Sox2 induces GBM cell stemness and tumor propagation by repressing TET2 and deregulating 5hmC and 5mC DNA modifications
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SUPPLEMENTAL MATERIALS:
	Supplemental Table S1: PCR primers used to amplify pre-miRNAs

	Gene
	Forward primer (5’ to 3’)
	Reverse primer (5’ to 3’)

	miR-10b-5p
	TACCCTGTAGATCCGAATTTGTG
	ATTCCCCTAGATACGAATTTGTGA

	U6
	CTCGCTTCGGCAGCACA
	AACGCTTCACGAATTTGCGT



	Supplemental Table S2: PCR primers used for qRT-PCR

	Gene
	Forward primer (5’ to 3’)
	Reverse primer (5’ to 3’)

	Dnmt1
(NM_001130823)
	AAGACAAAGACCAGGATGAGAAG
	GGGTGTTGGTTCTTTGGTTTG

	Dnmt3a
(NM_022552)
	TATTGATGAGCGCACAAGAGAGC
	GGGTGTTCCAGGGTAACATTGAG

	Dnmt3b
(NM_006892)
	CCATTCGAGTCCTGTCATTG
	GCAATGGACTCCTCACACAC

	TET1 (NM_030625)
	GAGCCTGTTCCTCGATGTGG
	CAAACCCACCTGAGGCTGTT

	TET2
(NM_017628)
	CACTGCATGTTTGGACTTCTG
	TGCTCATCCTCAGGTTTTCC 

	18S
	ACAGGATTGACAGATTGATAGCTC
	CAAATCGCTCCACCAACTAAGAA



	Supplemental Table S3: PCR primers used for ChIP-PCR

	Gene
	Forward primer (5’ to 3’)
	Reverse primer (5’ to 3’)

	miR-10b-ChIP2 
	gcagtctgcctttgtgttga
	aaccagctgcctgtttttgt

	Detect Sox2 binding to miR-10b-5p promoter – Sox2 binding site



	Supplemental Table S4: PCR primers used for luciferase construct

	Gene
	Forward primer (5’ to 3’)
	Reverse primer (5’ to 3’)

	Sox2-miR10b luc for.
	CCATGGCTCGAGgcagtctgcctttgtgttga
	C CCATGGAGATCTaaccagctgcctgtttttgt

	miR-10b-5p promoter region containing the Sox2 binding sites was cloned the XhoI and BglII sites of the pGL4.2 luciferase reporter vector (Promega, Madison, WI - USA).



	Supplemental Table S5: Lentiviral constructs 

	Genecopoeia

	Gene
	Accession #
	Catalog #

	miR-10b-5p mimic
	MIMAT0000254
	HmiR0035-MR03

	miR-10b-5p Inhibitor
	MIMAT0000254
	HmiR-AN0034-AM03

	miRNA scrambled control clone for pEZX-MR03 
	
	CmiR0001-MR03

	Lentiviral shRNA constructs – Applied Biological Materials Inc. (abm)

	Gene
	Accession #
	Catalog #

	Scrambled siRNA GFP Lentivector
	
	LV015-G

	TET2-425 siRNA/shRNA/RNAi Lentivector (Human)
Set of 4 shRNAs
	465200910495
	NM_017628


	Supplemental Table S6: Antibodies

	Gene
	Company (Cat.#)
	Dilution

	Tet2
	Bethyl Laboratories, Inc (A304-247A)
	1:250

	DNMT3a
	Cell Signaling ( 3598 )
	1:1000

	5mC
	Cell Signaling (28692S)
	1:3000

	5hmC
	Active motif (39791)
	1:1000

	dsDNA
	Abcam (ab27156)
	1:1000

	Actin
	Sigma-Millipore (A1978)
	1:5000

	IRDye 800CW Goat anti Rabbit
	Li-Cor (926-32211)
	1:10000

	IRDye® 680RD Goat anti-Mouse 
	Li-Cor (926-68070)
	1:10000
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[image: A screenshot of a computer

Description automatically generated with low confidence]
[image: A picture containing text, night sky

Description automatically generated]
[image: Graphical user interface

Description automatically generated]
[image: Text

Description automatically generated][image: A picture containing text, dark

Description automatically generated]






[image: Text

Description automatically generated with medium confidence]












[image: Text

Description automatically generated]
4

image2.png
Figure S3: TET2 expression in GSC datasets Figure S4: Exogenous Oct4 increases expression
of DNMT3A and DNMT3B in GBM cells.
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Figure S3: TET2 expression in GSC datasets. RNA-Seq data
comparing TET2 expression in neural stem cells (NSCs) and
glioma stem cells (GSCs). Data was retrieve from Dong et. al.
(PMID: 31455674; GSE134973) Tet! Tet2 Dnmt1 3A 3B
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Figure S4: Exogenous Oct4 increases expression
of DNMT3A and DNMT3B in GBM cells. gRT-PCR
analysis showing selective increase in Dnmt3A
and Dnmt3B mRNA in GSCs expressing exogenous
Oct4.
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Figure S5: Correlation between TET2, 5ShmC Figure S6: TET2 inhibition enhances the stem cell
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i o TO Figure $6: TET2 inhibition enhances the stem cell phenotype of GBM cells. (A) qRT-PCR shows specific
Tet1 Tet2 Tetd Tet2 knock-down of TET2 expression after transduction of ShTET2 construct in patient-derived GSC isolates. (B)
Dot blot showing shRNA-mediated inhibition of TET2 reduces ShmC and increases SmC in GSC isolates. (€)
Figure S5: SOX2 decreases Tet2 expression in GSCs. (A) qRT-PCR analysis Equal numbers of GSC isolates transduced with lentiviral constructs expressing two distinct shRNAs
showing decrease in TET2 mRNA in GSCs expressing exogenous Sox2. (B) qRT- targeting TET2 or a control vector (shEV) were cultured in neurosphere medium for 14 days. Quantification
PCR analysis showing increased TET2 mRNA following forced differentiation of of neurospheres (>100um diameter) by computer-assisted image analysis shows that TET2 knock-down

enhances neurosphere formation. (D) qRT-PCR to measure expression of stem cell drivers and markers
after TET2 knock-down in GSCs. Statistical significance was calculated using Student’s t-test in panel A, C,
and D. Data are presented as means £ 5.D *p<0.05

GSCs. (€) Dot-blot analysis of genomic DNA isolated from GSCs showing
increased ShmC and decreased SmC after forced differentiation. Statistical
significance was calculated using Student’s t-test in panels A and B and data
are presented as means + S.D. *p< 0.05
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Figure $9: miR-10b-5p, a TET2 regulating miRNA,
is repressed during GSC differentiation
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Figure S9: miR-10b-5p, a TET2 regulating miRNA, is repressed during GSC
differentiation. (A)qRT-PCR to measure expression of miRNAs predicted to target
TET2 after forced differentiation of GSCs. Statistical significance was calculated
using Student’s t-test. Data are presented as means + S.D *p< 0.05

Figure $10: miR-10b-5p regulates TET2 expression in
GBM neurospheres
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Figure S10: miR-10b-5p regulates TET2 expression in GBM neurospheres. (A)
Schematic depicting the miR-10b-5p binding site in the Tet2 3’UTR. (B) qRT-PCR to
measure expression of pre-miR-10b-5p 4 days lentiviral transduction. Statistical
significance was calculated using Student’s t-test. Data are presented as means + S.D
*p< 0.05
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Figure S7: TET2 inhibition modulates the expression Figure $8: SOX2 induces miR-10b-5p in

of stem cell markers and drivers in GBM cells GSCs
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Figure S7: TET2 inhibition modulates the expression of stem cell markers and

drivers in GBM cells. qRT-PCR to measure expression of stem cell drivers and markers
after TET2 knock-down in GSCs. One-way ANOVA with Tuckey’s post hoc test was
used calculate statistical significance. Data are presented as means + S.D *p< 0.05
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Figure S8: SOX2 induces miR-10b-5p in
GSCs. gRT-PCR to measure expression of
pre-cursor miRNAs predicted to inhibit
TET2 in GSCs expressing transgenic Sox2.
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Figure $11: miR-10b-5p inhibits TET2, reduces 5hmC and
enhances the stem cell phenotype of GBM cells
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Figure $11: miR-10b-5p inhibits TET2, reduces 5hmC and enhances the stem cell phenotype of GBM cells.
(A) qRT-PCR to measure TET1 and TET2 expression after expression of transgenic miR-10b-5p in GSC isolates.
(B) Dot blot showing miR-10b-5p-mediated inhibition of TET2 reduces 5ShmC and increases 5mC in GSC
isolates. (C) Equal numbers of GSC isolates transduced with lentiviral constructs expressing miR-10b-5p or a
control vector (miR-Ctrl.) were cultured in neurosphere medium for 14 days. Quantification of neurospheres
(>100pm diameter) by computer-assisted image analysis shows that miR-10b-5p expression enhances
neurosphere formation. (D) qRT-PCR to measure expression of stem cell drivers and markers after miR-10b-
5p expression in GSCs. Statistical significance was calculated using Student’s t-test in panel A, C, and D. Data

are presented as means + S.D *p< 0.05
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Figure $12: PBAE-mediated delivery of AM-10b-5p
inhibits the stem cell phenotype of GBM cells
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Figure S12: PBAE-mediated delivery of AM-10b-5p inhibits the stem cell
phenotype of GBM cells. (A) qRT-PCR analysis to quantify expression of miR-10b-5p
and TET2 in GBM neurospheres 3 days after transfection with nano-miRs delivering
a non-targeting control miRNA (Ctrl.) or a miR-10b-5p inhibitor (AM-10b-5p). Dot-
blot analysis of genomic DNA isolated from neurospheres after miR-10b-5p
inhibition (inset). Cell numbers (B) and cell viability (C) was measured 6 days after
transfections with nano-miRs delivering a non-targeting control miRNA (Ctrl.) or a
miR-10b-5p inhibitor using trypan blue exclusion assay. (D) Equal numbers of GSCs
were cultured in neuropshere medium for 14 days and neurosphere-forming
capacity was quantified by computer-assisted image analysis. PBAE-mediated miR-
10b-5p inhibition decreased sphere-formation capacity of GSCs. Statistical
significance was calculated using Student’s t-test in panel A, B, and D. Data are
presented as means £ S.D *p< 0.05




image1.png
Figure S1: Low TET2 expression associates with
poor prognosis in GBM
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Figure S1 Low TET2 expression associates with poor prognosis in GBM. Kaplan-Meier
survival curves comparing GBM patients across multiple dataset. Survival data was
retrieved from the GlioVis portal (http://gliovis.bioinfo.cnio.es).

Figure S2: TET2 expression in clinical GBM datasets
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Figure S2: TET2 expression in clinical GBM datasets. (A) TET2 expression data was
retrieved from multiple clinical databases using the GlioVis portal
(http://gliovis.bioinfo.cnio.es). TET2 expression compared to normal brain varies
between datasets. (B) RNA-Seq data comparing TET2 expression in neural stem cells
(NSCs) and glioma stem cells (GSCs).




