

1 **Supplementary Information**

2

3 **Materials and Methods**

4 **Isolation and sorting of OBs**

5 OBs were isolated from the femurs of 3-month-old and 18-month-old mice. After
6 flushing out the bone marrow with PBS, the bone tissue was cut into small pieces. These
7 bone fragments were then digested overnight at 37°C using Type II collagenase and
8 subsequently cultured in α-MEM supplemented with 10% FBS. A few days later,
9 adherent OBs were collected by removing the bone fragments. For td-Tomato reporter
10 mice, OBs were processed as described and subsequently sorted using flow cytometry.

11 **Culture and osteogenic induction of 3T3-E1 cells**

12 MC3T3-E1 cells are grown in Dulbecco's Modified Eagle's Medium (DMEM, Gibco)
13 medium (GM) supplemented with 10% FBS (Gibco), 10 mM HEPES (Sigma), 63 mg/L
14 penicillin (Sigma), and 100 mg/L streptomycin (Sigma). The cells are maintained in a
15 humidified incubator at 37°C with an atmosphere of 5% CO₂. For osteogenic
16 differentiation, the cells are induced with an osteogenic induction medium (OM), which
17 consists of 10% FBS in DMEM, 50 μM ascorbic acid, 10 mM β-glycerol phosphate,
18 and 100 nM dexamethasone.

19 **Western blot**

20 For the extraction of total proteins from OBs, cells were lysed in RIPA buffer
21 supplemented with a phosphatase and protease inhibitor cocktail (PIC, HY-K0010,
22 MedChemExpress). For bone tissues, femurs were isolated from soft tissues, and the
23 mid-shaft portions were ground into a fine powder under liquid nitrogen. These
24 powders were then lysed in RIPA buffer containing the same inhibitor cocktail for 30
25 minutes at 4°C. After centrifugation at 12,000 rpm, the supernatant was collected, and
26 the proteins were denatured and separated by SDS-PAGE. The resolved proteins were
27 transferred onto PVDF membranes, which were then probed with specific primary
28 antibodies, including anti-P16 (1:1000, 30519-1-AP, Proteintech), anti-H2AK119ub1
29 (1:1000, 8240S, Cell Signaling Technology), anti-KDM2B (1:1000) , anti-PCGF1
30 (1:1000) (1, 2), anti-RING1B (Abcam, ab254343, 1:1000), anti-β-Catenin (1:1000,
31 9562S, Cell signaling Technology), anti-BCOR (1:1000, 30519-1-AP, Proteintech),
32 anti-TUBULIN (1:5000, A17910, ABclonal), anti-GAPDH (1:5000, A19056,
33 ABclonal), anti-H3 (1:5000, 9715S, Cell Signaling Technology). Following incubation
34 with appropriate secondary antibodies, the blots were visualized using the NcmECL
35 High Reagent (P2300, New Cell & Molecular Biotech) and captured with a Uvitec
36 Cambridge Imaging System. The protein bands were quantified by normalizing to an
37 internal control.

38 **RNA sequencing**

39 RNA sequencing was conducted by Novogene, using an Illumina Novaseq platform to
40 generate 150 bp paired-end reads. Clean reads were aligned to the mm39 reference
41 genome with Hisat2 (v2.2.1), and Samtools (v1.19) was used to convert sam files to
42 bam files. DeepTools (v3.5.4) was employed to generate bigwig files, with visualization
43 done via Integrative Genomics Viewer. Gene counts were calculated by Stringtie
44 (v2.2.1), and differential expression analysis was performed using the R package

45 DESeq2 (v1.34.0). Genes were considered significantly different if they met the criteria
46 of p-value < 0.05 and $|\log_2\text{FoldChange}| > 0.585$. Volcano plots and heatmaps were
47 generated with R packages ggplot2 (v3.4.3) and pheatmap (v1.0.12). FPKM values
48 were extracted using R packages Ballgown (v2.26.0). Pathway enrichment analysis was
49 performed using Metascape, and selected pathways were visualized with R packages
50 ggplot2 (v3.4.3)(3).

51 **CUT&Tag**

52 The CUT&Tag assay was performed using the Hyperactive Universal CUT&Tag Assay
53 Kit (TD904, Vazyme) as previously described (4). Briefly, 100,000 cells were harvested,
54 washed, and resuspended in wash buffer before incubation with pre-activated
55 conconavalin A beads. Primary anti-H2AK119ub1 (1:1000, 8240S, Cell Signaling
56 Technology) antibody and secondary antibodies were added sequentially, followed by
57 incubation with Dig-wash buffer and pA/G-Tnp Pro. After DNA extraction and PCR
58 amplification, sequencing was performed on an Illumina Novaseq6000 platform
59 (Annoroad Gene Technology, Beijing). Raw data underwent quality evaluation with
60 Fastqc (v0.12.1) and Multiqc (v1.19). Adapters were removed with Trim-galore
61 (v0.6.10). Clean reads were aligned to the mm39 reference genome and λDNA (TD904,
62 Vazyme), normalized based on scale-factor, and duplicates removed with Sambamba
63 (v1.0). Peak calling was conducted with Macs2 (v2.2.9.1), and bigwig files were
64 generated with Deeptools (v3.5.4). Peaks were annotated with R packages ChIPseeker
65 (v1.30.3), and pathway enrichment analysis was performed using Metascape.
66 (<https://metascape.org/gp/index.html>). Visualization of selected pathway were
67 generated by R packages ggplot2(v3.4.3) (3).

68 **µCT**

69 To observe and evaluate bone microstructure, µCT analysis was performed. Briefly,
70 femurs were harvested from mice, fixed overnight in 4% paraformaldehyde, and
71 scanned with an isotropic voxel size of 8 μm and a peak tube voltage of 55 kV and
72 current of 100 μA (SKYSCAN 1276; Bruker). Three-dimensional images were
73 reconstructed and regions of interest (ROI) were analyzed using NReconServer, CTAn,
74 and CTvox softwares (GE). Trabecular bone parameters were measured from 100
75 consecutive slices of the distal metaphysis, devoid of epiphyseal structures.

76 **Calcein double labeling and three-point bending test**

77 For calcein double labeling, mice were injected with calcein at 10 mg/kg on day 13 and
78 day 3 prior to femur harvest. Femurs were fixed, embedded in methylmethacrylate, and
79 sectioned at 5 μm . Images were acquired using a fluorescence confocal microscope, and
80 bone formation rates (BFR/BS and BFR/TV) were calculated from fluorochrome
81 double labels at periosteal and endocortical surfaces using OsteoMeasure software. The
82 three-point bending test was conducted on fresh femurs to assess structural and material
83 strength using an Instron electromechanical tester (Instron 3367). Load-displacement
84 curves were recorded until fracture, and the maximum force at failure was calculated.

85 **H&E staining, TRAP staining and IHC**

86 Samples including femurs, heart, liver, spleen, lung, and kidney were collected and
87 sectioned at 5 μm for H&E staining. Paraffin sections were dewaxed, stained with
88 hematoxylin and eosin, dehydrated, and sealed (5). For IHC, slides were stained with

89 specific antibodies: anti-WNT2 (1:100, 66656-1-Ig, Proteintech), anti-WNT3a (1:100,
90 26744-1-AP, Proteintech), anti- β -Catenin (1:100, 9562S, Cell signaling Technology)
91 antibody. Sections were deparaffinized, rehydrated, and antigen retrieval was
92 performed with 3% hydrogen peroxide. After blocking with 3% BSA, primary and
93 secondary antibodies were applied, and DAB substrate was used to develop signals. For
94 TRAP staining, sections were deparaffinized, rehydrated, and stained with a TRAP
95 staining kit (G1050, Servicebio). Images were scanned at $\times 100$ magnification
96 (Pannoramic 250 FLASH, 3DHISTECH), and OB/OC counts were performed using
97 ImageJ software.

98 **IF staining**

99 Femurs were fixed in 4% paraformaldehyde and decalcified in EDTA solution before
100 embedding in OCT compound and sectioning at 8 μ m. Sections were stained with an
101 anti- β -Catenin antibody. For OBs, cells were fixed, permeated, and incubated with
102 primary antibodies: RUNX2 (1:100, 12556S, Cell Signaling Technology), ALP (1:100,
103 AB_2838191, Affinity Biosciences Cat# DF6225) and secondary antibodies before
104 image capture with a fluorescence microscope.

105 **ChIP-PCR analysis**

106 Cells (1×10^6) were used for each immunoprecipitation following a previously
107 described protocol (4). In brief, cells were crosslinked with 1% formaldehyde at room
108 temperature (RT) in medium for 10 min, after which glycine was added to a final
109 concentration of 0.125 M to quench the crosslinking and incubate at room temperature
110 for 5 min. Cells were washed twice with PBS and lysed with SDS buffer (100 mM NaCl,
111 50 mM pH 8.1 Tris-HCl, 5 mM pH 8.0 EDTA, 0.02% NaN₃, 0.5% SDS, PIC) at RT for
112 5min. Cell lysates were harvested, and samples were thawed in a water bath to ensure
113 complete dissolution of SDS. After centrifugation at 4 °C 1200 rpm for 6 min, the
114 supernatant was discarded and 1 mL of prechilled IP buffer (a mixture of SDS buffer
115 and Triton Dilution Buffer in a 2:1 ratio, supplemented with PIC) was added. Samples
116 were then sonicated to produce 0.2-0.5 Kb DNA fragments, centrifuge sonicated
117 chromatin 13,000 rpm for 30 min.

118 Equal amount of protein was taken, and the volume was adjusted to 1 mL with IP buffer.
119 Primary antibodies, including anti- β -Catenin (5 μ g, 9562S, Cell Signaling Technology),
120 anti-H2AK119ub1 (1:1000, 8240S, Cell Signaling Technology), anti-PCGF1 (5 μ g),
121 anti-RING1B (5 μ g, 5694S, Cell Signaling Technology), or normal IgG, were added for
122 immunoprecipitation overnight at 4°C with rotation. Protein A/G beads were then added
123 and incubated on a rotating wheel at 4°C for 2 hrs. Beads were washed once with 1 mL
124 of 150 mM wash buffer (containing 1% TritonX-100, 0.1% SDS, 150 mM NaCl, 2 mM
125 EDTA pH 8.0, 20 mM Tris-HCl pH 8.0), and then twice with 500 mM wash buffer
126 (containing 1% TritonX-100, 0.1% SDS, 500 mM NaCl, 2 mM EDTA pH 8.0, 20 mM
127 Tris-HCl pH 8.0). Finally, 120 μ L of de-crosslinking buffer was added to both input and
128 IP samples and incubated at 65°C overnight at 1200 rpm to elute the complexes from
129 the beads. QIAGEN PCR purification kit was used for ChIP-DNA purification, and the
130 samples were quantified by real-time PCR using primers listed in data file S5.

131 **RNA isolation and qRT-PCR**

132 Total RNA was isolated using kit (M050, New Cell & Molecular Biotech) and reverse

133 transcribed using HiScript III All-in-one RT SuperMix (R333-01, Vazyme). qRT-PCR
134 was conducted using SYBR Green Master Mix (Q711-03, Vazyme). Real-time
135 quantitative PCR was performed with the LightCycler480 system. The relative
136 expression of target genes was calculated using method of $2^{-\Delta\Delta CT}$. Primers used in qRT-
137 PCR was listed in data file S5.

138 **Dual luciferase assay**

139 To detect relative luciferase activity of TOP reporter, 3T3-E1 cells were co-transfected
140 with 100 ng TOP-FLASH plasmid harboring six TCF-binding motifs (Millipore), and
141 2 ng of the renilla luciferase control vector pGL4.74 (Promega). Following a 7-day
142 incubation in osteogenic induction medium, cell lysates were prepared using the lysis
143 buffer from the TransDetect® Double-Luciferase Reporter Assay Kit (FR201,
144 TransGen Biotech, China). Luciferase activity was subsequently quantified using a
145 GloMax 20/20 luminometer (Promega).

146 **Stability Assay of iBP**

147 The stability of iBP (400 μ M) was assessed using HPLC following incubation in cell
148 culture media (DMEM) supplemented with 10% FBS at 37 °C for 0, 12, or 24 hrs. To
149 facilitate the precipitation of proteins from FBS, the incubation mixture was diluted
150 with a four-fold volume of acetonitrile and centrifuged. The resulting supernatant was
151 then subjected to HPLC analysis to determine the remaining iBP concentration.

152 **HPLC**

153 HPLC analysis for iBP was conducted using a Shimadzu LC-20AT system equipped
154 with an SPD-20A UV-VIS detector. The chromatographic separation was achieved on
155 a 4.6 \times 150 mm Agilent Eclipse XDB-C18 5 μ m column. The mobile phase consisted
156 of solvent A (water with 0.1% trifluoroacetic acid) and solvent B (acetonitrile) at a flow
157 rate of 1.0 mL/min. The gradient elution program was as follows: 10% B (0–2 min),
158 10–100% B (2–16 min), 100% B (16–18 min), 100–80 % B (18–19 min) and 80% B
159 (19–20 min).

160 **Mouse PK Study**

161 A standard pharmacokinetic study was conducted on iBP using C57BL/6J mice (n=3).
162 The intraperitoneal injection formulation consisted of a 4 mg/mL solution of iBP
163 prepared with a ratio of 10% DMSO, 40% PEG300, 5% Tween 80, and 45% Saline.
164 The mice were administered iBP intraperitoneally at a dosage of 20 mg/kg, and plasma
165 samples were collected at intervals of 5 min, 15 min, 30 min, 1 hr, 2 hrs, 4 hrs, 8 hrs,
166 and 24 hrs post-injection. The harvested supernatant was diluted with water at a 1:2
167 ratio, and 2 μ L of the diluted supernatant was subjected to LC/MS/MS for quantitative
168 analysis.

169 **High-throughput screening with AutoDock Vina**

170 Compounds from ZINC database were subject to docking by using AutoDock Vina.
171 Structure of PCGF1^{RAWUL} was taken from crystal structure of PCGF1^{RAWUL} –
172 BCOR^{PUFD} complex (PDB code 4HPL). pdbqt file of PCGF1^{RAWUL} was generated
173 using MGL Tools. PCGF1^{RAWUL} protein was prepared by adding hydrogen atoms and
174 Kolloman charges. The grid box was generated using grid-box option from MGL Tools.
175 Each ligand was docked using exhaustiveness value of 16, and energy_range value of
176 0.1.

177 **Protein purification**

178 The cDNA encoding PCGF1^{RAWUL} L238A/F242A mutant (amino acids 166-255) was
179 cloned into pGEX 6P-1 vector with N-terminal GST and hexa-histidine tag followed
180 by PreScission Protease cleavage site. The cDNA encoding BCOR^{PUFD} (residues 1580-
181 1696) was cloned into pET-28a vector with N-terminal hexa-histidine tag. Both
182 PCGF1^{RAWUL} L238A/F242A mutant and BCOR^{PUFD} were expressed in *E. coli* BL21
183 (DE3) strain, respectively. Cultures were grown at 37 °C to OD₆₀₀ of 0.6-0.8 before
184 induction with 0.5 mM IPTG, and incubated for an additional 20 hrs at 16°C to promote
185 protein expression.

186 For the purification of PCGF1^{RAWUL} L238A/F242A mutant, cells were harvested
187 and resuspended in lysis buffer (20 mM Tris pH 8.0, 1 M NaCl, 7 mM β-
188 mercaptoethanol, 5% glycerol). The recombinant protein was purified using Ni²⁺
189 affinity chromatography, followed by cleavage of the GST and His tags with
190 PreScission Protease. The mutant PCGF1^{RAWUL} was further refined by additional Ni²⁺
191 affinity chromatography and gel filtration on a Superdex 75 (16/60) column pre-
192 equilibrated with a buffer comprising 20 mM HEPES pH 7.5, 150 mM NaCl, 10%
193 glycerol, and 0.5 mM TCEP. His-BCOR^{PUFD} was purified using a similar Ni²⁺ affinity
194 chromatography approach, followed by gel filtration on a Superdex 75 (16/60) column.

195 **AlphaScreen assay**

196 The PCGF1^{RAWUL} L238A/F242A mutant was biotinylated using Biotinylation kit (G-
197 MM-IGT, Genemore, Shanghai, China) according to manufacturer's instructions. A
198 concentration of 200 nM biotinylated PCGF1^{RAWUL} L238A/F242A mutant was mixed
199 with inhibitor at indicated concentration in the buffer containing 50 mM MOPS pH 7.4,
200 0.05 mM CHAPS, 50 mM NaF and 0.1 mg/mL BSA, and incubated for 15 min at room
201 temperature. After adding 7.5 µg/mL Nickerl chelate beads, 7.5 µg/mL Streptavidin
202 beads and 200 nM His-BCOR, the mixture was then incubated for additional 1.5 hrs at
203 20 °C. Finally, the mixture was transferred to 384-well plate and analyzed by a EnVision
204 (PerkinElmer).

205 **Biolayer Interferometry Assay (BLI)**

206 Bio-layer interferometry equipment (Gator Bio) was used to determine the binding
207 affinity between iBP and the PCGF1^{RAWUL} L238A/F242A mutant. Biotinylated
208 PCGF1^{RAWUL} L238A/F242A at concentration of 50 µg/mL was immobilized on a SA
209 XT biosensor. To remove non-specific bound, the biosensors were washed with assay
210 buffer (50 mM MOPS pH 7.4, 0.05 mM CHAPS, 50 mM NaF, 0.1 mg/mL BSA and
211 0.5% DMSO). After obtaining a baseline reading in assay buffer, the biosensors were
212 dipped into reference well or wells containing the various concentration of iBP for 5
213 min. Then, the biosensors were washed with assay buffer for 2 min. Binding kinetics
214 were analyzed using 1:1 binding model with on-board software. Data were plotted using
215 GraphPad Prism software.

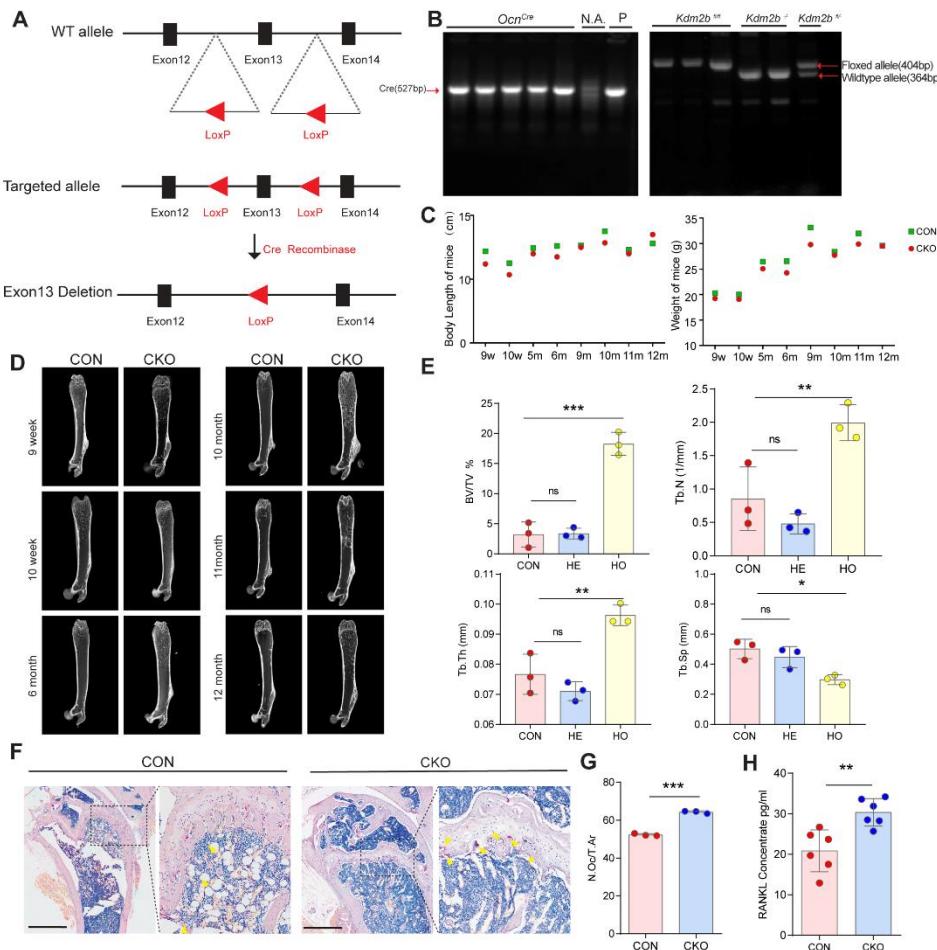
216 **Scanning electron microscope (SEM) and transmission electron microscopy (TEM)**

217 The surface structure of the F127 hydrogel (20% W/V) was examined using SEM.
218 Samples were freeze-dried using an LGJ-12A freeze dryer (China), gold-coated, and
219 imaged with a Zeiss Gemini 300 SEM. The morphology of iBP was observed under a
220 HT7700 TEM (Hitachi High-Tech, Tokyo, Japan). The size and size distribution of

221 iBP particles were further analyzed using a Zetasizer Nano ZS automatic particle size
222 detector (Malvern, UK).

223 ***In vitro* drug release assay**

224 The release profile of iBP from the F127 hydrogel-gelatin sponge was assessed using a
225 dialysis membrane with a molecular weight cut-off (MWCO) of 3500 Da. Sponges
226 loaded with either 2 mg/mL (100 μ L) or 4 mg/mL (100 μ L) of iBP (measuring 2x2x10
227 mm³) were placed in 100 mL of PBS at 37°C with continuous stirring at 100 rpm. At
228 each time point, 1 mL of the solution was removed and replaced with 1 mL of PBS to
229 maintain a constant volume. The concentration of iBP in the solution was determined
230 using a standard curve established at OD₃₀₀ nm, recorded with a U-3310
231 spectrophotometer (Hitachi High-Tech, Tokyo, Japan).

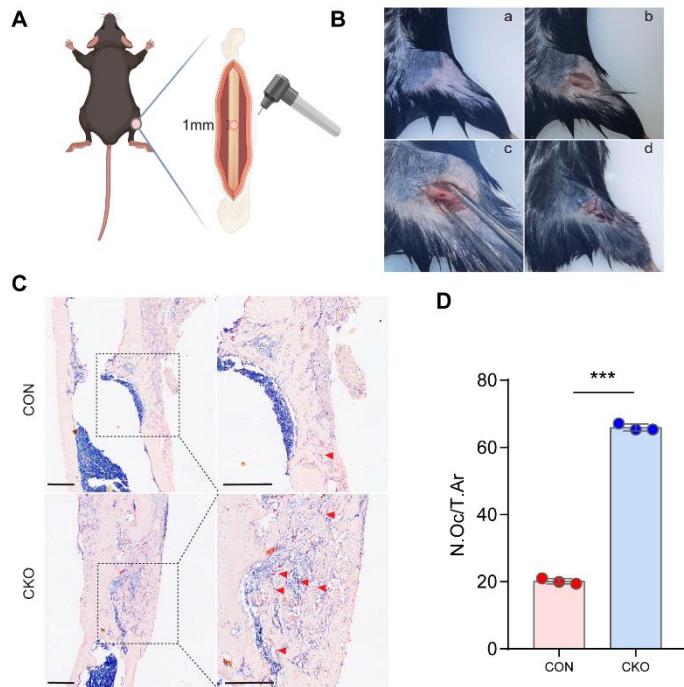

232

233

234

235 **Supplementary Figures**

236



237

238 **Fig S1. Selective ablation and phenotypic characterization of the KDM2B-CxxC**
239 **in femur.**

240 **(A)** Schematic representation of the *Kdm2b* genomic structure (top), targeting allele
241 (middle) and targeted allele (bottom). Exon 13 is flanked by two *loxP* sites and will be
242 excised after mating with Cre-recombinase-expressing mice. **(B)** PCR products for
243 respective genotypes. **(C-D)** Representative images of scanning coronal sections of
244 femurs and statistical analysis of body weight (C) and images (D) of femur of *Kdm2b*^{fl/fl}
245 *Ocn*^{Cre} mice at different ages. **(E)** μCT analysis of trabecular parameters (n=3 mice per
246 genotype). Statistical tests were performed using ordinary one-way ANOVA for (E), *
247 P < 0.05, ** P < 0.01, *** P < 0.001. **(F-G)** Images of TRAP staining of femurs from
248 *Kdm2b*^{fl/fl} *Ocn*^{Cre} mice and controls, box areas shown at a higher magnification to the
249 right (F). TRAP-positive OCs marked with yellow triangles. Statistical analysis of
250 number of OCs of femurs from *Kdm2b*^{fl/fl} *Ocn*^{Cre} mice and controls (G) (n = 3 mice per
251 genotype). **(H)** The concentration of RANKL in serum was detected by ELISA (n=6).
252 Statistical tests were performed using Student's *t* tests for (G) and (H). *P < 0.05, **P
253 < 0.01, ***P < 0.001, ns, not significant., CON: (*Ocn*^{Cre} mice), HE: Heterozygote
254 (*Kdm2b*^{fl/fl} *Ocn*^{Cre} mice), HO: Homozygote (*Kdm2b*^{fl/fl} *Ocn*^{Cre} mice).

255

256

257

Fig S2. Construction of bone defect model.

258

259

(A) Schematic diagram of preparation of a 1 mm diameter circular defect located in the middle of the femur. (B) Process of bone defect preparation: a, shaving right lower limb; b, exposing the right femur; c, preparing circular defects; d, postoperative suture.

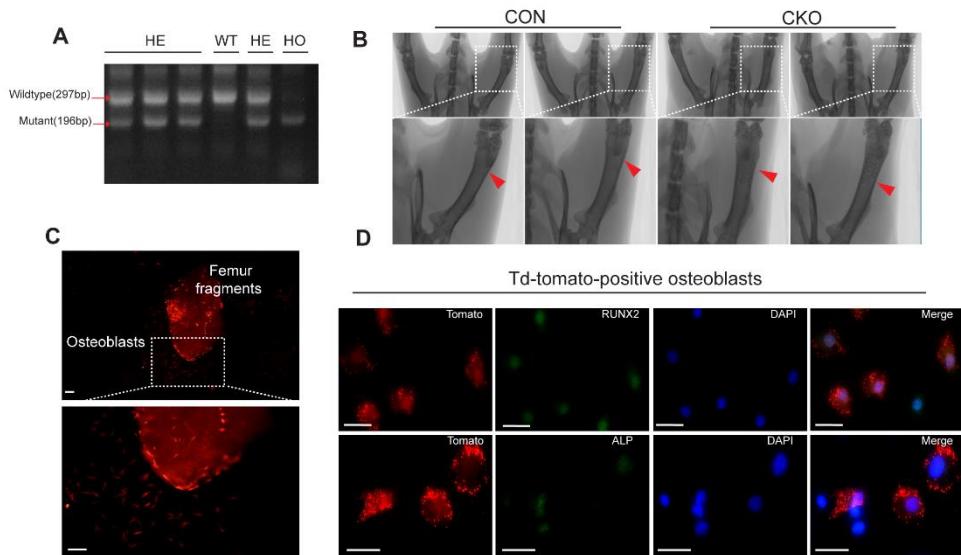
260

(C) Representative images of TRAP staining in the bone defect area from *Kdm2b^{fl/fl}* *Ocn^{Cre}* mice and controls, with box areas shown at a higher magnification to the below. TRAP-positive OCs are indicated by yellow triangles. (D) Quantitative analysis of OC

261

numbers in the newly formed bone within the bone defect area for each genotype (n=3 mice per genotype). Statistical significance was determined using Student's *t* tests, ***P < 0.001.

262


263

264

265

266

267

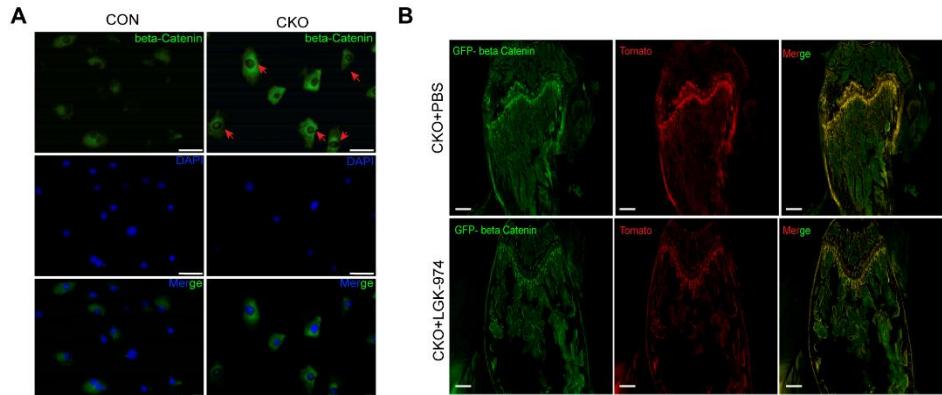
268

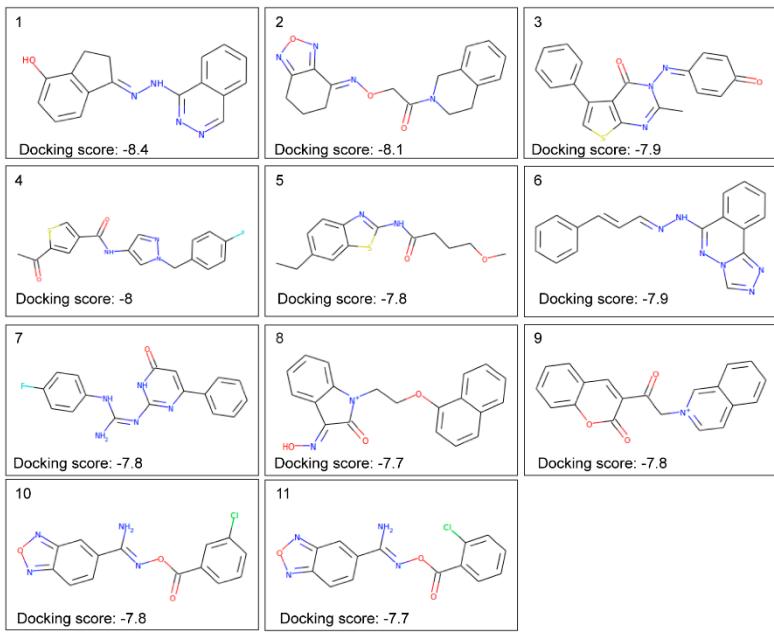
269 **Fig S3. Screening of tomato-positive osteoblasts from *Kdm2b*^{fl/fl}*Ocn*^{Cre} *td-Tomato***

270 mice.

271 (A) PCR products for each genotype. (B) μCT analysis of right lower limb of live mice,
 272 with trabecular marked with red triangles. (C) Fluorescence microscopy images
 273 depicting tomato-positive cells emerging from cultured bone fragments, with the
 274 boxed areas shown at a higher magnification to the below. (D) IF images of
 275 osteogenesis-related marker proteins (RUNX2/ALP) in tomato-positive OBts. WT:
 276 wildtype of *td-Tomato* mice, HE: Heterozygote of *td-Tomato* mice, HO: Homozygote
 277 of *td-Tomato* mice.

278

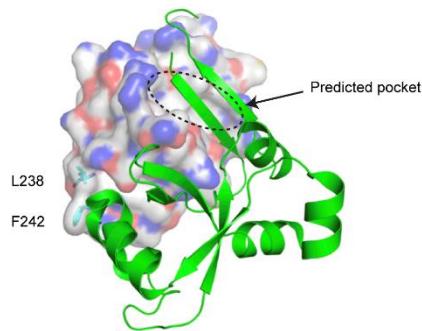

279


280

281 **Fig S4. KDM2B inactivation enhances OB functions through the activation Wnt/β-
282 catenin signaling**

283 (A) Representative IF images showing β-Catenin localization in tomato-positive
284 osteoblasts isolated from CON and CKO mice. Red arrows indicate β-Catenin
285 translocation to the nucleus. (B) Representative IF images representing β-Catenin
286 staining in the femur metaphysis of CKO mice, with or without LGK974 treatment for
287 1 mon. CON: *Ocn*^{Cre} *tdTomato* mice, CKO: *Kdm2b*^{fl/fl} *Ocn*^{Cre} *tdTomato* mice

288

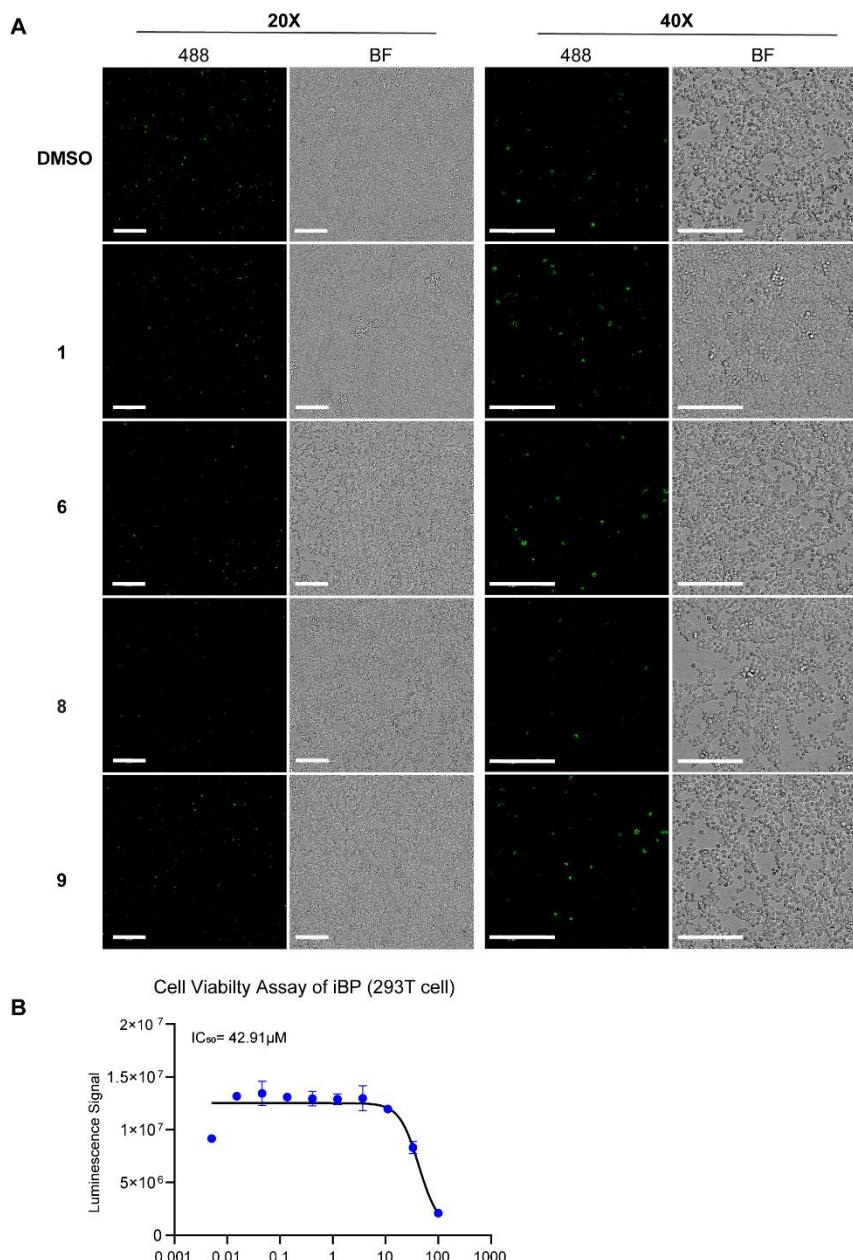


289

290 **Fig S5. Screening of inhibitors targeting PRC1.1 by blocking interaction of BCOR-
291 PCGF1.**

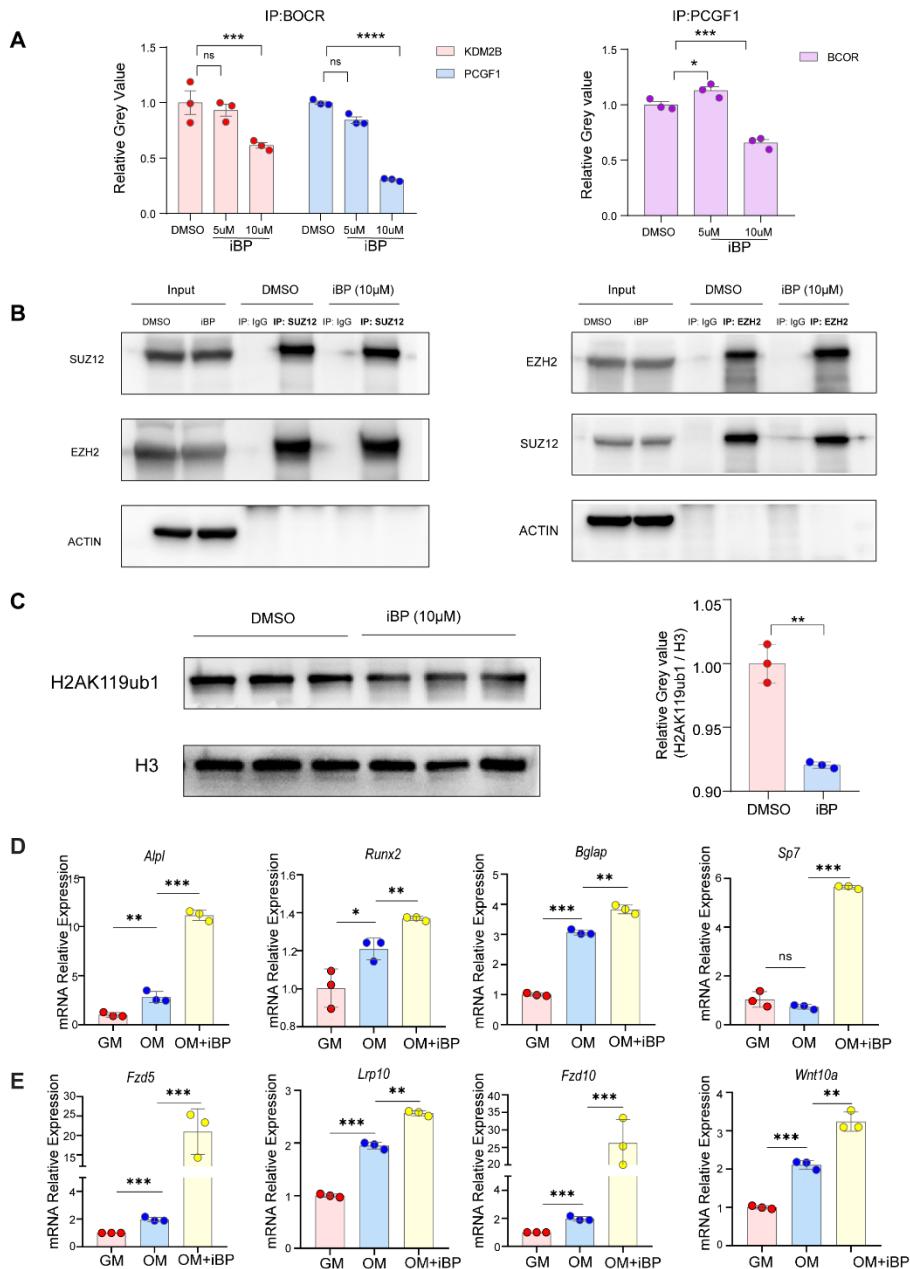
292 Chemical molecular formulas and docking scores of selected candidate inhibitors (1-
293 11).

294



295

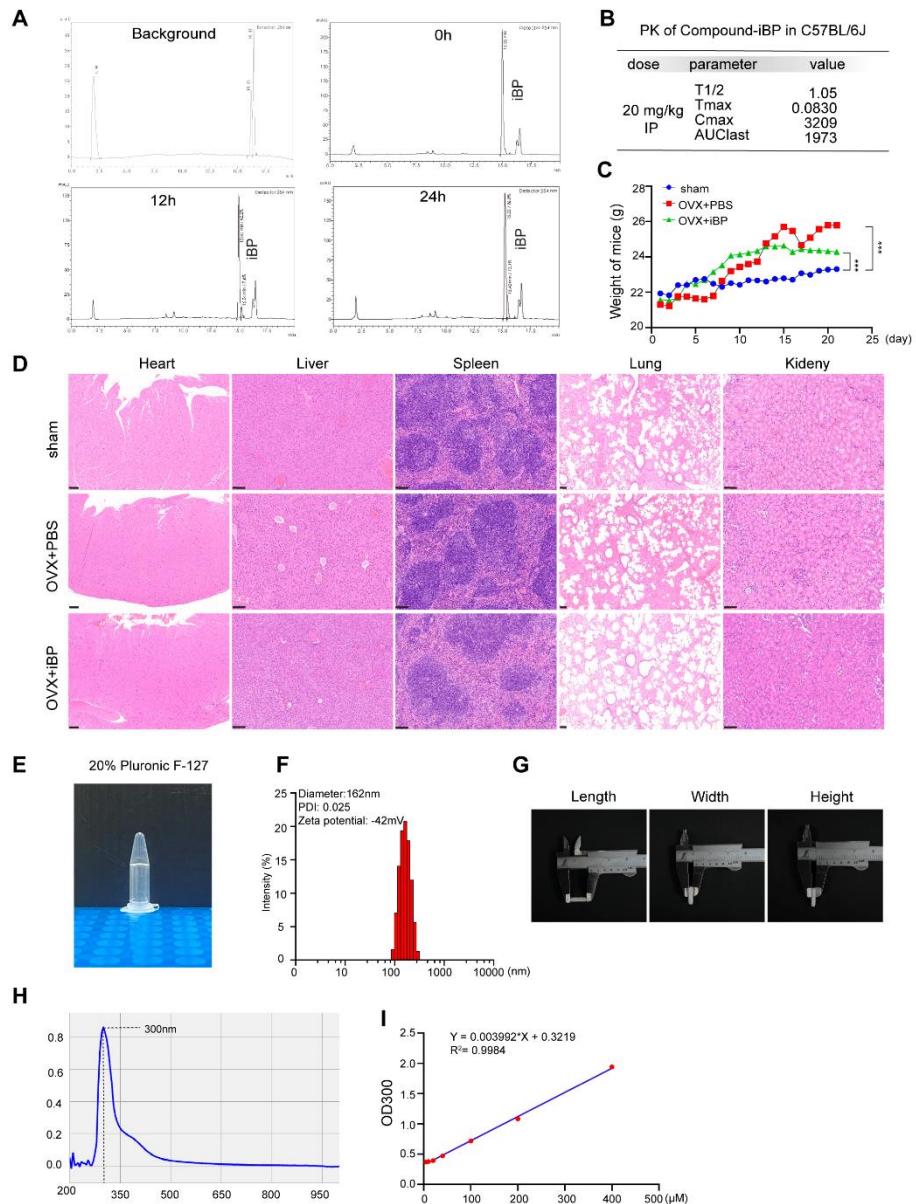
296 **Fig S6. Crystal structure of PCGF1^{RAWUL}-BCOR^{PUFD} complex (PDB:4HPL)**


297 The L238 and F242 residues on PCGF1 are shown as cyan sticks. RAWUL domain of
298 PCGF1 is shown as surface (white for carbon, red for oxygen, blue for nitrogen, and
299 yellow for sulfur). PUFD domain of BCOR is shown as green cartoon.

300

301

302 **Fig S7. Inhibition efficiency and cell viability assay of candidate compounds.**
303 (A) Representative Images from high-content screening system showing GFP
304 expression in 293T cells co-transfected with plasmids GFP1-10-PCGF1 and GFP11-
305 BCOR, following treatment with candidate inhibitors after 48 hrs of culture. (B)
306 Determination of the IC_{50} of iBP in 293T cell using a Cell Viability Assay kit.
307
308



309

310 Fig S8. Biochemical and functional Characterization of iBP in cells.

311 **(A)** Statistical analysis of gray values of Fig 6, I and J. **(B)** Co-IP assay showing the
 312 unaltered interaction between SUZ12 and EZH2. **(C)** WB assay showing the reduction
 313 of global H2AK119ub levels following iBP treatment. Quantification of the normalized
 314 H2AK119ub1 levels was conducted, and statistical significance was assessed using
 315 Student's *t* tests, ***P* < 0.01. **(D-E)** RT-qPCR analysis of leading genes of the Wnt
 316 pathway and osteogenesis-related genes in 3T3-E1 cells cultured with osteogenic
 317 medium for 7 days in the presence or absence of iBP treatment. Statistical tests were
 318 performed using ordinary one-way ANOVA for (A), (D) and (E), **P* < 0.05, ***P* < 0.01,
 319 ****P* < 0.001, *****P* value < 0.0001, ns, not significant.

320

321

Fig S9. Characterization and systemic administration of iBP.

322 (A) HPLC analysis of iBP stability in serum medium at 12 and 24 hrs. (B) Pharmacokinetic profile of iBP. (C) Statistical analysis of weight of setting-up groups (n=5 mice per group). Statistical significance was assessed using ordinary one-way ANOVA, ***P<0.001. (D) Representative images of HE staining of heart, liver, spleen, lung and kidney from each group. (E) Visual representation of F127 hydrogel at 30% concentration at room temperature. (F) Particle size distribution analysis of iBP nanoparticles. (G) Measurement of the dimensions (length, width, and height) of the gelatin sponge used in the study. (H) Ultraviolet visible absorption spectrum analysis of iBP. (I) Standard curve of iBP (OD= 300 nm).

323

324

325

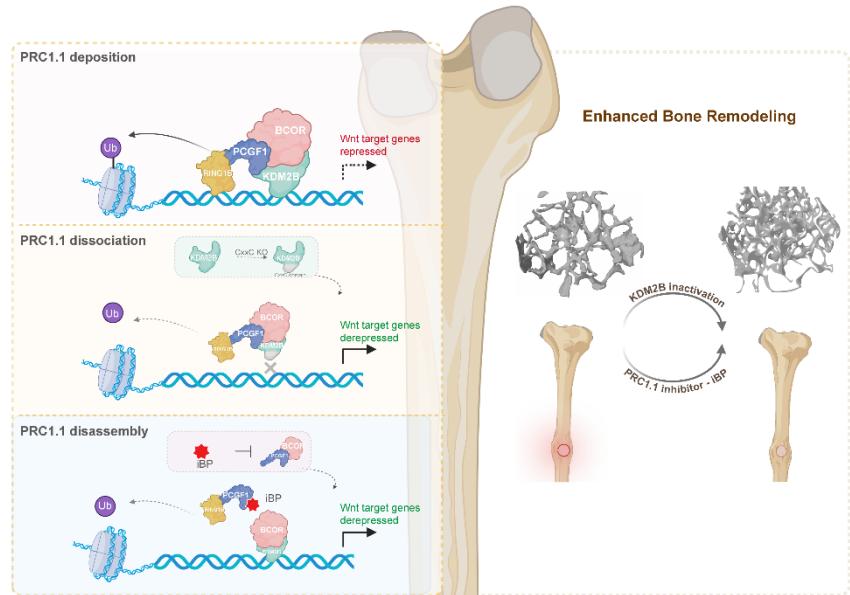
326

327

328

329

330


331

332

333

334

335

336

337 **Fig. S10. Working model of this study**

338 Deletion of the KDM2B-CxxC domain leads to PRC1.1 dissociation, enhancing bone
 339 remodeling through Wnt signaling activation and associated loss of H2AK119ub1 at
 340 target genes. Similarly, PRC1.1 inhibition via complex disassembly by a small-
 341 molecule inhibitor counteracts bone loss in pathological conditions, including
 342 osteoporosis and acute trauma.

343