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1. Supplementary Notes 

Chemicals and Materials 

Iron nitrate nonahydrate (Fe(NO3)3·9H2O) and melamine (C3H6N6, 99%) were 

bought from Macklin Ltd. (Shanghai, China). Sodium sulfate (Na2SO4), potassium 

peroxymonosulfate (PMS, KHSO5•0.5KHSO4•0.5K2SO4), sodium bicarbonate 

(NaHCO3), sodium dihydrogen phosphate (NaH2PO4), sulfuric acid (H2SO4), sodium 

hydroxide (NaOH), potassium thiocyanate (KSCN), 5,5-dimethyl-1-pyrroline N-oxide 

(DMPO, 97%), methyl phenyl sulfoxide (PMSO) and Furfuryl alcohol (FFA) were 

purchased from Aladdin Ltd. (Shanghai, China). Methanol (MeOH, 99.9%) was 

purchased from Tianjin Kemiou Chemical Reagent Co., Ltd (Tianjin, China). Tertbutyl 

alcohol (TBA, > 99.5%), Nafion solution (5 wt.%) and oxalic acid (OA) were purchased 

from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). 2,2,6,6-

Tetramethylpiperidine (TEMP) was bought from Tianjin Sinos Opto Technology Co., 

Ltd (Tianjin, China). The studied model pollutants, bisphenol A (BPA), phenol (BP), 

Rhodamine B (RhB), tetracycline (TC), methyl orange (MO) and sulfamethoxazole 

(SMX) were purchased from Aladdin Ltd. (Shanghai, China). All organic solvents were 

HPLC grade.  

  



Characterization methods 

XAS measurements were carried out in transmission mode using a commercial 

laboratory device (easyXAFS300, easy XAFS LLC, Renton, WA). This instrument is 

based on Rowland circle geometries and is equipped with spherically bent crystal 

analyzers (SBCAs) and a silicon drift detector (AXAS-M1, KETEK GmbH, Munich, 

Germany). The morphologies of catalysts were observed by the transmission electron 

microscopy (TEM, JEM-2800). Aberration-corrected high-angle annular dark-field 

scanning transmission electron microscopy (AC-HAADF-STEM) images were 

recorded on a high resolution transmission electron microscope (JEM-ARM200F) with 

a field-emission gun at 200 kV. X-ray photoelectron spectroscopy (XPS, Thermo 

Scientifc ESCALAB 250Xi) was utilized to analyze the bonding state of elements on 

the catalyst surface. Fourier transformed infrared spectroscopy (FTIR) was conducted 

by Thermo Scientific Nicolet IS50 FTIR (Thermo Fisher, USA). In-situ FTIR was 

carried out using an external reflection configuration and the Ge crystal was used as 

prism. Raman analysis was carried out using a confocal microscopic Raman 

spectrometer (LabRam HR, Horiba, France). X-ray diffraction (XRD) patterns of 

catalysts were characterized by a Philips-12045 B/3 diffractometer. BET specific 

surface areas and pore distribution of the catalysts were measured through a 

Micromeritics ASAP 2460 instrument. The atomic ratios of Fe in the samples were 

analyzed using an inductively coupled plasma atomic emission spectrometer (ICP- AES) 

(IRIS Intrepid II XSP) to reveal the catalyst composition. Electron paramagnetic 

resonance (EPR) was used to analyze the reactive species by a Bruker EMX Nano 

(Germany). 

  



Electrochemical measurements 

The electrochemical performance was tested by a CHI 760E potentiostat (CH 

Instruments, Chenhua, Shanghai, China). The catalyst was coated on a glassy carbon 

electrode as a working electrode (5 mg of catalyst, 50 μL of Nafion and 1 mL of ethanol 

were mixed by ultrasonication, and 10 μL of the mixture was dropped onto the glassy 

carbon electrode to dry naturally, the catalyst loading was 0.25 mg cm-2), a platinum 

sheet was used as the counter electrode, and Ag/AgCl electrode was used as the 

reference electrode. The electrode potential was converted to a reversible hydrogen 

electrode (RHE) reference scale using ERHE=EAg/AgCl+0.197+0.0592(pH). The linear 

sweep voltammetry (LSV) curve was obtained at the scanning rate of 10 mV s−1 in the 

electrolyte of Na2SO4 (50 mM, pH 7). Chronopotentiometry and chronoamperometry 

analyses were performed to obtain the surface oxidation potential and current response 

in the reaction system. PMS and SMX samples were added into the electrolyte at stated 

intervals, with final concentrations of 2 mM and 10 mg L-1, respectively. 

 

  



Quantum chemical calculations 

All spin-polarized density-functional theory (DFT) was calculated through 

projective enhanced wave method in the Vienna ab initio simulation package (VASP) 

based on the plane wave base set 1,2. Generalized gradient approximation (GGA) and 

PBE parameterization were used to deal with the exchange correlation potential 3. 

Grimme's DFT-D3 model was applied for Van der Waals correction (6). To avoid 

interaction between adjacent images, a vacuum area of about 18 Å was used. The energy 

cutoff was set at 450 eV. The Brillouin-zone integrals were sampled using a Γ-centered 

Monkhorst-Pack lattice (2 × 2 × 1). The structure was completely relaxed until the 

maximum force on each atom was less than 0.02 eV/Å, with an energy convergence 

criterion of 10-5 eV. The free energies (G) of different intermediates are defined as G = 

Ei − Ereactant (Ei is the energy of intermediates and Ereactant is the total energy of reactants) 

and finally obtained by G = Etotal + EZPE − TS, where Etotal, EZPE, and TS are the ground-

state energy, zero-point energies, and entropy terms, respectively, with the latter two 

taking vibration frequencies from DFT. 

 

 

  



2. Supplementary Figures 1-29 

 

 

 

 

 

Supplementary Fig. 1｜HRTEM images of Fe-SAC-41.31.  
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Supplementary Fig. 2｜ Raman spectra of as prepared catalysts with different Fe 

loading. 

  



 

Supplementary Fig. 3｜TEM images of Fe-SAC precursor obtained by the a, 

conventional solvent evaporation method; b, the cascade anchoring strategy.  

 

 

  



 

 

Supplementary Fig. 4｜High-resolution XPS spectrum of Fe 2p. 

 

  



 

Supplementary Fig. 5｜High-resolution XPS spectrum of N 1s. 
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Supplementary Fig. 6｜The binding energies of the possible CN coordination modes. 

  



 

Supplementary Fig. 7｜The structure model of Fe-SAC-5.16. 

Sample: Fe-SAC-5.16  

Number of atoms: 25 Fe, 50 N, 1561 C 

Theoretical Fe loading: Fe(wt%)=
25×56

25×56+50×14+1561×12
=6.72wt% 

  



 

 

Supplementary Fig. 8｜The structure model of Fe-SAC-15.82. 

Sample: Fe-SAC-15.82  

Number of atoms: 75 Fe, 150 N, 1361 C 

Theoretical Fe loading: Fe(wt%)=
75×56

75×56+75×14+1361×12
=19.46wt% 

  



 

 

Supplementary Fig. 9｜The structure model of Fe-SAC-24.62. 

Sample: Fe-SAC-24.62  

Number of atoms: 100 Fe, 200 N, 1261 C 

Theoretical Fe loading: Fe(wt%)=
100×56

100×56++200×14+1261×12
=24.79wt% 

  



 

 

Supplementary Fig. 10｜The structure model of Fe-SAC-41.31. 

Sample: Fe-SAC-41.31  

Number of atoms: 200 Fe, 400 N, 861 C 

Theoretical Fe loading: Fe(wt%)=
200×56

200×56++400×14+861×12
=41.28wt% 
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Supplementary Fig. 11｜ Projected density of state (pDOS) of Fe 3d, N 2p, and C 2p 

orbital. 

 

 

  



 

 

 

Supplementary Fig. 12｜ Top and side views of differential charge density of Fe–

SAC-x models. 
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Supplementary Fig. 13｜XRD patterns of as-prepared Mn-SAC, La-SAC and Ag-

SAC. 

  



 

 

 

 

 

 

 

 

Supplementary Fig. 14｜HAADF-STEM images of a, Mn-SAC; b, La-SAC and c, 

Ag-SAC.  
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Supplementary Fig. 15｜Degradation effect of PMS on SMX. 

  



 

Supplementary Fig. 16｜The degradation kinetics of SMX in Fe-SAC-x/PMS system. 
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Supplementary Fig. 17｜Iron dissolution of Fe-SAC-x during degradation. 

  



 

-10 0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

0.8

1.0
S

M
X

 R
em

o
v

a
l 

(C
/C

0
)

Time (min)

 Fe-SAC-41.31

 Fe-SAC-T

a

 

0 2 4 6 8 10 12 14 16 18 20

-4

-3

-2

-1

0

ln
 (

C
/C

0
)

Time (min)

 Fe-SAC-41.31       kobs=1.060 min-1 

 Fe-SAC-T       kobs=0.037 min-1

      

b

 

 

Supplementary Fig. 18｜a, SMX degradation performance. b, SMX degradation 

kinetics in the Fe-SAC-41.31/PMS and Fe-SAC-T/PMS system, respectively. 

Experimental conditions: [SMX]0 = 10 mg L-1, [PMS]0 = 2 mM, pH = 7, catalyst: 0.1g 

L-1. 
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Supplementary Fig. 19｜  Degradation performance of SMX at different initial 

concentrations in the a, Fe-SAC-41.31/PMS system b, Fe-SAC-T/PMS system, 

respectively. Experimental conditions: [PMS]0 = 2 mM, pH = 7, catalyst: 0.1g L-1. 
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Supplementary Fig. 20｜Effect of ionic strength on SMX removal in Fe-SAC-

41.31/PMS system. 
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Supplementary Fig. 21｜Open-circuit potential change of Fe-SAC-41.31 with the 

addition of SMX. 

  



 

Supplementary Fig. 22｜ EPR spectra of •OH or SO4
•- in the Fe-SAC-41.31/PMS 

system. 
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Supplementary Fig. 23 ｜  Degradation performance of SMX with continuous 

injection of N2 into the Fe-SAC-41.31/PMS system at a rate of 40 mL min-1. 
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Supplementary Fig. 24｜EPR spectra of O2
•- in the Fe-SAC-41.31/PMS system. 
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Supplementary Fig. 25｜ Concentration changes of PMSO and PMSO2 over reaction 

time. Reaction conditions: [PMSO]0 = 10 mg L-1, [PMS] = 2.0 mM. 

  



 

Supplementary Fig. 26｜ SMX degradation pathways in the Fe-SAC-41.31/PMS 

system. 

 

  



 

Supplementary Fig. 27｜  Two possible oxygen adsorption configurations of Fe-

C2N2 for PMS. 

 

  



  

Supplementary Fig. 28｜a, b, TEM image of Fe-SAC-41.31 before and after the 

catalytic reaction. 
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Supplementary Fig. 29｜a, Design principle of continuous flow device; b, Physical 

diagram of continuous flow device. 
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3. Supplementary Tables 1-32 

 

 

Supplementary Table 1｜Fe content in varying samples.  

Sample Fe contents (wt%) 

CN 0 

Fe-SAC-T 1.61 

Fe-SAC-5.16 5.16 

Fe-SAC-15.82 15.82 

Fe-SAC-24.62 24.62 

Fe-SAC-41.31 41.31 

Mn-SAC 35.13 

Ag-SAC 27.04 

La-SAC 22.62 

 

 

  



Supplementary Table 2｜BET surface area, pore diameter and mesoporous pore 

volume of as-prepared catalysts. 

Sample BET surface  

(m²/g) 

Pore diameter  

(nm) 

Mesoporous pore 

volume  

(cm3/g) 

NC 100.05 21.89 0.464 

Fe-SAC 5.16 wt% 84.06 27.29 0.344 

Fe-SAC 15.82 wt% 57.55 25.36 0.321 

Fe-SAC 24.62 wt% 55.44 20.91 0.181 

Fe-SAC 41.31 wt% 46.10 24.06 0.176 

 

 

  



Supplementary Table 3｜EXAFS fitting parameters for various Fe-SAC-x samples. 

Sample 
Shell Na R(Å)b σ2(Å2)c ΔE0(eV)d R factor 

FePC 
Fe-N 4 1.96 0.0068 1.9 0.0124 

Fe-SAC-5.16 Fe-N 3.7 2.09 0.0132 4.91 0.0226 

Fe-SAC-15.82 Fe-N 4.4 2.04 0.0171 3.4 0.0188 

Fe-SAC-24.62 Fe-N 4.2 2.04 0.0195 5.15 0.0199 

Fe-SAC-41.31 Fe-N 4.1 2.04 0.0196 4.44 0.0151 

Na: coordination numbers; R(Å)b: bond distance; σ2(Å2)c: Debye-Waller factors; ΔE0(eV)d: the inner 

potential correction. R factor: goodness of fit. Ѕ0
2 was set to 0.848, according to the experimental 

EXAFS fit of Fe foil by fixing CN as the known crystallographic value. 

 

  



Supplementary Table 4｜Element contents and Fe density derived from XPS results. 

Sample 

Contents (at %) 

C N O(total) Fe 

NC 39.21 58.06 2.72 0 

Fe-SAC 5.16 wt% 40.54 53.29 4.57 1.6 

Fe-SAC 15.82 wt% 39.7 44.99 10.91 4.4 

Fe-SAC 24.62 wt% 44.83 31.4 19.22 4.55 

Fe-SAC 41.31 wt% 38.67 39.18 16.72 5.44 

 

 
  



 

 

Supplementary Table 5｜Catalytic oxidation performances of various catalysts for 

pollutants. 

Catalyst (g L-1) 
Pollutant 

(mg L-1) 
ROS 

k value 

min-1 
Reference 

High density Fe-SAC (0.1) SMX (10) ETP and 1O2 1.06 This work 

Cu-Fevac-LDH (0.1) SMX (10) Fe(IV)=O/Fe(V)=O 0.13 
4
 

Fe@C-800 (0.4) SMX (10) SO4
•-, •OH, O2

•- and 1O2 0.074 
5
 

Fe-NC-4 (0.15) SMX (5.0) 1O2 and Fe(Ⅳ)=O 0.815 
6
 

CoSiOx (0.4) SMX (7.6) SO4
•- and •OH 0.47 

7
 

Fe−Co−O−g-C3N4 (0.2) SMX (10) SO4
•- and 1O2 0.085 

8
 

High density Fe-SAC (0.1) BPA (10) ETP and 1O2 1.269 This work 

Co-NC4 (0.15) BPA (10) SO4
•-, •OH and 1O2 0.69 

9
 

Fe-SAC (0.2) BPA (25) 1O2 0.104 
10

 

Co -SAC (0.2) BPA (25) 1O2 0.083 
10

 

CuO4N1 (0.6) BPA (20) SO4
•-, •OH, ETP and 1O2 ~0.01 

11
 

CuCoNi−NF BPA (10) ETP 0.124 
12

 

High density Fe-SAC (0.1) BP (10) ETP and 1O2 1.084 This work 

ZnFe-LDH (0.2) BP (10) Fe(Ⅳ)=O 0.1 
13

 

CuO4N1 (0.6) BP (20) SO4
•-, •OH, ETP and 1O2 ~0.025 

11
 

FeNx−C (0.2) BP (10) SO4
•-, 1O2 and Fe(V)=O 0.013 

14
 

High density Fe-SAC (0.1) TC (20) ETP and 1O2 1.575 This work 

xCCH/CN−Vn (0.04) TC (20) Co(IV) =O and 1O2 0.25 
15

 

Co-N-GC (0.06) TC (50) SO4
•-, •OH and 1O2 0.04 

16
 

Cu-In2O3/Ov (0.5) TC (20) SO4
•- and •OH 0.26 

17
 

CuO4N1 (0.6) TC (20) SO4
•-, •OH, ETP and 1O2 ~0.3 

11
 

High density Fe-SAC (0.1) RhB (10) ETP and 1O2 0.987 This work 

g-C3N4 @NPC (0.08) RhB (10) SO4
•-, •OH, O2

•- and 1O2 0.152 
18

 

High density Fe-SAC (0.1) MO (10) ETP and 1O2 6.11 This work 

biochar MO (10) SO4
•- and •OH 0.127 

19
 

  

  



 

Supplementary Table 6 ｜ Intermediates detected by LC-MS in the Fe-SAC-

41.31/PMS system. 

Product m/z Molecular  

formula 

Proposed  

structure  

SMX 254.05938 C10H11N3O3S 

 

P1 270.05430 C10H11N3O4S 

 

P2 232.03865 C7H9O4N3S 

 

P3 286.04921 C10H11O5N3S 

 

P4 268.03865 C10H9O4N3S 
 

P5 284.03356 C10H9O5N3S 
 

P6 124.03930 C6H5NO2 
 

P7 163.01718 C4H6O3N2S 
 

P8 255.04340 C10H10O4N2S 
 



P9 99.05528 C4H6ON2 
 

P10 83.06037 C4H6N2 

 

P11 173.03792 C6H8N2O2S 

 

P12 167.01210 C3H6N2O4S 

 

 

 

  



Supplementary Table 7｜The adsorption energy and bond length of Fe-O, O-O and 

O-H in the possible two adsorption configurations.  

 

Adsorption site △Eads (eV) 
Fe-O (Å) O-O (Å) O-H (Å) 

O1 -2.54 1.971 1.463 0.986 

O2 -2.53 1.961 1.487 0.998 

 

 

 

  



Supplementary Table 8｜The Gibbs free-energy (△E) for every step in the two 

possible pathways of Fe-SAC-41.31 system. 

 

Path  

I 

△Eads (eV) 

(HSO5
-) 

△Edis (eV) 

(*SO4
-+*OH) 

△Edes (eV) 

(*SO4
-) 

△Edis (eV) 

(*O+*H) 

△Edes (eV) 

(*O) 

Total 

(eV) 

 -1.53 3.91 2.83 0.53 1.34 7.08 

Path II △Eads (eV) 

(HSO5
-) 

△Edis (eV) 

(*SO5
-+*H) 

△Edes (eV) 

(*H) 

△Edes (eV) 

(*SO5
-) 

/ Total 

(eV) 

 -1.53 3.54 2.86 1.03  5.90 

 

 

 

 

  



Supplementary Table 9｜The Gibbs free-energy (△E) for every step in the possible 

pathway of different catalysts. 

 

Sample 

(wt%) 

△Eads (eV) 

(HSO5
-) 

△Edis (eV) 

(*SO5
-+*H) 

△Edes (eV) 

(*H) 

△Edes (eV) 

(*SO5
-) 

Total (eV) 

5.16 -2.04 5.52 1.11 2.49 7.08 

15.82 -1.99 5.49 1.17 2.17 6.84 

24.62 -1.38 4.64 1.19 0.06 4.51 

41.31 -1.53 3.54 2.86 1.03 5.90 

 

 

 

  



Supplementary Table 10｜The quality parameters of the wastewater. 

 Tap water Medical wastewater Mati Lake  

pH 7.5 7.53 8.02 

Conductivity (μS cm-1) 330 21.70 1193 

COD (mg L-1) 3.0 145.0 32.6 

TOC (mg L-1) 1.56 102.5 31.7 

Cl- (mg L-1) 2.11 502.1 420.6 

HCO3
- (mg L-1) 108 48.3 83.1 

NO3
- (mg L-1) 0.3 18.3 50.8 

 

 

 

 

 

  



 

Supplementary Table 11｜The quality parameters of the coal reverse osmosis water. 

 Detection value 

pH 9.41 

Conductivity (μS cm-1) 18400 

TOC (mg L-1) 69.725 

TDS (mg L-1) 9200 

TN (mg L-1) 194.75 

Suspension (mg L-1) 0.045 

Saturation D=30, buff 

UV254 (cm -1) 0.675 

Cl- (mg L-1) 4108.65 

SO4
2- (mg L-1) 604.223 

NO3
- (mg L-1) 789.543 

NO2
- (mg L-1) 2.828 

NH4
+ 8.31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Table 12｜3DEEM response and their associated characteristics. 

 

Region I II III IV 

Excitation 

Wavelength 
200-250 nm 200-250 nm 250-300 nm 250-500 nm 

Emission 

Wavelength 
280-380 nm 380-600 nm 280-380 nm 380-500 nm 

Characteristics Fluorophores 

associated with 

aromatic-like 

molecules (Tyrosine) 

Fluorophores 

associated with 

fulvic acid-like 

molecules 

Fluorophores 

associated with 

SMP-like 

molecules 

(Tryptophane) 

Fluorophores 

associated with 

humic acid-like 

molecules 

 

 

 

 

 

 

 

 

  



 

 

Supplementary Table 13｜The HPLC analysis conditions for different substrates. 

Substrates Flow 

(ml/min) 

λ 

(nm) 

CH3OH 

(%) 

Acetonitrile 

(%)  

H2O 

(%) 

BPA 0.5 280 70 / 30 

TC 0.5 275 / 18 82(0.1% H3PO4) 

SMX 0.5 265 35 / 65 

SMT 0.5 280 35 / 65 
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