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Supplementary Fig. 1 Digital photographs of the (a) RTA device, and (b) quartz holder

and silicon wafers inside the device.

Supplementary Fig. 2 Heating curve of traditional sintering method in a muffle

furnace.

Supplementary Fig. 3 Heating curves of RTA process at 500 ° C, 550 ° C, 600 ° C,

650 ° C, 700 ° C for sintering 1 s,3s,5s, 7s, 10 s respectively.

Supplementary Fig. 4 SEM image of the surface of the glass film sintering at 700 C

for 30 s.

Supplementary Fig. 5 Process optimization of traditional sintering methods.

Supplementary Fig. 6 a IQE/EQE and absorption (Abs) of SCASN:Eu PiGF sintered
on different substrates via RTA process. b Digital photographs of PiGF on different

substrates under daylight and UV light.

Supplementary Fig. 7 PL and PLE spectra of LuzAlsO;,:Ce PiGF, K,SiFs:Mn PiGF
and Gd,0,S:Tb PiGF, and optical and fluorescence photographs at 254 nm and 365 nm

excitation.

Supplementary Fig. 8 a EL spectra of YAG PiGF-RTA and commercial YAG-PiG
under 1 W laser excitation. b Quantum efficiency of YAG PiGF-RTA and commercial

YAG-PiG.
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Supplementary Fig. 9 PersL decay curves of SrAl,04:Eu, Dy PiGF samples prepared
using the RTA technique (monitored at 523 nm after 5 min of excitation at 365 nm);
the insets in the upper half show digital photographs of the luminescent samples of the
prepared samples in daylight and after stopping the UV light source irradiation; and the
insets in the lower half show the potentials of the samples for the optical storage

applications.

Supplementary Fig. 10 SEM image and the related particle size distribution statistics

of glass powders.

Supplementary Fig. 11 Micro-CT 3D images of 10 s sintered glass film. The inset
shows void size distribution of glass film sintered at 10 and the results of quantitative

analysis of porosity. Observation volume: 1000 X 1000 X 86 um?.

Supplementary Fig. 12 X-ray diffraction pattern of the sintered glass film

demonstrating an amorphous structure.

Supplementary Fig. 13 SEM images and particle size distribution statistics of
SCASN:Eu phosphor.
Supplementary Fig. 14 Magnified SEM images of the surface of SCASN:Eu PiGF.

Supplementary Fig. 15 Sintering evolution of PiGF.

Supplementary Fig. 16 PL decay curves of SCASN:Eu phosphor powders, SCASN:Eu

PiGF-RTA and SCASN:Eu PiGF-TS.

Supplementary Fig. 17 Thermal quenching properties of SCASN:Eu phosphor

powders, SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS.
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Supplementary Fig. 18 a Digital photographs of phosphor wheels of SCASN:Eu
PiGF with different thicknesses and PtoG. The b output luminous flux and ¢ luminous
efficiency of SCASN:Eu PiGFs (PtoG = 1:4, 2:3, 1:1, 3:2, 4:1) as a function of the
incident laser power and incident laser power density. The d output luminous flux and
e luminous efficiency of SCASN:Eu PiGFs (thickness = 50 pm, 69 pm, 86 pm , 99
um, 107 pm, 130 um) as a function of the incident laser power and incident laser

power density.

Supplementary Fig. 19 EL spectra of SCASN:Eu PiGF-RTA (thickness = 50 um, 69
um, 86 um , 99 um, 107 pm, 130 um, PtoG = 1:1) under laser excitation at different

powers.

Supplementary Fig. 20 EL spectra of SCASN:Eu PiGF-RTA (PtoG = 1:4, 2:3, 1:1,

3:2,4:1, 86 um) under laser excitation at different powers.

Supplementary Fig. 21 EL spectra of SCASN:Eu-PiGF-TS.

Supplementary Fig. 22 PL and PLE spectra of BaSi,O,N,:Eu PiGF-RTA, CASN:Eu
PiGF-RTA, f-SiAION:Eu PiGF-RTA, and a-SiAION:Eu PiGF-RTA, and optical and

fluorescence photographs at 365 nm excitation.

Supplementary Fig. 23 The luminous flux of a BaSi,O,N;:Eu PiGF, b f-SiAION:Eu
PiGF, ¢ CASN:Eu PiGF, and d a-SiAION:Eu PiGF phosphor wheels sintered by RTA
and TS method as a function of the incident laser power and incident laser power

density.
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Supplementary Fig. 24 EL spectra of BaSi,0O,N,:Eu phosphor wheels fabricated by

the a RTA and b TS methods under laser excitation at different powers.

Supplementary Fig. 25 EL spectra of f-SiAION:Eu phosphor wheels fabricated by

the a RTA and b TS methods under laser excitation at different powers.

Supplementary Fig. 26 EL spectra of CASN:Eu phosphor wheels fabricated by the a

RTA and b TS methods under laser excitation at different powers.

Supplementary Fig. 27 EL spectra of a-SiAION:Eu phosphor wheels fabricated by

the a RTA and b TS methods under laser excitation at different powers.

Supplementary Table 1 IQE/EQE and Abs of SCASN:Eu phosphor powders,
SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS.

Supplementary Table 2 Comparison of IQE/EQE of all inorganic red luminescent
materials.

Supplementary Table 3 Luminous flux and luminescence efficiency of S-PiGF-RTA
and S-PiGF-TS under excitation by increasing the incident blue laser power density
from 1.27 W/mm? to 27.07 W/mm?.

Supplementary Table 4 IQE of the fabricated nitride and oxynitride PiGFs via the
RTA and TS methods and the original phosphor powders.

Supplementary Table 5 Comparison of luminous flux and luminous efficacy of all

inorganic red luminescent materials.



107 Supplementary Fig. 1 Digital photographs of the (a) RTA device, and (b) quartz

®

. R
o ]

eoecee

*ecoadoe
ssun0 EASTSTAR LGS
AP THeRAL PROCESSO

108 holder and silicon wafers inside the device.
600 - Traditional sintering
JIIIIIII{)
9 )
500 - @ -
]
— >
9 S
E; 400 ;;’ ooo
53 SS) %{)
S 300- & %,
Q 2 ~5°CImin %
OEJ 9 oao
- 200 7 00 00
3)
TS RTA
100+ Time 2h 25s
Energy consumption 2.4 KW-h | 0.104 KW:-h
0 1 2 3
Time (h)
109
110 Supplementary Fig. 2 Heating curve of traditional sintering method in a muffle
111 furnace.
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113 Supplementary Fig. 3 Heating curves of RTA process at 500°C, 550°C, 600°C, 650°

114 C, 700°C for sintering 1s, 3s, 5s, 7s, 10s respectively.

115 LEI 50kvY  X1,500 10um WD 9.0mm

116  Supplementary Fig. 4 SEM image of the surface of the glass film sintering at 700 °C

117 for 30 s.
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121 Supplementary Fig. 6 a IQE/EQE and absorption (Abs) of SCASN:Eu PiGF sintered
122 on different substrates via RTA process. b Digital photographs of PiGF on different

123 substrates under daylight and UV light.
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Supplementary Fig. 7 PL and PLE spectra of Lu;Al;0,,:Ce PiGF, K,SiFs:Mn PiGF

and Gd,0,S:Tb PiGF, and optical and fluorescence photographs at 254 nm and 365

nm excitation.
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Supplementary Fig. 8 a EL spectra of YAG PiGF-RTA and commercial YAG-PiG

under 1 W laser excitation. b Quantum efficiency of YAG PiGF-RTA and

commercial YAG-PiG.
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Supplementary Fig. 9 PersL decay curves of SrAl,04:Eu, Dy PiGF samples prepared
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prepared samples in daylight and after stopping the UV light source irradiation; and

the insets in the lower half show the potentials of the samples for the optical storage

applications.
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140  Supplementary Fig. 10 SEM image and the related particle size distribution statistics

141 of glass powders.
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143 Supplementary Fig. 11 Micro-CT 3D images of 10 s sintered glass film. The inset
144 shows void size distribution of glass film sintered at 10 and the results of quantitative
145 analysis of porosity. Observation volume: 1000 X 1000 X 86 um?.
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Supplementary Fig. 12 X-ray diffraction pattern of the sintered glass film

demonstrating an amorphous structure.
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Supplementary Fig. 13 SEM images and particle size distribution statistics of
SCASN:Eu phosphor.
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Supplementary Fig. 15 Sintering evolution of PiGF.



=, @ powder T=623.61ns
1 s N ® S-PiGF-RTAT=578.61ns
] ! S-PiGF-TS 1=543.48ns
]
B
."é‘
c
o |
E :
; e
0 1000 2000 3000 4000 5000
Time (ns)
165
166 Supplementary Fig. 16 PL decay curves of SCASN:Eu phosphor powders,
167 SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS.
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169 Supplementary Fig. 17 Thermal quenching properties of SCASN:Eu phosphor

170 powders, SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS.
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172 Supplementary Fig. 18 a Digital photographs of phosphor wheels of SCASN:Eu
173 PiGF with different thicknesses and PtoG. The b output luminous flux and ¢ luminous
174 efficiency of SCASN:Eu PiGFs (PtoG = 1:4, 2:3, 1:1, 3:2, 4:1) as a function of the
175  incident laser power and incident laser power density. The d output luminous flux and
176 e luminous efficiency of SCASN:Eu PiGFs (thickness = 50 um, 69 um, 86 um , 99
177 pm, 107 um, 130 pum) as a function of the incident laser power and incident laser

178 power density.
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180  Supplementary Fig. 19 EL spectra of SCASN:Eu PiGF-RTA (thickness = 50 pm, 69

181 um, 86 um , 99 um, 107 pm, 130 um, PtoG = 1:1) under laser excitation at different

182 powers.
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184 Supplementary Fig. 20 EL spectra of SCASN:Eu PiGF-RTA (PtoG = 1:4, 2:3, 1:1,

185 3:2,4:1, 86 um) under laser excitation at different powers.
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212  Supplementary Table 1 IQE/EQE and Abs of SCASN:Eu phosphor powders,

213  SCASN:Eu PiGF-RTA and SCASN:Eu PiGF-TS.

Excitation
Samples Wavelength IQE EQE Abs
(nm)
SCASN:Eu powder 455 nm 96.5% 81.8% 84.0%
SCASN:Eu PiGF-RTA 455 nm 91.2% 65.9% 72.3%
SCASN:Eu PiGF-TS 455 nm 82.8% 59.4% 71.8%

214



215  Supplementary Table 2 Comparison of IQE/EQE of all inorganic red luminescent

216  materials.

phosphor Material IQE EQE Ref.
CaAlSiN;:Eu?* PiGF 79 % - [1]
CaAlSiN;:Eu?* PiGF 83 % - [2]
CaAlSiN;:Eu?* PiGF 70.7 % 63.8 % [3]
CaAlSiN;:Eu?* PiGF 71 % - [4]
CaAlSiN;:Eu?* PiGF 89% 56 % [5]
CaAlSiN;:Eu?* PiGF 66.7 % - [6]
CaAlSiN;:Eu?* PiGF 54.4% 40.8 % [7]
CaAlSiN;:Eu?* PiG - 53 % [8]
CaAlSiN;:Eu?* Ceramic 28.5% 17.4 % [9]
CaAlSiN;:Eu?* Ceramic - 60 % [10]
SrAISiN;:Eu?* PiG 75.6 % - [11]
Calson:Ce PiGF 312 % 19.7 % [12]
Mg,Al4SisOy5:Eu?* Ceramic 87.4% 71.2 % [13]
(SrCa)AlSiN;:Eu?* PiGF 91.2 % 65.9 % This work

217



218  Supplementary Table 3 Luminous flux and luminescence efficiency of S-PiGF-RTA
219  and S-PiGF-TS under excitation by increasing the incident blue laser power density

220  from 1.27 W/mm? to 27.07 W/mm?.

S-PiGF-RTA S-PiGF-TS
Laser power
. Laser power . Rk
density . Luminous . Luminous
(W/mm?) (W) Luminous Luminous
flux (Im) efficacy flux (Im) efficacy
(Im/W) (Im/W)
1.27 0.8 86.49 108.11 41.39 51.74
1.59 1 102.26 102.26 51.386 51.39
3.18 2 186.06 93.03 94.269 47.13
4.78 3 258.93 86.31 134.64 44.88
6.37 4 327.66 81.92 169.69 42.42
7.96 5 391.59 78.32 203.2 40.64
9.55 6 454.34 75.72 235.82 39.30
11.15 7 512.74 73.25 276.41 39.49
12.74 8 568.16 71.02 308.56 38.57
14.33 9 616.08 68.45 338.7 37.63
15.92 10 670.03 67.00 368.39 36.84
17.52 11 724.59 65.87 399.22 36.29
19.11 12 769.84 64.15 425.34 35.45
20.70 13 828.57 63.74 457.13 35.16
22.29 14 875.32 62.52 480.6 34.33
23.89 15 912.84 60.86 515.57 34.37
2548 16 963.9 60.24 542.19 33.89

27.07 17 1004 59.06 569.67 33.51




221 Supplementary Table 4 IQE of the fabricated nitride and oxynitride PiGFs via the

222  RTA and TS methods and the original phosphor powders.

Phosphor type Powder RTA TS

BaSi;O;N,:Eu 50.4% 44.2% 17.6%
CASN:Eu 92.3% 70.9% 59.8%

S-SiAION:Eu 87.4% 72.4% 72.1%

a-SiAlON:Eu 89.3% 81.8% 76.7%
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Supplementary Table 5. Comparison of luminous flux and luminous efficacy of all

inorganic red luminescent materials.

Luminous Luminous
phosphor Material Test mode flux (Im) efficacy Ref.
(Im/W)
CaAlSiN;3:Eu?* PiGF static/transmission 25 21 [1]
CaAlSiN3:Eu?* PiGF static/reflection 1576 - [2]
CaAlSiN;:Eu?* PiGF static/transmission 164 - [14]
CaAlSiN;:Eu?* PiG static/transmission 43 46 [8]
CaAlSiN;:Eu?* Ceramic static/reflection - 11 [10]
CaAlSiN;:Eu?* Ceramic static/reflection 51 - [15]
Mg, Al4SisO0q5:Eu?* Ceramic static/reflection 523 24 [13]
. 2 . . . This
Sry3Cag,AlSiN3:Eu PiGF rotation/reflection 2379 140 work
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