References
1.Bini SA. Artificial intelligence, machine learning, deep learning, and cognitive computing: what do these terms mean and how will they impact health care? J Arthroplast. 2018;33(8):2358–61.
2.Helm JM, Swiergosz AM, Haeberle HS, Karnuta JM, Schaffer JL, Krebs VE, Spitzer AI, Ramkumar P. Machine learning and artificial intelligence: definitions, applications, and future directions. Curr Rev Musculoskelet Med. 2020;13(1):69–76.
3.Jordan MI, Mitchell TM. Machine learning: Trends, perspectives, and prospects. Science. 2015;349(6245):255–60.
4.González-Camacho JM, Ornella L, Pérez‐Rodríguez P, Gianola D, Dreisigacker S, Crossa J. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. Plant Genome, 11, 2, 2018.
5.Li B, Zhang N, Wang YG, George AW, Reverter A, Li Y. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods. Front Genet, 9, 237, 2018.
6.van der Heide EMM, Veerkamp RF, van Pelt ML, Kamphuis C, Athanasiadis I, Ducro BJ. Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle. J Dairy Sci. 2019;102(10):9409–21.
7.Montesinos-López OA, Montesinos-López A, Crossa J. Multivariate statistical machine learning methods for genomic prediction. Cham: Springer Nature; 2022.
8.Trends in Plant Science, vol. 22, no. 11, pp. 961–975, 2017.
9.Jenkins S, Gibson N. High-throughput SNP genotyping. Comp Funct Genomics. 2002;3(1):57–66.
10.Syvänen AC. Toward genome-wide SNP genotyping, Nature genetics, vol. 37, no. Suppl 6, pp. S5-S10, 2005.
11.Ganal MW, Polley A, Graner EM, Plieske J, Wieseke R, Luerssen H, Durstewitz G. Large SNP arrays for genotyping in crop plants. J Biosci. 2012;37(5):821–8.
12.Heslot N, Jannink JL, Sorrells ME. Perspectives for genomic selection applications and research in plants. Crop Sci. 2015;55(1):1–12.
13.Long N, Gianola D, Rosa GJ, Weigel KA, Avendano S. Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. J Anim Breed Genet. 2007;124(6):377–89.
14.Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics. 2010;9(2):166–77.
15.Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–9.
16.Wright MN, Ziegler A, König IR. Do little interactions get lost in dark random forests? BMC Bioinformatics. 2016;17:1–10.
17.Lange TM, Heinrich F, Kopisch-Obuch F, Keunecke H, Gültas M, Schmitt AO. Improving genomic prediction of rhizomania resistance in sugar beet (Beta vulgaris L.) by implementing epistatic effects and feature selection, F1000Research, vol. 12, no. 280, 2023.
18.Lange TM, Heinrich F, Kopisch-Obuch F, Keunecke H, Gültas M, Schmitt AO. density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool, Plant Biotechnology Journal, vol. 14, no. 5, pp. 1195–1206, 2016.
19.Lange TM, Heinrich F, Kopisch-Obuch F, Keunecke H, Gültas M, Schmitt AO. throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum), Plant Biotechnology Journal, vol. 15, no. 3, pp. 390–401, 2017.
20.Lange TM, Heinrich F, Enders M, Wolf M, Schmitt AO. In silico quality assessment of SNPs—A case study on the Axiom Wheat genotyping arrays. Curr Plant Biology, 21, 2020.
21.Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010;31(14):2225–36.
22.Goldstein BA, Polley EC, Briggs FB. Random forests for genetic association studies. Stat Appl Genet Mol Biol, 10, 1, 2011.
23.Grömping U. Variable importance in regression models. Wiley Interdisciplinary Reviews: WIREs Comput Stat. 2015;7(2):137–52.
24.Lunetta KL, Hayward LB, Segal J, van Eerdewegh P. Screening large-scale association study data: exploiting interactions using random forests. BMC Genet. 2004;5:1–13.
25.Schwarz DF, König IR, Ziegler A. On safari to Random Jungle: a fast implementation of Random Forests for high-dimensional data. Bioinformatics. 2010;26(14):1752–8.
26.Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for random forests and omics data sets. Brief Bioinform. 2019;20(2):492–503.
27.Klees S, Lange TM, Bertram H, Rajavel A, Schlüter JS, Lu K, Schmitt AO, Gültas M. In Silico Identification of the Complex Interplay between Regulatory SNPs, Transcription Factors, and Their Related Genes in Brassica napus L. Using Multi-Omics Data. Int J Mol Sci, 22, 2, 2021.
28.Haleem A, Klees S, Schmitt AO, Gültas M. Deciphering pleiotropic signatures of regulatory SNPs in Zea mays L. using multi-omics data and machine learning algorithms. Int J Mol Sci, 23, 9, 2022.
29.Kursa MB. Robustness of Random Forest-based gene selection methods. BMC Bioinformatics. 2014;15:1–8.
30.Breiman L. Random forests. Mach Learn. 2001;45:5–32.
31.Liaw A, Wiener M. Classification and regression by randomForest. R news, 2002.
32.Probst P, Wright MN, Boulesteix AL. Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: data Min Knowl discovery, 9, 3, 2019.
33.Bernard S, Heutte L, Adam S. Influence of hyperparameters on random forest accuracy, in Multiple Classifier Systems: 8th International Workshop, MCS 2009, Reykjavik, Iceland, June 10–12, 2009, 2009.
34.Scornet E. Tuning parameters in random forests, ESAIM: Proceedings and Surveys, vol. 60, pp. 144–162, 2017.
35.Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:1–13.
36.Lin Y, Jeon Y. Random forests and adaptive nearest neighbors. J Am Stat Assoc. 2006;101(474):578–90.
37.Wright MN, Ziegler A. ranger: A Fast Implementation of Random Forests. J Stat Softw. 2017;77(1):1–17.
38.Seligman M. Rborist: Extensible, Parallelizable Implementation of the Random Forest Algorithm, 2024.
39.Boehmke B, Greenwell BM. Hands-on machine learning with R. 1 ed. Chapman and Hall/CRC; 2019.
40.Hastie T, Tibshirani R, Friedman JH, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. Volume 2. NY: Springer New York; 2009.
41.Biau G, Scornet E. A random forest guided tour, Test, vol. 25, pp. 197–227, 2016.
42.Heredity, vol. 112, no. 6, pp. 616–626, 2014.
43.Sirsat MS, Oblessuc PR, Ramiro RS. Genomic prediction of wheat grain yield using machine learning, Agriculture, vol. 12, no. 9, 2022.
44.Oshiro TM, Perez PS, Baranauskas JA. How many trees in a random forest? in Machine Learning and Data Mining in Pattern Recognition: 8th International Conference, MLDM 2012, Berlin, Germany, July 13–20, 2012, 2012.
45.Kuhn M. Building Predictive Models in R. J Stat Softw. 2008;28(5):1–26.
46.Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966;19(1):3–11.
47.McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods, 1, 1, 1996.
48.Trevethan R. Intraclass correlation coefficients: clearing the air, extending some cautions, and making some requests. Health Serv Outcomes Res Method. 2017;17(2):127–43.
49.Gamer M, Lemon J, Singh P, Fellow I. irr: Various Coefficients of Interrater Reliability and Agreement, 2019.
50.Fleiss JL. Measuring nominal scale agreement among many raters. Psychol Bull, 76, 5, 1971.
51.Konstantinidis M, Le LW, Gao X. An empirical comparative assessment of inter-rater agreement of binary outcomes and multiple raters, Symmetry, vol. 14, no. 2, 2022.
52.Zou G. Sample size formulas for estimating intraclass correlation coefficients with precision and assurance. Stat Med. 2012;31(29):3972–81.
53.Jonsdottir G, Haraldsdottir E, Sigurdardottir V, Thoroddsen A, Vilhjalmsson R, Tryggvadottir GB, Jonsdottir H. Developing and testing inter-rater reliability of a data collection tool for patient health records on end‐of‐life care of neurological patients in an acute hospital ward. Nurs Open. 2023;10(8):5500–8.
54.Pinheiro J, Bates D. Mixed-effects models in S and S-PLUS. 1 ed. NY: Springer New York; 2006.
55.Ricketts JH, Head GA. A five-parameter logistic equation for investigating asymmetry of curvature in baroreflex studies. Am J Physiology-Regulatory Integr Comp Physiol, 277, 2, pp. R441-R454, 1999.
56.Gottschalk PG, Dunn JR. The five-parameter logistic: a characterization and comparison with the four-parameter logistic. Anal Biochem. 2005;343(1):54–65.
57.Lin D, Shkedy Z, Yekutieli D, Amaratunga D, Bijnens L. Modeling dose-response microarray data in early drug development experiments using R: order-restricted analysis of microarray data. 1 ed. Berlin Heidelberg: Springer; 2012.
58.Vølund A. Application of the four-parameter logistic model to bioassay: comparison with slope ratio and parallel line models. Biometrics pp. 357–65, 1978.
59.Journal of Biopharmaceutical Statistics, vol. 15, no. 2, pp. 205–223, 2005.
60.Lange TM, Rotärmel M, Müller D, Mahone GS, Kopisch-Obuch F, Keunecke H, Schmitt AO. Non-linear transformation of enzyme-linked immunosorbent assay (ELISA) measurements allows usage of linear models for data analysis. Virol J, 19, 1, 2022.
61.Elzhov TV, Mullen KM, Spiess A, Bolker B. minpack.lm: R Interface to the Levenberg-Marquardt Nonlinear Least-Squares Algorithm Found in MINPACK. Plus Support for Bounds; 2023.
62.Frontiers in Plant Science, vol. 11, 2020.
63.Liu Z, Sun C, Yan Y, Li G, Wu G, Liu A, Yang N. Genome-wide association analysis of age-dependent egg weights in chickens. Front Genet, 9, 2018.
64.Genetics, vol. 186, no. 2, pp. 713–724, 2010.
65.Crop Science, vol. 63, no. 3, pp. 1300–1315, 2023.
66.Eckhoff W. Phenotypic data, Genotypic data, Rye, Secale cereale, Dry matter yield, Plant height, GCA, Hybrid Breeding, Inbred Line, 2023.
67.Jiménez NP, Feldmann MJ, Famula RA, Pincot DD, Bjornson M, Cole GS, Knapp SJ. Harnessing underutilized gene bank diversity and genomic prediction of cross usefulness to enhance resistance to Phytophthora cactorum in strawberry. Plant Genome, 16, 1, 2023.
68.Pincot DD, Hardigan MA, Cole GS, Famula RA, Henry PM, Gordon TR, Knapp SJ. Accuracy of genomic selection and long-term genetic gain for resistance to Verticillium wilt in strawberry. Plant Genome, 13, 3, 2020.
69.G3: Genes, Genomes, Genetics, vol. 13, no. 5, 2023.
70.Lozada DN, Ward BP, Carter AH. Gains through selection for grain yield in a winter wheat breeding program. PLoS ONE, 15, 4, 2020.
71.Guo X, Svane SF, Füchtbauer WS, Andersen JR, Jensen J, Thorup-Kristensen K. Genomic prediction of yield and root development in wheat under changing water availability. Plant Methods. 2020;16:1–15.
72.Genome Biology, vol. 22, no. 1, 2021.
73.Kowarik A, Templ M. Imputation with the R Package VIM. J Stat Softw. 2016;74:1–16.
74.Kerckhoffs DA, Hornstra G, Mensink RP. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr. 2003;78(2):221–7.
75.β-glucan and amylopectin molecular structure, Carbohydrate Polymers, vol. 316, 2023.
76.Miedaner T, Müller BU, Piepho H-P, Falke KC. Genetic architecture of plant height in winter rye introgression libraries. Plant Breeding. 2011;130(2):209–16.
77.Miedaner T, Müller BU, Piepho H-P, Falke KC. tuning the amylose content of rice by precise base editing of the Wx gene, Plant Biotechnology Journal, vol. 19, no. 1, pp. 11–13, 2021.
A
78.Lourakis MI. A brief description of the Levenberg-Marquardt algorithm implemented by levmar. Foundation Res Technol. 2005;4(1):1–6.