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212 Supplementary Table 1 IQE/EQE and Abs of SCASN:Eu phosphor powders, 

213 SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS. 

Samples 
Excitation 

Wavelength 
(nm) 

IQE EQE Abs 

SCASN:Eu powder 455 nm 96.5% 81.8% 84.0% 

SCASN:Eu PiGF-RTA 455 nm 91.2% 65.9% 72.3% 

SCASN:Eu PiGF-TS 455 nm 82.8% 59.4% 71.8% 

214   



215 Supplementary Table 2 Comparison of IQE/EQE of all inorganic red luminescent 

216 materials. 

phosphor Material IQE EQE Ref. 

CaAlSiN3:Eu2+ PiGF 79 % - [1] 

CaAlSiN3:Eu2+ PiGF 83 % - [2] 

CaAlSiN3:Eu2+ PiGF 70.7 % 63.8 % [3] 

CaAlSiN3:Eu2+ PiGF 71 % - [4] 

CaAlSiN3:Eu2+ PiGF 89% 56 % [5] 

CaAlSiN3:Eu2+ PiGF 66.7 % - [6] 

CaAlSiN3:Eu2+ PiGF 54.4% 40.8 % [7] 

CaAlSiN3:Eu2+ PiG - 53 % [8] 

CaAlSiN3:Eu2+ Ceramic 28.5 % 17.4 % [9] 

CaAlSiN3:Eu2+ Ceramic - 60 % [10] 

SrAlSiN3:Eu2+ PiG 75.6 % - [11] 

Calson:Ce PiGF 31.2 % 19.7 % [12] 

Mg2Al4Si5O18:Eu2+ Ceramic 87.4 % 71.2 % [13] 

(SrCa)AlSiN3:Eu2+ PiGF 91.2 % 65.9 % This work 
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218 Supplementary Table 3 Luminous flux and luminescence efficiency of S-PiGF-RTA 

219 and S-PiGF-TS under excitation by increasing the incident blue laser power density 

220 from 1.27 W/mm2 to 27.07  W/mm2. 

S-PiGF-RTA S-PiGF-TS 
Laser power  

density 
 (W/mm2) 

Laser power 
(W) Luminous 

flux (lm) 

Luminous 
efficacy 
(lm/W) 

Luminous 
flux (lm) 

Luminous 
efficacy 
(lm/W) 

1.27  0.8 86.49 108.11  41.39 51.74  

1.59  1 102.26 102.26  51.386 51.39  

3.18  2 186.06 93.03  94.269 47.13  

4.78  3 258.93 86.31  134.64 44.88  

6.37  4 327.66 81.92  169.69 42.42  

7.96  5 391.59 78.32  203.2 40.64  

9.55  6 454.34 75.72  235.82 39.30  

11.15  7 512.74 73.25  276.41 39.49  

12.74  8 568.16 71.02  308.56 38.57  

14.33  9 616.08 68.45  338.7 37.63  

15.92  10 670.03 67.00  368.39 36.84  

17.52  11 724.59 65.87  399.22 36.29  

19.11  12 769.84 64.15  425.34 35.45  

20.70  13 828.57 63.74  457.13 35.16  

22.29  14 875.32 62.52  480.6 34.33  

23.89  15 912.84 60.86  515.57 34.37  

25.48  16 963.9 60.24  542.19 33.89  

27.07  17 1004 59.06  569.67 33.51  



221 Supplementary Table 4 IQE of the fabricated nitride and oxynitride PiGFs via the 

222 RTA and TS methods and the original phosphor powders. 

Phosphor type Powder RTA TS 

BaSi2O2N2:Eu 50.4% 44.2% 17.6% 

CASN:Eu 92.3% 70.9% 59.8% 

β-SiAlON:Eu 87.4% 72.4% 72.1% 

α-SiAlON:Eu 89.3% 81.8% 76.7% 



223 Supplementary Table 5. Comparison of luminous flux and luminous efficacy of all 

224 inorganic red luminescent materials. 

phosphor Material Test mode Luminous 
flux (lm) 

Luminous 
efficacy 
(lm/W) 

Ref. 

CaAlSiN3:Eu2+ PiGF static/transmission 25 21 [1] 

CaAlSiN3:Eu2+ PiGF static/reflection 1576 - [2] 

CaAlSiN3:Eu2+ PiGF static/transmission 164 - [14] 

CaAlSiN3:Eu2+ PiG static/transmission 43 46 [8] 

CaAlSiN3:Eu2+ Ceramic static/reflection - 11 [10] 

CaAlSiN3:Eu2+ Ceramic static/reflection 51 - [15] 

Mg2Al4Si5O18:Eu2+ Ceramic static/reflection 523 24 [13] 

Sr0.8Ca0.2AlSiN3:Eu2+ PiGF rotation/reflection 2379 140 This 
work 
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