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Figure S1: Replication rate of regulatory variants from each cell class estimated by Storey’s ;.
The current dataset (columns) is used for eQTL discovery and the replication rate is evaluated in Bryois, et al.
(2022) (rows). For example, lead eQTL variants discovered in astrocytes in the current work were replicated
in astrocytes in at a rate if 73%, but only 42% in EN. The fact that the strongest replication rate is seen along
the diagonal for the matching cell type indicates replication of the specific regulatory architecture of each cell

type.
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Figure S2: Relationship between number of cells, reads and eQTL detection A) Number of nuclei
per subject for class (top) and subclass (bottom). B) Number of reads per nucleus for class (top) and subclass
(bottom). C) The number of genes with significant eQTLs (i.e. eGenes) detected in each class (left) or subclass
(right) shown as a function of the mean reads per subject for each cell type. Blue line indicates least squares
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Single cell ATAC-seq
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Figure S3: Enrichment of lead eQTL variants near open chromatin regions. Enrichment is shown for
eQTLs detected in each cell class (rows) for open chromatin regions detected in each cell type from single-cell
ATAC-seq (columns). Cell type annotations from Corces et al. (2020) are used for ATAC-seq data. ‘COP’
indicates committed oligodendrocyte precursor cells
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Figure S4: Integration with allelic affects from multiplexed parallel reporter assay (MPRA). A)
Relationship between allelic effects from MPRA and fine-mapping posterior probability from each cell class.
The blue line indicates fit with linear model, and the gray band shows standard error. Although some SNPs
are excluded from this plot because of the y-axis range, all SNPs were used to fit the regression model. B)
Regression coefficient for the slope from (A) indicates allelic effect size from MPRA is most associated with
fine-mapping posterior probability in excitatory neurons (EN). Errors bars indicate 95% confidence interval.
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Figure S5: Regulatory variants are enriched for heritability of complex traits. Enrichment of
genetic regulatory variants in the 95% credible set from statistical fine-mapping for heritability of genetic
traits. Color indicates z-statistic of null hypothesis of no enrichment, point size indicates logl0 enrichment.
Tests with FDR < 5% are indicated by ‘X’.
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regulatory variants at the A) class and B) subclass levels. Tests with FDR < 5% are indicated by ‘X’.
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Figure S7: Colocalization signal at the subclass-level. Posterior probabilities > 0.8 are indicated by

‘X’, and > 0.5 are indicated by ‘o’.
the class level.

Genes in bold do not have colocalization posterior probability > 0.8 at
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Figure S8: Manhattan plots for colocalization signals. Colocalization with AD genetic risk is observed
for APP in astrocytes (left), CLU in astrocytes (center), and SORL1 in microglia (right).
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posterior inclusion probability from statistical fine-mapping. Blank panels indicates case where the gene is not sufficiently
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Figure S11: Genes with a dynamic eQTL and a disease colocalization signal. Genes with a dynamic
eQTL (shown in inset of each cell class) that have a disease colocalization signal (shown on x-axis). For
example, the gene TLE4 has a dynamic eQTL detected in oligodendrocytes and regulatory variants for this
gene colocalize with AD risk in immune cells. Color and size of circle indicates posterior probability from
colocalization analysis. Results are shown for A) SZ and B) AD.
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Figure S12: Genes with a dynamic eQTL and a disease colocalization signal. Genes with a dynamic
eQTL (shown in inset of each cell class) that have a disease colocalization signal (shown on x-axis). For
example, the gene TLE4 has a dynamic eQTL detected in oligodendrocytes and regulatory variants for this
gene colocalize with AD risk in immune cells. Color and size of circle indicates posterior probability from
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Figure S13: Dynamic eQTLs at the class-level. Supervised aging trajectories with cells colored by dynamic genetic
effect changing over the pseudotime trajectory.
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a study-wide FDR of 5% were identified only in oligodendrocytes.
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Figure S15: Genes with a trans eQTL and a disease colocalization signal. Genes with a trans eQTL
(shown in inset of each cell class) that have a disease colocalization signal (shown on x-axis). For example,
the gene SP4 has a trans eQTL detected in EN and regulatory variants for this gene colocalize with SZ risk
in IN. Color and size of circle indicates posterior probability from colocalization analysis. Results are shown
for A) AD and B) ASD C) MDD and D) SZ. ‘4’ indicates colocalization probability > 0.8, and ‘*’ indicates

colocalization probability.



