.3
	0.1

	6
	2584
	70.0
	0.2
	0.4
	0.1
	0.2
	0.5
	0.3
	0.1
	0.3
	0.3
	0.3
	0.5
	0.3
	0.5
	0.7
	0.6
	0.1
	0.8
	0.3
	0.8
	0.3
	0.2
	0.4
	0.3
	0.3
	0.4
	0.1
	0.1

	6
	2549
	70.7
	0.8
	0.3
	0.2
	0.4
	0.6
	0.3
	0.1
	0.7
	0.8
	0.2
	0.5
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.3
	0.3
	0.3
	0.3
	0.4
	0.2
	0.3
	0.8
	0.1
	0.1

	6
	2696
	77.0
	0.8
	0.3
	0.3
	0.4
	0.8
	0.3
	0.1
	0.6
	0.7
	0.2
	0.5
	0.4
	0.4
	0.5
	0.3
	0.1
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.1
	0.4
	0.8
	0.3
	0.1

	6
	2841
	72.3
	0.7
	0.3
	0.3
	0.4
	0.5
	0.4
	0.1
	0.7
	0.6
	0.2
	0.5
	0.3
	0.4
	0.5
	0.4
	0.1
	0.1
	0.3
	0.3
	0.3
	0.3
	0.3
	0.1
	0.5
	0.7
	0.2
	0.1

	6
	2656
	76.6
	0.8
	0.3
	0.2
	0.1
	0.8
	0.3
	0.1
	0.8
	0.8
	0.2
	0.6
	0.3
	0.5
	0.4
	0.3
	0.2
	0.1
	0.2
	0.3
	0.3
	0.6
	0.3
	0.2
	0.4
	0.8
	0.2
	0.1

	6
	2718
	67.4
	0.8
	0.3
	0.1
	0.2
	0.7
	0.4
	0.1
	0.7
	0.7
	0.1
	0.4
	0.4
	0.4
	0.4
	0.5
	0.1
	0.1
	0.2
	0.2
	0.4
	0.4
	0.4
	0.3
	0.3
	0.8
	0.2
	0.1

	6
	2795
	67.3
	0.8
	0.4
	0.1
	0.2
	0.7
	0.4
	0.1
	0.7
	0.7
	0.1
	0.4
	0.4
	0.4
	0.4
	0.5
	0.1
	0.1
	0.2
	0.3
	0.4
	0.3
	0.4
	0.3
	0.3
	0.8
	0.2
	0.1

	6
	2474
	72.1
	0.8
	0.2
	0.2
	0.4
	0.6
	0.3
	0.1
	0.7
	0.8
	0.2
	0.5
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.3
	0.3
	0.3
	0.3
	0.4
	0.3
	0.3
	0.8
	0.1
	0.1

	6
	2843
	77.8
	0.8
	0.4
	0.1
	0.3
	0.8
	0.5
	0.1
	0.6
	0.2
	0.2
	0.4
	0.4
	0.4
	0.5
	0.5
	0.1
	0.1
	0.2
	0.4
	0.3
	0.3
	0.4
	0.2
	0.4
	0.5
	0.3
	0.1

	6
	2652
	78.7
	0.8
	0.3
	0.3
	0.4
	0.8
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.4
	0.4
	0.5
	0.3
	0.1
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.1
	0.4
	0.8
	0.3
	0.1

	6
	3060
	69.5
	0.7
	0.3
	0.3
	0.3
	0.7
	0.4
	0.1
	0.6
	0.7
	0.2
	0.4
	0.3
	0.5
	0.1
	0.3
	0.1
	0.1
	0.2
	0.2
	0.4
	0.3
	0.3
	0.5
	0.4
	0.7
	0.3
	0.1

	6
	2598
	72.8
	0.8
	0.5
	0.2
	0.3
	0.6
	0.4
	0.1
	0.5
	0.5
	0.2
	0.4
	0.3
	0.2
	0.5
	0.5
	0.1
	0.1
	0.2
	0.2
	0.3
	0.4
	0.4
	0.3
	0.3
	0.7
	0.3
	0.1

	6
	2685
	79.9
	0.8
	0.3
	0.3
	0.4
	0.7
	0.3
	0.1
	0.7
	0.7
	0.2
	0.5
	0.3
	0.4
	0.5
	0.4
	0.1
	0.1
	0.2
	0.2
	0.3
	0.2
	0.3
	0.2
	0.4
	0.8
	0.3
	0.1

	6
	2721
	67.1
	0.3
	0.3
	0.1
	0.3
	0.4
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.5
	0.5
	0.6
	0.3
	0.5
	0.3
	0.1
	0.3
	0.2
	0.3
	0.5
	0.3
	0.2
	0.3
	0.1

	6
	2711
	74.4
	0.2
	0.5
	0.1
	0.3
	0.5
	0.4
	0.3
	0.3
	0.3
	0.3
	0.6
	0.3
	0.5
	0.7
	0.6
	0.1
	0.2
	0.3
	0.8
	0.2
	0.1
	0.3
	0.5
	0.3
	0.3
	0.2
	0.1

	6
	2689
	74.6
	0.8
	0.3
	0.3
	0.3
	0.7
	0.4
	0.1
	0.6
	0.7
	0.1
	0.4
	0.4
	0.4
	0.1
	0.3
	0.1
	0.1
	0.2
	0.2
	0.4
	0.3
	0.3
	0.5
	0.4
	0.8
	0.3
	0.1

	6
	2625
	68.4
	0.3
	0.4
	0.1
	0.3
	0.5
	0.3
	0.1
	0.1
	0.3
	0.2
	0.5
	0.3
	0.5
	0.5
	0.6
	0.1
	0.5
	0.3
	0.4
	0.3
	0.2
	0.3
	0.4
	0.3
	0.3
	0.2
	0.2

	6
	3214
	72.4
	0.1
	0.4
	0.2
	0.2
	0.5
	0.3
	0.4
	0.2
	0.1
	0.2
	0.5
	0.2
	0.7
	0.7
	0.6
	0.3
	0.3
	0.3
	0.8
	0.2
	0.1
	0.2
	0.5
	0.6
	0.2
	0.1
	0.1

	6
	2507
	72.9
	0.8
	0.3
	0.2
	0.3
	0.3
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.4
	0.4
	0.5
	0.1
	0.1
	0.4
	0.2
	0.3
	0.4
	0.4
	0.2
	0.3
	0.4
	0.7
	0.1

	6
	2507
	72.9
	0.8
	0.3
	0.2
	0.3
	0.3
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.4
	0.4
	0.5
	0.1
	0.1
	0.4
	0.2
	0.3
	0.4
	0.4
	0.2
	0.3
	0.4
	0.7
	0.1

	7
	2776
	79.8
	0.8
	0.2
	0.2
	0.4
	0.3
	0.1
	0.2
	0.6
	0.5
	0.3
	0.5
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.4
	0.3
	0.2
	0.5
	0.3
	0.2
	0.3
	0.5
	0.7
	0.1

	7
	2531
	73.1
	0.8
	0.2
	0.1
	0.3
	0.7
	0.3
	0.1
	0.6
	0.2
	0.4
	0.3
	0.3
	0.5
	0.5
	0.5
	0.1
	0.2
	0.4
	0.3
	0.3
	0.5
	0.3
	0.2
	0.3
	0.8
	0.3
	0.1

	7
	2667
	69.4
	0.8
	0.3
	0.1
	0.5
	0.8
	0.3
	0.1
	0.6
	0.2
	0.4
	0.4
	0.2
	0.4
	0.5
	0.5
	0.1
	0.1
	0.4
	0.3
	0.3
	0.5
	0.2
	0.2
	0.3
	0.8
	0.3
	0.1

	7
	2825
	72.9
	0.8
	0.3
	0.2
	0.4
	0.7
	0.1
	0.1
	0.6
	0.2
	0.5
	0.5
	0.3
	0.4
	0.6
	0.6
	0.3
	0.4
	0.4
	0.7
	0.1
	0.1
	0.3
	0.4
	0.3
	0.2
	0.3
	0.1

	7
	2681
	76.6
	0.8
	0.3
	0.1
	0.4
	0.6
	0.3
	0.1
	0.6
	0.2
	0.3
	0.5
	0.2
	0.4
	0.8
	0.5
	0.1
	0.1
	0.4
	0.6
	0.3
	0.4
	0.3
	0.2
	0.3
	0.4
	0.5
	0.1

	7
	2963
	72.4
	0.8
	0.2
	0.1
	0.6
	0.7
	0.3
	0.1
	0.6
	0.2
	0.3
	0.5
	0.3
	0.5
	0.7
	0.6
	0.3
	0.1
	0.3
	0.4
	0.2
	0.1
	0.3
	0.3
	0.3
	0.1
	0.6
	0.1

	7
	2701
	81.2
	0.8
	0.2
	0.1
	0.4
	0.7
	0.3
	0.1
	0.5
	0.3
	0.2
	0.5
	0.3
	0.4
	0.7
	0.5
	0.1
	0.1
	0.4
	0.4
	0.2
	0.4
	0.3
	0.2
	0.3
	0.5
	0.6
	0.1

	7
	2511
	78.4
	0.8
	0.2
	0.3
	0.4
	0.7
	0.3
	0.1
	0.5
	0.5
	0.2
	0.5
	0.3
	0.4
	0.5
	0.4
	0.1
	0.1
	0.3
	0.2
	0.2
	0.2
	0.3
	0.1
	0.5
	0.8
	0.4
	0.1

	7*
DANTE #2
	2582
	79.9
	0.8
	0.3
	0.1
	0.4
	0.7
	0.3
	0.1
	0.6
	0.3
	0.4
	0.5
	0.4
	0.3
	0.6
	0.5
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.8
	0.3
	0.1

	7
	2557
	76.9
	0.8
	0.2
	0.3
	0.4
	0.7
	0.2
	0.1
	0.6
	0.8
	0.3
	0.6
	0.3
	0.4
	0.5
	0.3
	0.1
	0.1
	0.3
	0.3
	0.3
	0.2
	0.2
	0.2
	0.4
	0.8
	0.4
	0.1

	7
	2652
	77.7
	0.8
	0.2
	0.1
	0.4
	0.7
	0.3
	0.1
	0.5
	0.6
	0.4
	0.5
	0.4
	0.4
	0.5
	0.3
	0.1
	0.2
	0.4
	0.2
	0.2
	0.2
	0.2
	0.3
	0.4
	0.6
	0.3
	0.1

	7
	2732
	77.7
	0.8
	0.3
	0.2
	0.4
	0.7
	0.5
	0.1
	0.6
	0.3
	0.2
	0.5
	0.3
	0.4
	0.5
	0.5
	0.2
	0.1
	0.2
	0.1
	0.3
	0.4
	0.3
	0.2
	0.3
	0.8
	0.3
	0.1

	7
	2626
	76.0
	0.8
	0.2
	0.2
	0.3
	0.7
	0.3
	0.1
	0.6
	0.2
	0.3
	0.5
	0.3
	0.4
	0.5
	0.5
	0.1
	0.1
	0.4
	0.3
	0.3
	0.5
	0.3
	0.3
	0.3
	0.8
	0.3
	0.1

	7
	2616
	76.4
	0.8
	0.3
	0.2
	0.4
	0.5
	0.2
	0.1
	0.5
	0.3
	0.3
	0.5
	0.3
	0.4
	0.6
	0.5
	0.1
	0.1
	0.4
	0.4
	0.1
	0.5
	0.4
	0.3
	0.3
	0.3
	0.7
	0.1

	7
	2536
	69.7
	0.1
	0.1
	0.1
	0.4
	0.7
	0.2
	0.1
	0.6
	0.3
	0.4
	0.5
	0.3
	0.5
	0.5
	0.6
	0.3
	0.1
	0.3
	0.2
	0.3
	0.2
	0.2
	0.6
	0.4
	0.1
	0.8
	0.1

	7
	2703
	75.6
	0.8
	0.2
	0.2
	0.4
	0.4
	0.1
	0.2
	0.6
	0.5
	0.3
	0.5
	0.3
	0.4
	0.5
	0.5
	0.1
	0.1
	0.4
	0.4
	0.1
	0.5
	0.3
	0.2
	0.3
	0.5
	0.7
	0.1

	7
	2675
	70.9
	0.8
	0.2
	0.1
	0.5
	0.5
	0.3
	0.1
	0.6
	0.2
	0.3
	0.6
	0.3
	0.5
	0.5
	0.6
	0.3
	0.4
	0.3
	0.3
	0.3
	0.1
	0.2
	0.5
	0.3
	0.2
	0.3
	0.1

	7
	2918
	73.3
	0.8
	0.2
	0.1
	0.6
	0.7
	0.3
	0.1
	0.6
	0.2
	0.3
	0.5
	0.3
	0.5
	0.7
	0.6
	0.3
	0.1
	0.3
	0.4
	0.2
	0.1
	0.3
	0.3
	0.3
	0.1
	0.7
	0.1

	7
	2703
	75.6
	0.8
	0.2
	0.2
	0.4
	0.4
	0.1
	0.2
	0.6
	0.5
	0.3
	0.5
	0.3
	0.4
	0.5
	0.5
	0.1
	0.1
	0.4
	0.4
	0.1
	0.5
	0.3
	0.2
	0.3
	0.5
	0.7
	0.1

	7
	2726
	79.6
	0.8
	0.2
	0.2
	0.4
	0.5
	0.1
	0.2
	0.6
	0.5
	0.3
	0.5
	0.2
	0.4
	0.7
	0.5
	0.1
	0.1
	0.4
	0.4
	0.2
	0.5
	0.2
	0.1
	0.3
	0.5
	0.7
	0.1

	8
	2779
	74.9
	0.8
	0.3
	0.1
	0.3
	0.6
	0.4
	0.1
	0.6
	0.3
	0.2
	0.5
	0.4
	0.2
	0.6
	0.5
	0.1
	0.2
	0.4
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.8
	0.6
	0.1

	8
	2523
	76.8
	0.8
	0.1
	0.2
	0.3
	0.7
	0.3
	0.1
	0.5
	0.4
	0.4
	0.6
	0.3
	0.2
	0.6
	0.5
	0.1
	0.2
	0.4
	0.4
	0.2
	0.2
	0.3
	0.3
	0.4
	0.8
	0.3
	0.1

	8
	2740
	77.9
	0.8
	0.2
	0.2
	0.4
	0.6
	0.3
	0.1
	0.6
	0.3
	0.2
	0.7
	0.3
	0.4
	0.6
	0.5
	0.1
	0.2
	0.4
	0.3
	0.2
	0.3
	0.3
	0.2
	0.3
	0.8
	0.4
	0.1

	8
	2761
	80.4
	0.8
	0.2
	0.1
	0.4
	0.5
	0.3
	0.1
	0.6
	0.4
	0.3
	0.7
	0.4
	0.3
	0.7
	0.5
	0.1
	0.1
	0.3
	0.3
	0.2
	0.3
	0.3
	0.3
	0.3
	0.8
	0.4
	0.1

	8
	2692
	67.9
	0.7
	0.1
	0.3
	0.4
	0.7
	0.3
	0.1
	0.6
	0.5
	0.2
	0.5
	0.3
	0.1
	0.7
	0.4
	0.1
	0.1
	0.3
	0.5
	0.2
	0.2
	0.4
	0.1
	0.4
	0.8
	0.5
	0.1

	8
	2820
	76.0
	0.8
	0.2
	0.2
	0.4
	0.5
	0.3
	0.1
	0.5
	0.5
	0.3
	0.5
	0.3
	0.4
	0.6
	0.3
	0.1
	0.3
	0.4
	0.4
	0.2
	0.2
	0.3
	0.3
	0.4
	0.7
	0.4
	0.1

	8
	2831
	67.2
	0.1
	0.5
	0.3
	0.3
	0.5
	0.4
	0.1
	0.6
	0.2
	0.4
	0.5
	0.3
	0.4
	0.1
	0.6
	0.3
	0.1
	0.5
	0.2
	0.3
	0.1
	0.4
	0.5
	0.4
	0.2
	0.8
	0.2

	8
	2654
	77.3
	0.8
	0.2
	0.2
	0.4
	0.5
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.5
	0.6
	0.3
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.1
	0.4
	0.8
	0.5
	0.1

	8
	2577
	79.4
	0.8
	0.2
	0.3
	0.3
	0.6
	0.2
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.4
	0.6
	0.4
	0.1
	0.1
	0.3
	0.3
	0.2
	0.2
	0.3
	0.2
	0.5
	0.8
	0.5
	0.1

	8
	2540
	76.7
	0.8
	0.1
	0.2
	0.3
	0.7
	0.3
	0.1
	0.6
	0.4
	0.4
	0.6
	0.3
	0.2
	0.6
	0.5
	0.1
	0.2
	0.4
	0.4
	0.2
	0.2
	0.3
	0.3
	0.4
	0.8
	0.3
	0.1

	8
	2486
	77.0
	0.8
	0.2
	0.3
	0.3
	0.7
	0.3
	0.1
	0.6
	0.6
	0.2
	0.5
	0.3
	0.4
	0.5
	0.3
	0.2
	0.1
	0.3
	0.4
	0.2
	0.2
	0.3
	0.1
	0.5
	0.8
	0.4
	0.1

	8
	2729
	67.3
	0.5
	0.2
	0.2
	0.4
	0.6
	0.1
	0.2
	0.6
	0.4
	0.1
	0.6
	0.5
	0.2
	0.6
	0.5
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.3
	0.2
	0.8
	0.4
	0.1

	8
	2648
	78.3
	0.7
	0.1
	0.1
	0.3
	0.6
	0.5
	0.1
	0.6
	0.3
	0.2
	0.7
	0.3
	0.4
	0.5
	0.5
	0.1
	0.2
	0.3
	0.1
	0.3
	0.4
	0.3
	0.3
	0.3
	0.8
	0.4
	0.1

	8
	2704
	81.3
	0.8
	0.2
	0.1
	0.4
	0.5
	0.3
	0.1
	0.6
	0.4
	0.3
	0.7
	0.4
	0.3
	0.6
	0.5
	0.1
	0.2
	0.3
	0.3
	0.2
	0.3
	0.3
	0.3
	0.3
	0.8
	0.4
	0.1

	8
	2845
	70.7
	0.8
	0.1
	0.2
	0.4
	0.7
	0.3
	0.1
	0.6
	0.4
	0.3
	0.5
	0.4
	0.1
	0.6
	0.5
	0.1
	0.2
	0.2
	0.4
	0.2
	0.4
	0.4
	0.2
	0.3
	0.8
	0.4
	0.1

	8*
DANTE #1
	2652
	82.1
	0.8
	0.2
	0.2
	0.3
	0.6
	0.2
	0.1
	0.6
	0.4
	0.1
	0.6
	0.3
	0.4
	0.7
	0.5
	0.1
	0.2
	0.4
	0.3
	0.2
	0.4
	0.3
	0.3
	0.3
	0.8
	0.4
	0.1

	8
	2717
	75.4
	0.8
	0.2
	0.3
	0.4
	0.7
	0.3
	0.1
	0.6
	0.3
	0.3
	0.7
	0.3
	0.3
	0.6
	0.3
	0.1
	0.1
	0.4
	0.5
	0.2
	0.2
	0.3
	0.3
	0.4
	0.8
	0.3
	0.1

	8
	2725
	78.8
	0.8
	0.2
	0.2
	0.3
	0.6
	0.3
	0.1
	0.6
	0.3
	0.2
	0.6
	0.3
	0.4
	0.6
	0.5
	0.1
	0.2
	0.4
	0.4
	0.2
	0.4
	0.3
	0.3
	0.3
	0.8
	0.3
	0.1

	8
	2842
	74.3
	0.8
	0.2
	0.1
	0.4
	0.7
	0.2
	0.1
	0.5
	0.4
	0.2
	0.7
	0.4
	0.2
	0.6
	0.4
	0.1
	0.2
	0.3
	0.4
	0.2
	0.3
	0.3
	0.3
	0.4
	0.7
	0.4
	0.1

	8
	2812
	80.5
	0.8
	0.3
	0.1
	0.3
	0.5
	0.4
	0.1
	0.6
	0.4
	0.3
	0.6
	0.3
	0.3
	0.8
	0.4
	0.1
	0.1
	0.3
	0.4
	0.2
	0.4
	0.3
	0.4
	0.3
	0.6
	0.4
	0.1

	Uniform
	2478
	58.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3
	0.3

	GAD-MALL #1
	2378
	75.0
	0.1
	0.3
	0.2
	0.3
	0.7
	0.3
	0.2
	0.1
	0.1
	0.2
	0.7
	0.2
	0.7
	0.1
	0.7
	0.2
	0.7
	0.3
	0.2
	0.1
	0.1
	0.3
	0.7
	0.3
	0.1
	0.3
	0.2

	GAD-MALL #2
	2408
	73.9
	0.1
	0.3
	0.2
	0.3
	0.7
	0.3
	0.2
	0.3
	0.1
	0.2
	0.7
	0.2
	0.7
	0.1
	0.7
	0.2
	0.7
	0.3
	0.2
	0.3
	0.1
	0.2
	0.7
	0.3
	0.1
	0.3
	0.2





[bookmark: _Toc180188219]Supplementary Table 7: List of representative compositions of fcc CCAs predicted by DANTE
	Fe
(at. %)
	Co
(at. %)
	Ni
(at. %)
	Al
(at. %)
	Zn
(at. %)
	Ir
(at. %)
	
(Ry/site)
	Mag
(/f.u.)
	

	

	43.5
	19.0
	9.5
	5.0
	8.5
	14.5
	0.007
	1.46
	0.933
	0.069

	43.5
	19.5
	9.5
	5.0
	8.5
	14.0
	0.007
	1.47
	0.915
	0.067

	42.5
	16.5
	12.0
	5.5
	7.5
	16.0
	0.007
	1.41
	0.855
	0.066

	43.5
	18.5
	10.0
	4.5
	9.5
	14.0
	0.007
	1.46
	0.857
	0.063

	43.5
	18.5
	10.0
	5.5
	7.5
	15.0
	0.007
	1.46
	0.831
	0.062

	42.5
	15.5
	12.5
	5.5
	8.0
	16.0
	0.007
	1.40
	0.815
	0.063

	42.5
	17.5
	10.5
	5.0
	8.5
	16.0
	0.007
	1.42
	0.819
	0.063

	42.5
	18.0
	10.0
	5.0
	8.5
	16.0
	0.007
	1.43
	0.818
	0.063

	43.0
	18.0
	10.5
	5.5
	7.5
	15.5
	0.007
	1.44
	0.815
	0.062



[bookmark: _Toc180188220]Supplementary Table 8:  List of representative compositions of bcc CCAs predicted by DANTE
	Fe
(at. %)
	Co
(at. %)
	Ni
(at. %)
	Al
(at. %)
	Zn
(at. %)
	Ir
(at. %)
	Si
(at. %)
	
(Ry/site)
	Mag
(/f.u.)
	

	

	63.5
	0.5
	0.5
	9.0
	8.0
	18.5
	0.0
	0.002
	1.72
	0.993
	0.093

	67.0
	0.5
	0.5
	0.0
	15.0
	13.5
	3.5
	0.005
	1.79
	0.963
	0.082

	61.5
	0.5
	0.5
	0.0
	19.0
	16.0
	2.5
	0.006
	1.67
	0.924
	0.085

	67.5
	0.5
	0.5
	0.0
	14.0
	13.5
	4.0
	0.004
	1.80
	0.957
	0.082

	59.0
	0.5
	0.5
	0.0
	21.5
	16.5
	2.0
	0.006
	1.60
	0.901
	0.085

	69.5
	0.5
	0.5
	0.0
	13.5
	12.0
	4.0
	0.004
	1.83
	0.970
	0.079

	59.0
	0.5
	0.5
	0.0
	20.5
	17.0
	2.5
	0.006
	1.61
	0.891
	0.085

	69.5
	0.5
	0.5
	0.0
	14.5
	11.5
	3.5
	0.004
	1.83
	0.977
	0.077

	60.5
	0.5
	0.5
	0.0
	18.5
	16.5
	3.5
	0.006
	1.65
	0.886
	0.084



[bookmark: _Toc180188221]Supplementary Table 9: List of representative compositions of fcc CCAs predicted by MCMC
	Fe
(at. %)
	Co
(at. %)
	Ni
(at. %)
	Al
(at. %)
	Pt
(at. %)
	Ir
(at. %)
	
(Ry/site)
	Mag
(/f.u.)
	

	

	47.0
	17.0
	14.5
	5.5
	9.0
	7.0
	0.005
	1.59
	1.020
	0.057

	39.0
	14.0
	11.5
	3.5
	20.0
	12.0
	0.007
	1.41
	0.820
	0.059

	41.5
	18.5
	9.0
	4.5
	15.5
	11.0
	0.006
	1.50
	0.825
	0.058

	36.0
	12.5
	11.5
	4.5
	19.5
	16.0
	0.006
	1.30
	0.797
	0.059

	41.0
	18.5
	9.0
	4.5
	15.5
	11.5
	0.007
	1.49
	0.817
	0.057

	35.0
	27.0
	13.0
	4.5
	12.5
	8.0
	0.006
	1.48
	0.905
	0.051

	45.0
	7.0
	23.0
	5.5
	10.0
	9.5
	0.005
	1.45
	0.805
	0.057

	41.5
	16.5
	10.5
	5.0
	14.0
	12.5
	0.006
	1.46
	0.790
	0.057

	39.0
	13.0
	13.5
	5.5
	19.0
	9.5
	0.004
	1.40
	0.788
	0.057



[bookmark: _Toc180188222]Supplementary Table 10: List of representative compositions of bcc CCAs predicted by MCMC
	Fe
(at. %)
	Co
(at. %)
	Al
(at. %)
	Pt
(at. %)
	Ir
(at. %)
	Zn
(at. %)
	Pd
(at. %)
	Mn
(at. %)
	Mg
(at. %)
	Rh
(at. %)
	Si
(at. %)
	
(Ry/site)
	Mag
(/f.u.)
	

	

	58.5
	1.0
	5.0
	29.0
	5.0
	0.0
	0.0
	0.0
	1.5
	0.0
	0.0
	0.003
	1.75
	1.085
	0.068

	72.0
	1.0
	8.0
	0.0
	10.0
	2.0
	0.0
	7.0
	0.0
	0.0
	0.0
	0.001
	1.98
	0.927
	0.075

	72.5
	1.0
	7.5
	0.0
	7.5
	5.0
	0.0
	6.5
	0.0
	0.0
	0.0
	0.001
	1.95
	0.904
	0.073

	73.5
	1.0
	7.0
	0.0
	7.0
	5.0
	0.0
	6.5
	0.0
	0.0
	0.0
	0.001
	1.97
	0.888
	0.070

	59.0
	1.0
	0.0
	27.5
	4.5
	0.0
	0.5
	0.0
	0.0
	0.0
	7.5
	0.003
	1.75
	0.797
	0.056

	60.0
	0.5
	0.0
	0.0
	10.0
	16.0
	0.0
	0.0
	1.5
	0.0
	12.0
	0.005
	1.58
	0.668
	0.066

	60.0
	0.5
	0.0
	0.0
	9.5
	15.5
	0.0
	0.0
	3.0
	0.0
	11.5
	0.006
	1.58
	0.667
	0.065

	59.0
	1.0
	0.0
	26.0
	5.0
	0.0
	0.0
	0.0
	0.0
	1.0
	8.0
	0.003
	1.75
	0.772
	0.056

	59.5
	0.5
	0.0
	0.0
	9.5
	16.0
	0.0
	0.0
	3.0
	0.0
	11.5
	0.006
	1.57
	0.662
	0.065



[bookmark: _Toc180188223]Supplementary Table 11: The AHC of ferromagnetic fcc Fe43.5Co18.5Ni10Al4.5Zn9.5Ir14, Fe65Ir35 as well as bcc Fe61.5Co0.5Ni0.5Si2.5Zn19Ir16 and Fe80Ir20
In this table, nvc and vc denote transport properties without and with vertex corrections, respectively. The unit of AHC () is 
	
	
	
	
	

	Fe43.5Co18.5Ni10Al4.5Zn9.5Ir14 (fcc, nvc)
	0.033
	0.534
	0.143
	0.710

	Fe43.5Co18.5Ni10Al4.5Zn9.5Ir14 (fcc, vc)
	0.033
	0.687
	0.138
	0.858

	Fe65Ir35 (fcc, nvc)
	0.026
	0.407
	0.101
	0.534

	Fe65Ir35 (fcc, vc)
	0.026
	0.459
	0.103
	0.588

	Fe61.5Co0.5Ni0.5Si2.5Zn19Ir16 (bcc, nvc)
	0.038
	0.479
	0.229
	0.746

	Fe61.5Co0.5Ni0.5Si2.5Zn19Ir16 (bcc, vc)
	0.038
	0.657
	0.229
	0.924

	Fe80Ir20 (bcc, nvc)
	0.040
	0.749
	0.254
	1.043

	Fe80Ir20 (bcc, vc)
	0.040
	0.826
	0.256
	1.122



[bookmark: _Toc180188224]Supplementary Table 12: Metrics for De novo cyclic peptide binder design
The highlighted one has the best target value.
	pdb
	type
	number
	Target / Å2
	SC
	dSASA / Å2
	pdb
	Target / Å2
	SC
	dSASA / Å2

	[bookmark: _Hlk160925919]1sfi
	Nature
	
	10.15
	0.701
	1448.61
	1sld
	5.33
	0.730
	730.18

	
	DANTE
	1
	10.92
	0.675
	1618.02
	
	5.05
	0.730
	691.48

	
	
	2
	11.34
	0.728
	1558.72
	
	5.81
	0.627
	925.78

	
	
	3
	13.57
	0.705
	1925.38
	
	5.18
	0.572
	905.76

	
	GD
	1
	1.35
	0.550
	245.83
	
	3.69
	0.602
	613.97

	
	
	2
	10.70
	0.742
	1443.17
	
	3.52
	0.513
	687.00

	
	
	3
	9.81
	0.641
	1530.74
	
	4.75
	0.529
	897.69

	
	MCMC
	1
	10.58
	0.655
	1615.47
	
	3.72
	0.461
	807.31

	
	
	2
	11.50
	0.751
	1530.92
	
	4.72
	0.519
	910.51

	
	
	3
	9.59
	0.705
	1360.64
	
	3.49
	0.752
	464.51

	1smf
	Nature
	
	7.50
	0.746
	1005.24
	3p72
	8.80
	0.763
	1152.96

	
	DANTE
	1
	8.89
	0.685
	1297.30
	
	8.51
	0.735
	1158.54

	
	
	2
	8.60
	0.756
	1137.36
	
	8.61
	0.699
	1231.85

	
	
	3
	8.24
	0.652
	1264.85
	
	8.21
	0.589
	1394.38

	
	GD
	1
	7.31
	0.691
	1058.40
	
	7.44
	0.524
	1420.02

	
	
	2
	6.00
	0.570
	1052.16
	
	6.28
	0.547
	1147.88

	
	
	3
	8.01
	0.709
	1130.17
	
	3.05
	0.323
	942.21

	
	MCMC
	1
	7.04
	0.608
	1157.19
	
	3.69
	0.390
	947.23

	
	
	2
	7.60
	0.646
	1177.31
	
	4.20
	0.388
	1083.41

	
	
	3
	3.88
	0.512
	756.18
	
	3.92
	0.410
	956.66

	3zgc
	Nature
	
	5.96
	0.713
	835.77
	4ib5
	6.53
	0.624
	1046.26

	
	DANTE
	1
	6.55
	0.728
	899.68
	
	9.58
	0.780
	1228.46

	
	
	2
	5.46
	0.615
	887.05
	
	8.85
	0.704
	1257.73

	
	
	3
	5.90
	0.650
	907.43
	
	9.18
	0.786
	1168.05

	
	GD
	1
	4.54
	0.544
	834.52
	
	7.92
	0.721
	1099.24

	
	
	2
	0.71
	0.198
	358.21
	
	7.09
	0.676
	1048.96

	
	
	3
	4.68
	0.718
	652.10
	
	7.42
	0.727
	1021.51

	
	MCMC
	1
	2.17
	0.439
	494.78
	
	8.94
	0.741
	1206.37

	
	
	2
	2.45
	0.386
	634.29
	
	7.10
	0.663
	1070.63

	
	
	3
	4.34
	0.472
	919.38
	
	8.32
	0.742
	1120.35

	4kel
	Nature
	
	11.69
	0.777
	1504.00
	5h5q
	7.77
	0.758
	1024.75

	
	DANTE
	1
	13.45
	0.752
	1788.49
	
	7.77
	0.780
	996.43

	
	
	2
	12.98
	0.707
	1837.1
	
	8.50
	0.701
	1212.31

	
	
	3
	13.32
	0.723
	1843.51
	
	7.98
	0.714
	1117.44

	
	GD
	1
	7.17
	0.642
	1117.13
	
	4.20
	0.594
	707.79

	
	
	2
	9.85
	0.708
	1391.35
	
	5.86
	0.720
	813.39

	
	
	3
	7.37
	0.656
	1123.58
	
	6.20
	0.579
	1070.4

	
	MCMC
	1
	8.84
	0.700
	1262.96
	
	7.87
	0.738
	1066.42

	
	
	2
	12.36
	0.740
	1669.76
	
	7.29
	0.702
	1038.36

	
	
	3
	10.52
	0.675
	1559.2
	
	5.50
	0.577
	953.23

	5tu6
	Nature
	
	7.87
	0.723
	1089.15
	6d40
	9.58
	0.726
	1320.00

	
	DANTE
	1
	6.18
	0.679
	910.80
	
	11.01
	0.729
	1509.77

	
	
	2
	6.19
	0.581
	1065.00
	
	8.81
	0.626
	1407.85

	
	
	3
	7.05
	0.679
	1037.35
	
	10.56
	0.758
	1392.28

	
	GD
	1
	5.92
	0.660
	896.14
	
	9.69
	0.747
	1296.64

	
	
	2
	5.92
	0.635
	931.67
	
	7.89
	0.666
	1184.02

	
	
	3
	5.19
	0.547
	948.75
	
	7.55
	0.760
	993.12

	
	MCMC
	1
	5.22
	0.552
	945.71
	
	8.86
	0.657
	1349.15

	
	
	2
	5.07
	0.542
	936.06
	
	6.49
	0.614
	1057.11

	
	
	3
	5.58
	0.574
	972.75
	
	10.07
	0.735
	1370.57

	6u6k
	Nature
	
	9.46
	0.805
	1175.96
	6vxy
	10.28
	0.749
	1372.11

	
	DANTE
	1
	7.88
	0.639
	1234.42
	
	11.32
	0.748
	1512.91

	
	
	2
	6.37
	0.684
	931.47
	
	11.02
	0.725
	1520.40

	
	
	3
	7.26
	0.677
	1072.11
	
	11.69
	0.689
	1696.12

	
	GD
	1
	3.52
	0.642
	548.44
	
	9.78
	0.685
	1427.80

	
	
	2
	3.43
	0.437
	786.31
	
	8.38
	0.730
	1148.92

	
	
	3
	6.88
	0.756
	910.61
	
	11.39
	0.727
	1566.2

	
	MCMC
	1
	6.13
	0.612
	1001.18
	
	10.63
	0.674
	1576.99

	
	
	2
	7.00
	0.647
	1081.51
	
	9.16
	0.675
	1357.77

	
	
	3
	2.20
	0.446
	492.54
	
	8.81
	0.66
	1333.93

	7ezw
	Nature
	
	8.80
	0.804
	1093.45
	7k2j
	5.60
	0.647
	865.20

	
	DANTE
	1
	8.52
	0.606
	1404.56
	
	5.68
	0.644
	881.57

	
	
	2
	7.67
	0.812
	944.07
	
	5.08
	0.704
	721.39

	
	
	3
	8.49
	0.638
	1329.28
	
	6.32
	0.662
	955.64

	
	GD
	1
	3.69
	0.644
	573.23
	
	4.63
	0.556
	832.43

	
	
	2
	6.71
	0.626
	1072.26
	
	4.86
	0.498
	975.58

	
	
	3
	9.62
	0.680
	1414.16
	
	5.15
	0.648
	794.16

	
	MCMC
	1
	8.08
	0.726
	1112.81
	
	5.82
	0.675
	861.24

	
	
	2
	7.62
	0.686
	1110.58
	
	4.37
	0.640
	683.46

	
	
	3
	9.61
	0.727
	1322.61
	
	3.75
	0.511
	734.20



[bookmark: _Toc180188225]Supplementary Table 13: Sequence for De novo cyclic peptide binder design
The highlighted sequence has the best target value.
	pdb
	type
	number
	sequence
	pdb
	sequence

	1sfi(14)
	Nature
	
	GRCTKSIPPICFPD
	1sld(6)
	CHPQFC

	
	DANTE
	1
	CFQNYPAFKGKHPK
	
	MSYMPC

	
	
	2
	SNMSVENGMVMWML
	
	HMPGAH

	
	
	3
	TDMMYSPFKIWCME
	
	HPWGCM

	
	GD
	1
	CDAGCKQEMGSRHV
	
	LPCGGK

	
	
	2
	PKCRDVTSEDPVII
	
	DCPCGV

	
	
	3
	CMPGDERESCAKCR
	
	WLPCCP

	
	MCMC
	1
	RDTWCNSDVCRRNM
	
	CCGPHG

	
	
	2
	LLVHGNNVAYCREK
	
	CDIHHP

	
	
	3
	FKECWCPVDVTDPP
	
	YCSDCK

	1smf(9)
	Nature
	
	CTKSIPPEC
	3p72(11)
	CTERMALHNLC

	
	DANTE
	1
	CWEINSVMW
	
	IVDMKSVEMLH

	
	
	2
	GHKCYSQLD
	
	QVRAPFSMMWY

	
	
	3
	HLPNWLRCQ
	
	IRRWAPFGSPM

	
	GD
	1
	RCVPERTPM
	
	HKENPFNKHDR

	
	
	2
	PTRCMDVPP
	
	NKTMKSCRLED

	
	
	3
	VPPPTRCMD
	
	DCNINRHCEIF

	
	MCMC
	1
	QDTPEPERV
	
	TSKLRDHTRHR

	
	
	2
	EGPARIREE
	
	QWRMLQAGNLN

	
	
	3
	GLHVTCQCR
	
	GSYRDQVRARM

	3zgc(7)
	Nature
	
	GDEETGE
	4ib5(13)
	GCRLYGFKIHGCG

	
	DANTE
	1
	NAFTFIC
	
	HWKFIITETWHCC

	
	
	2
	QSFLWLQ
	
	VTQYCRWKWISMH

	
	
	3
	ITKEMNS
	
	IWHYADIEGRMCK

	
	GD
	1
	EDPDEFP
	
	NCVCSEKQNPGYF

	
	
	2
	ETPAGCD
	
	LAAVMRGAKWTMD

	
	
	3
	EEVGNGD
	
	ETSKRKGGWKHYG

	
	MCMC
	1
	CNCGAEL
	
	NWKWVNSGQTQVM

	
	
	2
	GCRWWET
	
	HFKSENKKWVEET

	
	
	3
	TMDDNLN
	
	QYFKDQKHRGMFR

	4kel(14)
	Nature
	
	GFCQRSIPPICFPN
	5h5q(13)
	CRVDLQGWRRCRR

	
	DANTE
	1
	WHSYLFYPVPFNWI
	
	QQEGYINVAAEEA

	
	
	2
	TRHSPREENVWAFW
	
	YLCWKQEKNCDMN

	
	
	3
	SVSYKNWIFYSFLE
	
	IGRNNGKSGPARY

	
	GD
	1
	APITFELCHVMVID
	
	QYINRRKTTTQDH

	
	
	2
	LQQAGDIYYRCSEG
	
	AKKMGTISCDKKE

	
	
	3
	CKKLGLSHLLDREL
	
	RNPKESNEDWILL

	
	MCMC
	1
	KKQVQDIWIDCEPI
	
	EPNAPYAQKGDEG

	
	
	2
	GDMVYKSFLEWPPF
	
	CPKCKYIQRNSGP

	
	
	3
	CKKLGLSHLLDREL
	
	NTRPGKHFHAPET

	5tu6(7)
	Nature
	
	INPYLYP
	6d40(14)
	GRCYKSIPPICFPD

	
	DANTE
	1
	HHSSQDL
	
	RWSGYMSYEHAGNS

	
	
	2
	KRGWYIV
	
	TRPYCYYCGLRIQF

	
	
	3
	GKFNTFH
	
	MYALKTSHFNNDVL

	
	GD
	1
	SVFGSEC
	
	QFFSGKAEGDPDEK

	
	
	2
	CENGCHY
	
	PGETAWGKPVEIKE

	
	
	3
	HLCEGNC
	
	MKEDPEMVYCSGQQ

	
	MCMC
	1
	HDGNEQV
	
	CAQRDQMRGDVMRR

	
	
	2
	KGPWGTG
	
	DYCAPREGKNDGTR

	
	
	3
	PDNITLG
	
	CPVEPDGFVRWCKG

	6u6k(11)
	Nature
	
	WWIIPKVKKGC
	6vxy(14)
	GRGTKSIPPIAFPD

	
	DANTE
	1
	FRGKWKVWQEN
	
	RPRCIFCPKVDSLW

	
	
	2
	TMDRSQVNEWK
	
	HKPYCPEYSTHSFD

	
	
	3
	LWTKCIDFHIM
	
	MDHQNAYGFNLWSR

	
	GD
	1
	ETDPRIKNFGS
	
	MCWPTANEAWSEDE

	
	
	2
	EGGGRGLKEIM
	
	GEEAEVPVKCQPKA

	
	
	3
	KENNPHNRGGL
	
	QVKCVDRKTANKEM

	
	MCMC
	1
	KKCEDARKCQD
	
	GVSVKQPHTIESTV

	
	
	2
	KKGWSDLREAL
	
	KWAVCHGCRLHHEA

	
	
	3
	RYIATTKQQYR
	
	SPEPRMLAEKPPTQ

	7ezw(11)
	Nature
	
	ACEMGFFQDCG
	7k2j(7)
	GDPEAGE

	
	DANTE
	1
	YDSMNTVQHPG
	
	MNFGWSE

	
	
	2
	CYEWNVGPGNW
	
	LMHDKSQ

	
	
	3
	MWYKDFAKGKE
	
	GFESSRE

	
	GD
	1
	ADINDIANPCG
	
	EYGDGDE

	
	
	2
	DDPFPKGKDIS
	
	EEVPDWD

	
	
	3
	HTDDGMTSPKH
	
	QSAEDGE

	
	MCMC
	1
	NRVEGTIHVMN
	
	TPAEKVE

	
	
	2
	VETTNPLTCQP
	
	EDDPEMS

	
	
	3
	PLDLDNLNSGN
	
	GEIGPED



[bookmark: _Toc180188226]Supplementary Table 14: Detailed parameters and their bounds for electron ptychography reconstruction optimization
	
	Probe-forming semi-angle
	Defocus (Å)
	Beam energy (kV)
	Max iteration
	Update step size
	Identical slices iteration
	Slice thickness (Å)
	Number of slices

	Upper bound
	30
	200
	300
	20
	1
	500
	50
	100

	Lower bound
	1
	1
	1
	1
	0.01
	1
	1
	1

	Step size
	0.1
	1
	1
	1
	0.01
	1
	0.1
	1



[bookmark: _Toc180188227]Supplementary Table 15: Optimized reconstruction parameters by different methods
	Methods
	Probe-forming semi-angle
	Defocus (Å)
	Beam energy (kV)
	Max iteration
	Update step size
	Identical slices iteration
	Slice thickness (Å)
	Number of slices
	NMSE

	Expert
	20
	100
	200
	256
	0.175
	256
	30.79423
	6
	0.2967

	DOST
	19.7
	95
	220
	20
	0.28
	8
	20.4
	10
	0.2909

	TuRBO5
	19.6
	129
	238
	20
	0.11
	1
	6.2
	46
	0.2914

	BO
	20.8
	112
	203
	17
	0.33
	123
	24.8
	8
	0.3145



[bookmark: _Toc180188228]Supplementary Table 16: Hyperparameters for GBDT and RF models
	Model
	Objective
	Evaluation metric
	Learning rate
	Feature fraction
	Bagging fraction
	Bagging frequency
	Maximum depth
	Number of leaves
	Maximum number of bins
	Number of iterations

	GBDT
	Regression
	L2 for Ackley and Rosenbrock; MAPE for Rastrigin
	0.1
	0.8
	0.8
	50
	16
	127
	256
	1000

	RF
	Regression
	
	0.1
	0.8
	0.8
	50
	16
	127
	256
	1000




[bookmark: _Toc180188229]Supplementary Table 17:  The calculated structure corresponding to each element
The asteroid marks a meta-stable reference crystal structure. 
	Element
	Ti
	Nb
	Al
	Ge
	Co
	Au
	Pd
	Ni
	Zn

	Structure
	hcp
	bcc
	fcc
	Diamond
	hcp
	fcc
	fcc
	fcc
	hcp

	Element
	Ga
	Mo
	Cu
	Pt
	Sn
	Cr
	Mn
	Mg
	Si

	Structure
	fcc*
	bcc
	fcc
	fcc
	Diamond
	bcc
	hcp*
	hcp
	Diamond

	Element
	Fe
	Ru
	Rh
	Hf
	Ta
	W
	Re
	Ir
	Bi

	Structure
	bcc
	hcp
	fcc
	hcp
	bcc
	bcc
	hcp
	fcc
	Bcc*




[bookmark: _Toc180188230]Supplementary Table 18:  The key difference between DUCB and UCB.
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from tensorflow.keras import layers

from tensorflow import keras

from sklearn.model_selection import train_test_split
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.callbacks import EarlyStopping

# Input: (None, 60, 60, 60, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=i)

# model architecture

inputs = keras.Input((60, 68, 60, 1))

= layers.Conv3D(filters=8, kernel_size=3, activation="elu",padding='same")(inputs)
= layers.MaxPool3D(pool_size=2,padding="same")(x)

= layers.ConvaD(filters=4, kernel_size=3, activation="elu",padding="same')(x)
= layers.MaxPool3D(pool_size=2,padding="same')(x)

layers.Conv3D(filters=2, kernel_size=3, activation="elu",padding='same")(x)
= layers.MaxPool3D(pool_size=2,padding="same")(x)

= layers.Flatten()(x)

= layers.Dense(units=128, activation="elu")(x)

= layers.Dense(units=64, activation 1u")(x)

x = layers.Dense(units=32, activation="elu")(x)

outputs = layers.Dense(units=1, activation="linear")(x)

model = keras.Model(inputs, outputs, name="3dcnn")

X X X X X X X X X
]

# model compiling and training

early_stop = EarlyStopping(monitor='val_loss', patience=100, restore_best_weights=True)

model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')

model.fit(X_train, y_train, batch_size=32, epochs=5000, validation_data=(X_test, y_test),
callbacks=[early_stop])
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from sklearn.model_selection import train_test_split
from tensorflow.keras.optimizers import Adam

from tensorflow.keras.models import Sequential

from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import layers

from tensorflow import keras

# Input: (None, 27, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=i)

# model architecture

model = Sequential([
layers.ConvlD(64,kernel_size=3,strides=2,padding="same', activation='elu', input_shape=(27,1)),
layers.BatchNormalization(),
layers.ConviD(32,kernel_size=3,strides=2, padding='same', activatior
layers.ConvlD(16,kernel_size=3,strides=2, padding='same', activation=
layers.Dropout(8.2),
layers.ConviD(8,kernel_size=3,strides=1, padding='same', activation='elu'),
layers.Flatten(),
layers.Dense(128, activation='elu'),
layers.Dense(1, activation='linear')

‘elu'),
elu'),

D

# model compiling and training

optimizer = keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=optimizer, loss='mse', metrics=["mean_squared_error"])

es = EarlyStopping(monitor='val_loss', mode='min', verbose=1,patience=1000)
model.fit(X_train, y_train, validation_data=(X_test, y_test), batch_size=50, epochs=5000,
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from sklearn.model_selection import train_test_split

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import ConviD, MaxPoolinglD, Flatten, Dense,Dropout
from tensorflow.keras.callbacks import EarlyStopping

from tensorflow.keras import layers

# Input: (None, dimension, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=i)

# model architecture

# for Ackley

model = Sequential()

model.add(ConvlD(128, kernel_size=3, strides=1, padding='same', activation='elu',
input_shape=(dims, 1))) #dims is the dimension

model.add(MaxPoolinglD(pool_size=2, strides=1))

model.add (Dropout (8.2))

model.add(ConvlD(64,kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(MaxPoolinglD(pool_size=2, strides=1))

model.add(Dropout (8.2))

model.add(ConvlD(32, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(ConvlD(16, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(ConviD(8, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(Flatten())

model.add(Dense(128,activation="elu'))

model.add(Dense(64,activation="elu"))

model.add(Dense(1,activation="1linear"))

model.compile(optimizer=Adam(learning_rate=0.801), loss='mean_squared_error')

# for Rastrigin
model = Sequential([
layers.ConvlD(256,kernel_size=5,strides=1,padding="same', activation='elu',
input_shape=(dims,1)),
layers.LayerNormalization(),
layers.ConvlD(128,kernel_size=5,strides=2, padding='same', activation='elu'),
layers.ConvlD(64,kernel_size=3,strides=2, padding='same', activation='elu'),
layers.ConviD(32,kernel_size=3,strides=1, padding='same', activation='elu'),
layers.ConvlD(16,kernel_size=3,strides=1, padding='same', activation='elu'),
layers.ConvlD(8,kernel_size=3,strides=1, padding='same', activation='elu'),
layers.Flatten(),
Dense(128, activation='elu'),
Dense(64, activation='elu'),
Dense(1, activation='linear')

D

model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_absolute_percentage_error')

# for Rosenbrock

model = Sequential()

model.add(ConvlD(128, kernel_size=3, strides=1, padding='same', activation='elu',
input_shape=(dims, 1)))

model.add(MaxPoolinglD(pool_size=2))

model.add(Dropout(0.2))

model.add(ConvlD(64, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(MaxPoolinglD(pool_size=2))

model.add(Dropout(0.2))

model.add(ConvlD(32, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(MaxPoolinglD(pool_size=2, strides=1))

model.add(ConviD(16, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(ConviD(8, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(ConvlD(4, kernel_size=3, strides=1, padding='same', activation='elu'))

model.add(Flatten())

model.add(Dense(64,activation="elu"))

model.add(Dense(1,activation="'1inear"))

model.compile(optimizer=Adam(learning_rate=0.001), loss='mean_squared_error')

# trainning model

early_stop = EarlyStopping(monitor='val_loss', patience=30, restore_best_weights=True)

model.fit(X_train.reshape(len(X_train),dims,1), y_train, batch_size=64, epochs=500,
validation_data=(X_test.reshape(len(X_test),dims,1), y_test), callbacks=[early_stop])
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