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1. EXPERIMENTAL DETAILS1

Programmable atomic arrays have emerged as a novel platform for quantum simulation and computation, offering2

exceptional control and scalability for exploring quantum many-body phenomena. In the past decade, significant3

progress has been made in this field, including the preparation of atomic array1–11, efforts towards quantum com-4

putation12–26, quantum optimization16,24,27,28, quantum simulations29–38, and quantum metrology39,40. This section5

presents the details of our experiment, including the experimental apparatus, timing sequence, and |Z2⟩ state prepa-6

ration and characterization.7

1.1. Experimental setup8

Our experimental platform is built around a dual-chamber vacuum system, consisting of a 2D magneto-optical9

trap (MOT) chamber and a science chamber. In the 2D-MOT chamber, an 87Rb atom source (ampule) produces a10

diffuse atomic vapor. These atoms are cooled and confined by the magnetic fields and 780-nm lasers, 2π × 30MHz11

red-detuned from the |5S1/2, F = 2⟩ → |5P3/2, F = 3⟩ cycling transition. The pre-cooled atomic ensemble is then12

transferred through a differential pumping aperture into the science chamber by a 780-nm pushing beam. The13

science chamber is a custom-designed rectangular glass cell (Japan Cell) with large optical access. Ultra-high vacuum14

conditions inside the chamber are maintained by a non-evaporable getter pump (NEXTorr D 200-5, SAES), achieving15

a pressure well below 10−11 mbar. This low background pressure initially allowed for single-atom trapping lifetimes16

exceeding 10 minutes. However, due to the malfunction of an ion pump (SP-4, JJJvac) in the 2D MOT chamber, the17

lifetime has since been reduced to approximately 90 seconds. Atoms are captured and cooled in the science chamber18

by a three-dimensional magneto-optical trap (3D MOT) using three pairs of counter-propagating 780-nm laser beams,19

with a magnetic field gradient of 15G cm−1. Each beam contains a cooling light red-detuned by 2π × 24MHz from20

the |5S1/2, F = 2⟩ → |5P3/2, F = 3⟩ cycling transition, and a repumping light resonant with the |5S1/2, F = 1⟩ →21

|5P3/2, F = 2⟩ transition.22

Single atoms are trapped in a static two-dimensional optical tweezer array generated by an 808-nm laser (TA pro,23

Toptica) operating in free-running mode. The laser beam illuminates a phase-control spatial light modulator (SLM,24

HED 6010-NIR-080-C, Holoeye) loaded with a phase hologram generated via the weighted Gerchberg-Saxton (WGS)25

algorithm. Additionally, a system of atom-shuttling tweezers, utilizing the same 808-nm laser source as the static array26

but with orthogonal polarization, allows for precise atom rearrangement. The atom-shuttling tweezers are controlled27

by a pair of orthogonally oriented acousto-optic deflectors (AODs, DTSX-400-800.850, AA Opto-Electronic), driven28

by radio frequencies with independent arbitrary waveforms generated by a dual-channel arbitrary waveform generator29

(AWG, M4i.6631-x8, Spectrum).30

A high numerical aperture objective (G Plan Apo 50×, Mitutoyo, NA = 0.5) focuses both the static and movable31

tweezers while also collecting atom fluorescence, which is directed to an electron-multiplying CCD (EMCCD, iXon32

Ultra 888, Andor) camera for detection. Additionally, a 480-nm beam for local Rydberg control, utilizing a similar33

SLM-based approach, is focused through the same objective (see Extended Data Fig. 1a). This shared configuration34

for trapping, addressing, and fluorescence detection enhances the stability of the system. Opposite the Mitutoyo35

objective is a home-made objective with a numerical aperture of 0.4. A CCD camera images the static tweezer array,36

consisting of 36 × 2 tweezers with 7 µm spacing and a beam waist of approximately 0.9 µm. Through iterative feedback37

and adjustments, the intensity variation across the entire array is kept well below 1%. The 795-nm addressing laser38

beams, essential for |Z2⟩ state preparation and local perturbation, are focused through the home-made objective. Two39

counter-propagating laser beams—one at 780 nm and the other at 480 nm—enable global ground-Rydberg coherent40

manipulation. A microwave antenna, positioned near the science chamber, generates microwave pulses for Rydberg41

state manipulation and detection.42

The experimental setup incorporates multiple laser systems for state preparation, qubit control, and detection.43

The 780-nm laser system, a tapered amplifier laser (TA Pro, Toptica), is used for both the MOT cooling beams and44

Raman light in the Rydberg excitation scheme. Its frequency is stabilized to an ultra-low expansion reference cavity45

(SLS) with a finesse of 26,000. An AWG drives a single-pass acousto-optic modulator (AOM, SGT200-780-0.5TA-B),46

optimized for modulation bandwidth, to dynamically adjust pulse frequency and intensity. For coupling the |e⟩ → |r⟩47

transition, a 480-nm laser system (frequency-doubled TA-SHG Pro, Toptica) is employed, with the 960-nm seed laser48

locked to the same reference cavity as the 780-nm laser. An AOM driven by a direct digital synthesis (DDS, AD9910)49

controls the 480-nm laser beam, which is intensity-stabilized and remains on throughout the entire Rydberg operation50

sequence. Fast rising and falling edges of the Rydberg excitation lasers are achieved using electro-optic modulators51

(EOMs) for precise on-and-off switching.52
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Figure S1. Experimental timing sequence. Summary of a typical experimental sequence as described in section 1.2.
Detailed Rydberg experimental sequences for OTOC and Holevo information measurements are provided in Figs. S7,S10.

1.2. Experiment timing sequence53

The experimental sequence begins with the preparation of a cold atomic ensemble in the science chamber. A54

3D MOT is loaded for 200ms, producing an atomic cloud with a diameter of 500 µm and a temperature of 150 µK,55

measured via time-of-flight (TOF) expansion. To further reduce the temperature, polarization gradient cooling (PGC)56

is applied. This process involves quickly extinguishing the magnetic field gradient (within 500µs) while increasing the57

cooling light detuning to approximately 2π × 90MHz and reducing the intensity of both the cooling and repumping58

lasers. As a result, the atoms are cooled further to approximately 40 µK. The laser-cooled atomic ensemble serves as59

a reservoir for stochastic loading of the programmable atomic array. For stochastic loading, Λ-enhanced grey molasses60

(ΛGM) is implemented using two counter-propagating 795-nm laser beams. An additional stage of polarization61

gradient cooling (PGC), optimized for in-trap cooling, is then applied. This combined cooling approach results in62

a single-atom loading efficiency of approximately 80%, with an average atom temperature of 15 µK in traps with a63

depth of 1mK, as measured using the release-and-recapture (R&R) method. Atom fluorescence detection utilizes64

the same 795-nm beams used for ΛGM, multiplexed after increasing the optical trap depth to 1.3mK. By carefully65

balancing heating and cooling rates, a detection fidelity exceeding 99.9% is achieved with a 30ms exposure time,66

while maintaining an average atom loss per detection below 1%. The use of 795-nm fluorescence imaging minimizes67

crosstalk from the strong 780-nm beams, ensuring accurate atom detection.68

An atom rearrangement procedure generates a defect-free, one-dimensional atomic chain. The process begins by69

linearly ramping up the intensity of the movable tweezers from zero to three times the static trap depth, transferring70

atoms from the static SLM-generated traps to the movable tweezers. The AODs are then driven with time-dependent71

waveforms to transport the atoms at an average speed of 100 µmms−1, following a sinusoidal velocity profile to72

ensure smooth acceleration and deceleration. The rearrangement sequence is determined using a modified Hungarian73

algorithm4, optimizing atom movement column by column. To minimize unnecessary atom loss and heating from74

moving tweezers sweeping through static traps, the tweezer paths include additional segments to bypass intervening75

traps. All AOD waveforms for the rearrangement process are pre-computed, allowing for rapid execution of the76

sequence. Post-rearrangement measurements show that atom temperatures increase to approximately 50µK in the77

1mK deep traps.78

For coherent Rydberg excitation, a two-photon Raman scheme is employed. A red-detuned 780-nm laser with σ+
79

polarization couples the ground state to the intermediate state |5P3/2, F = 3,mF = 3⟩ (see Extended Data Fig. 1b).80

The collimated 780-nm laser is directed onto the atoms with a beam waist of approximately 300 µm and a maximum81

Rabi frequency of ∼ 2π× 100MHz. Simultaneously, a blue-detuned 480-nm laser, also with σ+ polarization, connects82

the intermediate state to the Rydberg state |↑⟩ = |68D5/2,mJ = 5/2⟩. The 480-nm laser is focused onto the atoms83

with a beam waist of 13 µm, with a maximum Rabi frequency of ∼ 2π × 70MHz. Both lasers are detuned from84
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Figure S2. Ground-Rydberg state Rabi oscillation, Rydberg blockade, and Ramsey coherence. a, High-contrast
ground-Rydberg state Rabi oscillation (blue circles) is observed when a single atom is driven by 480-nm and 780-nm Raman
lasers. For a pair of atoms within the blockade radius, double Rydberg excitation (yellow squares) is strongly suppressed, and
the Rabi frequency of the single excitation (red diamonds) is enhanced by a factor of

√
2 due to the Rydberg blockade effect.

curves are damped sinusoidal fits. b, Ramsey oscillation showing Gaussian-type inhomogeneous dephasing with a coherence
time of T ∗

2 = 11(1) µs. The measured probability represents 1
2
(⟨σy⟩+ 1) after the gap time.

the intermediate state by ∆ = 2π × 1.16GHz. A bias magnetic field of 30G is applied throughout the experiment.85

Figure S2a (blue circles) illustrates the high-contrast ground-Rydberg state Rabi oscillation for a single atom, driven86

by 780-nm and 480-nm lasers. When two atoms are placed within the Rydberg blockade region, Ω ≪ V , double87

Rydberg excitations are strongly suppressed, as indicated by the yellow squares in Fig. S2a. Red diamonds in88

Fig. S2a shows that the Rabi oscillation between the Bell state 1√
2
(|↓⟩ |↑⟩ + |↑⟩ |↓⟩) and the ground state |↓⟩ |↓⟩ is89

enhanced by a factor of
√
2. Figure S2b presents the ground-Rydberg coherence for a single atom, where we perform90

two π/2 ground-Rydberg rotations, separated by a variable gap, to implement a Ramsey sequence. The decay of91

the Ramsey oscillation fringe reveals a ground-Rydberg coherence time of T ∗
2 = 11(1) µs. The high-contrast Rabi92

oscillations and long coherence times achieved in our system lay a solid foundation for high-fidelity operations in93

subsequent experiments.94

To perform local operations on the ground and Rydberg states, we employ 795-nm and 480-nm addressing laser95

beams generated by SLMs. The 795-nm laser beams are blue-detuned by 2π × 15GHz from the |5S1/2, F = 2⟩ →96

|5P1/2⟩ transition, providing a light shift of 2π × 12.2(3)MHz. This enables the creation of an alternating pattern of97

excitable and non-excitable atoms, allowing the system to be prepared in a Z2-ordered configuration. Simultaneous98

imaging of the 795-nm atomic fluorescence and the 795-nm addressing laser beams on the EMCCD ensures precise99

spatial overlap between the lasers and the atoms. Measurements indicate that crosstalk to neighbouring atoms in the100

chain is suppressed to less than 2π × 1 kHz. The 480-nm laser beams, resonant with the |r⟩ − |e⟩ transition, are used101

to enable selective Rydberg-to-ground state transfer and create EIT conditions in nearest-neighbour (NN) and next-102

nearest-neighbour (NNN) sites. The 480-nm laser beam alignment is optimized by maximizing Rydberg-to-ground103

state transfer efficiency on the target site while minimizing crosstalk on the neighbouring sites. After optimization,104

more than 96% of the Rydberg state population in the target site is quickly transferred to the ground state, while the105

Rydberg state population in the neighbouring sites is reduced by less than 1%.106

Finally, a state detection scheme is implemented to distinguish between ground and Rydberg states. Within 1µs107

after the Rydberg operation, the trap depth is rapidly increased to 1.3mK to expel Rydberg atoms from the trapping108

region while recapturing ground-state atoms. Following this, a strong 2.4GHz microwave pulse is applied to deplete the109

remaining Rydberg populations using an RF power amplifier(HXPA7081G, HXINWB). This comprehensive detection110

scheme ensures that the probability of misidentifying a Rydberg atom as being in the ground state is less than 1%.111
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Figure S3. |Z2⟩ state preparation details. a, Rydberg excitation spectra of addressed (red) and unaddressed (blue) atoms.
The Rydberg population is shown as a function of Raman excitation laser detuning. b, Impact of the anti-blockade effect
and addressing laser-induced light shift on state preparation fidelity. Simulated |Z2⟩ state preparation fidelity as a function
of 795-nm addressing laser light shift (in units of Rydberg Raman excitation Rabi frequency Ω) for various system sizes, with
the nearest-neighbour Rydberg interaction strength Vi,i+1 = 3Ω. The red star marks our experimental condition. c, |Z2⟩
state preparation fidelity as a function of system size. Red and blue lines: the exponential fit for corrected and uncorrected
|Z2⟩ state fidelity. Yellow line: theoretical upper limit for current experimental addressing approach. d, Number of 13-qubit
microstates as a function of occurrences from 1,774 experiments. Successfully prepared |Z2⟩ state: 1,246 counts (70% of events).
e, Measured 13-qubit microstate distribution. Inset: dominant error states.

1.3. |Z2⟩ state preparation and characterization112

Rapid thermalization is ubiquitous in ergodic quantum many-body systems, leading to extensive research aimed113

at uncovering systems with fundamentally different dynamics41–45. Recently, studies involving Rydberg atom arrays114

have identified many-body scar states29,46–51, which show weak breaking of ergodicity and maintain a degree of115

coherence over extended timescales. Similar phenomena have been observed in other systems such as superconducting116

processors52 and Bose-Hubbard quantum simulators53, and have triggered further theoretical research54–58. A previous117

theoretical work59 has predicted that when the Z2-ordered scar states are used as initial states for studying the spatial-118

temporal evolution of out-of-time-ordered correlators and Holevo information, one may observe persistent information119

backflow and an unusual breakdown of quantum chaos. These results suggest novel avenues for investigating unique120

dynamics of quantum information scrambling in kinetically constrained many-body systems. Here, we investigate121

quantum information scrambling using two initial states: (1) the Z2-ordered state |Z2⟩ = |↑↓↑↓↑ ...⟩ and (2) the trivial122

product state |0⟩ = |↓↓↓↓↓ ...⟩. While |0⟩ can be readily prepared using optical pumping, achieving high-fidelity123

preparation of |Z2⟩ state in large-scale systems remains challenging. Previous studies have successfully prepared |Z2⟩124

states in one-dimensional and two-dimensional atom arrays through adiabatic state transfer techniques14,29,49, where125

the ground state of an engineered Hamiltonian is adiabatically transformed from |0⟩ to |Z2⟩. However, as the system126

size increases, the exponential growth of the Hilbert space results in diminishing energy gaps, which causes a rapid127

decline of the state preparation fidelity.128

Our experiment employs a scalable state preparation approach that combines global Rydberg excitation with site-129

selective laser addressing. A SLM is used to generate a customized light shift pattern across the atom array, selectively130

detuning certain sites from the ground-Rydberg transition (Fig. S3a), thereby creating an alternating arrangement of131

excitable and non-excitable atoms. The 795-nm addressing beams, 2π× 15GHz detuned from the D1 line resonance,132

induce an energy shift of 2π× 12.2(3)MHz on the ground state. The scattering rate caused by the 795-nm addressing133

beams is approximately 2π × 5 kHz, significantly lower than that caused by the Raman laser beams. Numerical134
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simulations (Fig. S3b) indicate that to maximize the fidelity of the |Z2⟩ state, the sign of the light shift must be135

opposite to that of the Rydberg interaction, avoiding anti-blockade effects. Under our experimental conditions,136

numerical simulations yield a preparation infidelity of ∼ 0.012 per qubit.137

Our method remains highly effective as the system size scales up (Fig. S3c). The preparation infidelity is primarily138

attributed to uncorrelated single-qubit flip errors: 0.8% per qubit from Rydberg excitation inefficiency, 1.2% per qubit139

due to finite energy shifts, and 1% (|↓⟩ → |↑⟩) and 0.5% (|↑⟩ → |↓⟩) from state detection errors. This decomposition140

of many-body scar state preparation into single-qubit state preparations enhances the scalability of our approach141

compared to adiabatic transfer protocols. In an array of up to 25 atoms, we achieved the target crystalline state with142

a measured fidelity of 49(3)%, which is corrected to 60(3)% after considering the detection errors. This high-fidelity143

preparation, in a Hilbert space of dimension 225, underscores the robustness and scalability of our protocol.144

Microstate distribution analysis of the experimentally prepared |Z2⟩ state reveals non-Poissonian error occurrences145

(Fig. S3d). Figure S3e shows the measured microstates distribution, highlighting that the dominant errors are single-146

qubit flips from |↑⟩ to |↓⟩, further confirming that our approach employs single-qubit operations to prepare a many-147

body state. This predictable error distribution facilitates error mitigation in the experimentally measured data for148

quantum information scrambling in |Z2⟩ state, as discussed in section 4.149

Next, the evolution and lifetime of the |Z2⟩ state were investigated. The dynamics of the |Z2⟩ state were measured150

under both forward-and-backward evolution (e−iHt followed by eiHt) and forward-only evolution (e−iHt) (Fig. S4)151

using the PXP Hamiltonian H =
∑

i Piσ
x
i+1Pi+2

46,60,61. To characterize the evolution, the Rydberg state population152

P (↑) (Fig. S4a,b) and the average domain-wall density (Fig. S4c,d) are measured. Exponential fits to the data in153

Fig. S4a,c show the decay rate of the |Z2⟩ state under forward-reverse evolution, with a 1/e lifetime of approximately154

1.6(1) µs for population, and 1.0(3) µs for average domain-wall density. This decay limits the contrast in the raw155

ZZ-OTOC data presented in Fig. 3f of the main text. Forward-only evolution of the average domain-wall density156

(Fig. S4d) is fitted to a damped sinusoidal function, yielding a |Z2⟩ state lifetime of approximately 1.5(1) µs. The157

Rydberg population dynamics (Fig. S4b) are fitted using a damped Fourier series, yielding a 1/e decay time of158

approximately 2.8(2) µs. Additionally, in section 4, the data from Fig. S4b are fitted to the error model to characterize159

the noise in the driving fields. The finite lifetime of the |Z2⟩ state results in an overall loss during transport, as reflected160

in the global decay of the measured Holevo information in Fig. 4b of the main text. The breakdown of the defect-161

free Z2-ordered system into subsystems, indicated by the decay of domain-wall density (Fig. S4c) and the reduction162

in oscillation contrast (Fig. S4d), smears the dynamics and impedes quantum information propagation. While the163

state preparation errors can be easily corrected, the mitigation of errors during the evolution is far more complex.164

The above-detailed characterization of the prepared |Z2⟩ state, particularly the decay rates during driven evolution,165

provides insights into the underlying noise sources (see section 4 for details on the noise model) and informs subsequent166

error mitigation strategies.167

In summary, a scalable approach for preparing |Z2⟩ states in large atomic arrays has been demonstrated. By168

combining global Rydberg excitation with site-selective addressing, high-fidelity state preparation was achieved in169

systems of up to 25 qubits. Detailed characterization of the state evolution provides valuable understanding of170

quantum scar dynamics and systematic noise sources. These findings lay the groundwork for further exploration of171

quantum information scrambling in scarred systems.172

2. THEORETICAL MODELING AND NUMERICAL SIMULATION173

2.1. Effective Hamiltonian and numerical simulation methods174

Our experimental setup consists of a linear array of 25 individual atoms trapped in optical tweezers. The system175

dynamics are governed by the microscopic Hamiltonian:176

H =
∑
i

[
Ω

2
σx
i −∆ni

]
+

∑
i<j

Vijninj , (S1)

where Ω is the Rabi frequency, ∆ is the detuning, and nj = (1 + σz
j )/2 is the projector onto |↑⟩ at site j, indicating177

whether the atom is in the Rydberg state. The interaction term Vij = C6/R
6
ij represents the van der Waals interaction178

between atoms in |↑⟩ state at sites i and j, with C6 being the van der Waals coefficient and Rij the distance between179

atoms.180

In the regime of strong nearest-neighbour interactions (Ω≪ Vi,i+1), neglecting longer-range interactions (Vi,j>i+1),181

and setting the detuning ∆ = 0, the Hamiltonian simplifies to the effective PXP Hamiltonian via the Schrieffer-Wolff182

transformation:183
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Figure S4. |Z2⟩ state dynamics under PXP Hamiltonian evolution. a and b, Population of |↑⟩ (blue) and |↓⟩ (red)
initialized qubits during a, forward-and-backward evolution (e−iHt followed by eiHt) and b, forward-only (e−iHt) evolution.
Curves in a represent exponential fits, while b is fitted with damped Fourier series up to the 5th order. c and d, Average
domain-wall density of the central 13 qubits during c, forward-and-backward evolution, and d, forward-only evolution. The
blue curve in c is an exponential fit, while d is fitted with a damped sinusoidal function.

HPXP =
∑
i

Piσ
x
i+1Pi+2, (S2)

where Pi = (1 − σz
i )/2 is the projector onto the |↓⟩ state at site i, and σx,y,z

i are Pauli matrices for the i-th qubit.184

The local three-body terms Piσ
x
i+1Pi+2 impose kinetic constraints, allowing a Rydberg atom state to flip only if both185

neighbouring atoms are in the spin-down |↓⟩ state. This constraint effectively rules out configurations |· · · ↑i↑i+1 · · ·⟩186

from the computational basis, as adjacent Rydberg excitations are forbidden by the blockade effect. The low-energy187

subspace, spanned by configurations without adjacent excited states, can be described by the projector:188

P =
∏
j

(1− njnj+1) . (S3)

This constrained subspace forms the effective Hilbert space of reduced dimensionality, governing the system’s con-189

strained dynamics. Remarkably, the dimension of this effective Hilbert space grows according to the Fibonacci190

sequence, scaling as ϕN , where ϕ = (1+
√
5)/2 is the golden ratio and N is the system size. This reduced dimension-191

ality reflects the exclusion of certain configurations due to the kinetic constraints, which significantly simplifies the192

dynamics.193

The PXP model exhibits three notable symmetries: (1) Discrete spatial inversion symmetry I, mapping j →194

N − j + 1. (2) Translational symmetry, applicable under periodic boundary conditions. (3) Particle-hole symmetry,195

represented by C =
∏

j σ
z
j , resulting in CHPXPC = −HPXP. The particle-hole symmetry plays a crucial role in196

reversing the Hamiltonian evolution exp(−iHt) in our experiment. However, this symmetry is only present in the197

PXP HamiltonianHPXP, not in the full Rydberg HamiltonianH governing the experiment, which causes imperfections198

in time reversal.199
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Figure S5. Optimization of experimental parameters for closely approximating the ideal PXP Hamiltonian
dynamics. Numerical simulations of OTOC and time-reversal fidelity of the central qubit in a 10-qubit chain with periodic
boundary conditions. a, Simulated OTOC dynamics for distinct nearest-neighbour (NN) Rydberg interactions Vi,i+1, in
comparison to those of the ideal PXP model. The interaction strengths vary from 2Ω to 10Ω in steps of 2Ω. The optimal
choice, Vi,i+1 = 6Ω, best matches the ideal case. b, Time-reversal fidelity as a function of Rabi frequency Ω, with Vi,i+1 fixed
at 6Ω. Different time evolutions are shown for Ωt = 1.0π (blue symbols), Ωt = 1.5π (yellow symbols), and Ωt = 2.0π (red
symbols). As Ω increases, the fidelity decreases. c, OTOC dynamics for different detuning values ∆, ranging from ∆ = 0 to
3Vi,i+2, where Vi,i+2 is the next-nearest-neighbour (NNN) interaction. The black curve represents the ideal PXP model. The
optimal detuning, ∆ = 2Vi,i+2, best matches the ideal dynamics. d, A comparison of OTOC dynamics using the optimized
experimental parameters (violet curve) and the ideal PXP model (black curve), showing close agreement. The optimized
parameters effectively reproduce the key oscillations observed in the OTOC.

When initialized in the |Z2⟩ state, the Rydberg atom system exhibits wavefunction oscillations with a slow decay.200

This decay is partially due to state losses and decoherence during the experimental evolution, but also arises from201

imperfections in the many-body scars and a small overlap with thermal states in the underlying PXP model. To202

better understand the intrinsic dynamics’ contribution to the observed decay, we performed numerical simulations of203

the revival behaviour, initializing the system of size N = 25 in the |Z2⟩ state. The results, shown in Fig. S24c, provide204

evidence that a significant portion of the observed decay can be attributed to intrinsic features of the PXP model.205

For all numerical simulations, we employ the Rydberg Hamiltonian (S1) to closely approximate the experimental206

physical conditions. For atomic chains of length ≤ 13, we utilize exact diagonalization to efficiently compute the full207

time evolution. However, for chains exceeding 13 atoms, exact diagonalization becomes computationally prohibitive208

due to exponentially increasing memory requirements and computation time, as well as limitations in available com-209

putational resources. Consequently, we implement the Matrix Product Operator (MPO) method to accelerate our210

numerical calculations in these cases. This approach allows us to extend our simulations to longer atomic chains211

while maintaining computational feasibility and numerical accuracy with TeNPy62. Unless otherwise specified, all212

simulations employ parameters identical to those in the experimental setup (detailed in Section 1). To account for213

experimental uncertainties, we implement a Monte Carlo method: accounting for fluctuations in Rabi frequency and214

detuning, laser noise, uncertainties in atomic positions and other relevant experimental parameters, all variables are215

randomly sampled from their respective probability distributions. Typically, we perform 200 runs and average the216

results. This comprehensive approach provides a robust representation of the system’s behaviour under realistic217

experimental conditions.218
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2.2. Parameter tuning for optimal quantum dynamics219

The approximation of the effective PXP Hamiltonian relies on two key assumptions: (1) Neglecting longer-range220

interactions Vi,j>i+1. (2) Ensuring that the nearest-neighbour interactions dominate over the Rabi frequency (Vi,i+1 ≫221

Ω).222

However, in practice, the next-nearest-neighbour interactions Vi,i+2 cannot be ignored. To approximate the PXP223

model closely, the system must operate in the regime where Vi,i+2 ≪ Ω≪ Vi,i+1. This poses a challenge because, in224

our 1D geometry with equally spaced atoms, the ratio Vi,i+1/Vi,i+2 is fixed at approximately 64. For example, setting225

Vi,i+1 ∼ 16Ω to meet the second assumption results in Ω ∼ 4Vi,i+2, making it difficult to fully suppress the effects of226

Vi,i+2. This creates a trade-off between the two key assumptions.227

To find an optimal ratio of Vi,i+1/Ω, we performed numerical simulations of the ZZ-OTOC with varying parameters.228

We identified the optimal ratio that minimizes the collapse-and-revival decay, as shown in Fig. S5a. Based on these229

results, we set the experimental ratio of Vi,i+1/Ω to 6, which differs from the theoretical intermediate value of230

Ω =
√
Vi,i+1Vi,i+2.231

The selection of the Rabi frequency involves balancing two competing factors: (1) Time-reversal fidelity: Our232

simulations (Fig. S5b) show that increasing the Rabi frequency reduces time-reversal fidelity when Vi,i+1/Ω is fixed233

at 6 and the interval between forward and backward evolution is fixed at 200 ns. (2) Single-atom coherence: Higher234

Rabi frequencies improve single-atom coherence, which is mainly limited by laser phase noise.235

After carefully weighing these factors, we chose a Rabi frequency of Ω = 2π × 1.21(1)MHz. This value strikes236

a balance between maintaining adequate time-reversal fidelity and ensuring sufficient single-atom coherence for our237

experimental needs.238

In addition to optimizing Vi,i+1 and Ω, we introduced a small detuning ∆ to counteract the residual next-nearest-239

neighbour interactions Vi,i+2. Our simulations indicate that setting ∆ = 2Vi,i+2 best captures the OTOC collapse-240

and-revival phenomenon (Fig. S5c).241

In our OTOC measurement, a gap is inserted between the forward and backward evolutions, for the implementation242

of local and global single-qubit σz operations. To minimize the gap time to ∼ 200 ns, we execute the local perturbations243

and global σz rotations in parallel, exploiting their commutative properties. We numerically investigated the impact of244

this finite gap on the collapse-and-revival behaviour of information observed in the experiment, as shown in Fig. S5d.245

Our analysis reveals that the 200 ns single-qubit operation time used in the experiment does not significantly affect246

the collapse-and-revival phenomenon.247

These parameter optimizations allow us to closely approximate the PXP model in our experimental setup (Fig. S5d),248

despite the inherent constraints of our system. These results highlight the importance of precise parameter tuning for249

accurately implementing the target Hamiltonian and maximizing the fidelity of quantum many-body scars’ evolution250

in Rydberg atom systems. The optimized parameters facilitate the experimental realization of coherent spin rotation251

dynamics under kinetic constraints, closely approximating the ideal behaviour of the PXP model.252

2.3. Boundary and finite-size effects253

In finite-sized qubit chains, the existance of boundary qubits breaks the translational symmetry of the PXP Hamil-254

tonian for certain initial states such as |Z2⟩ = |... ↑↓↑↓↑ ...⟩ and |0⟩ = |... ↓↓↓↓↓ ...⟩. This symmetry breaking results255

in different interaction strengths between edge and bulk qubits (Fig. S6a), introducing significant boundary effects.256

Additionally, the finite number of particles leads to variations in the dynamical evolution of bulk atoms across differ-257

ent system sizes, introducing finite-size effects. For the Rydberg Hamiltonian, which includes long-range interactions,258

these boundary effects are further amplified due to differences in the residual interactions at the edges compared to259

the bulk.260

To quantitatively analyse the boundary effect, we numerically simulate the evolution dynamics of both the central261

and the edge qubit in a 13-qubit chain, starting from the |Z2⟩ state under the ideal Rydberg Hamiltonian. As shown262

in Fig. S6b,c, boundary effects cause the edge qubits to exhibit accelerated periodic oscillations. This acceleration263

arises from the reduced constraints on edge qubits, resulting in a stronger effective driving strength.264

Moreover, both numerical simulations and experimental results reveal that boundary effects gradually alter the265

spin rotations from the outer edge inward, causing the initially uniform propagating wavefront to bend during the266

evolution of the |Z2⟩ initial state, underscoring the critical role of boundary effects in shaping the system’s dynamics.267

Additionally, we investigate the impact of boundary effects on OTOC measurements by comparing the OTOC of268

the edge qubit and its neighbouring qubit in a 9-qubit chain with the corresponding qubits in a 25-qubit chain. As269

shown in the inset of Fig. S6d,e, significant differences are observed, highlighting the substantial influence of boundary270

effects on the OTOC dynamics. To ensure the accuracy of the observed OTOC dynamics over extended evolution271
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Figure S6. Boundary and finite-size effects. Simulated dynamics of OTOCs and time evolution under the ideal Rydberg
Hamiltonian for various system sizes and boundary conditions, initialized in the |Z2⟩ state. a, Schematic illustration of boundary
effects in a 13-qubit chain. Boundary qubits lack nearest and next-nearest neighbours, breaking the translational symmetry.
b and c, Numerical results of ⟨nj(t)⟩ for edge (red) and central (blue) qubits in a 13-qubit chain, starting from the |↓⟩ state
(b) and the |↑⟩ state (c). Accelerated oscillations of edge qubits reflect boundary effects. d and e, OTOC dynamics for the
edge qubit (d) and its neighbouring qubit (e) in 9-qubit chain (red curves), compared to the corresponding qubits in 25-qubit
chain (blue curves). The schematics above each plot, marked with coloured circles, illustrate the specific qubit positions within
their respective chains. Insets show deviations |δOTOC| between the two dynamics, indicating significant boundary effects that
propagate into the interior of the chain. f, OTOC evolution under the ideal PXP Hamiltonian (yellow), and under the noisy
Rydberg Hamiltonian normalized using IZ-OTOC (blue) and the edge qubit’s ZZ-OTOC (red). g, Deviations of normalized
OTOCs from the ideal PXP case (red: edge ZZ-OTOC, blue: IZ-OTOC). Significant deviations observed in the case normalized
using ZZ-OTOC from the edge qubit. h and i, Simulated OTOC dynamics for the central qubit (h) and nearest-neighbour
(NN) qubit (i) in chains of various lengths (5, 9, 13, and 25 qubits) with open boundary conditions. Distinct variations of
OTOC dynamics in smaller systems show the finite-size effects. j and k, Comparison of OTOC dynamics for qubits furthest
from the perturbation in a 10-qubit chain (periodic boundary conditions, PBC, dark blue) and edge qubits in a 25-qubit chain
(open boundary conditions, OBC, light blue). The negligible deviation |δOTOC| validates the use of a 10-qubit PBC system to
approximate bulk qubit behaviour in a larger 25-qubit OBC system, matching our experimental conditions.

times, a larger system size is required.272

Notably, as discussed in section 4.4, a reference OTOC measurement is required to serve as the normalization273

denominator for mitigating experimental imperfections. Theoretical analysis suggests that the IZ-OTOC is an appro-274

priate reference for this purpose63,64. In our experiment, qubits near the boundary in the long chain remain unaffected275

by the local perturbation for a certain period, making them potentially suitable for approximating the IZ-OTOC dy-276

namics for central qubits. To evaluate the effectiveness of different normalization schemes, we compared the edge277

qubit’s ZZ-OTOC with the central qubits’ IZ-OTOC as the normalization denominator in a noisy environment. Our278

numerical simulations indicate that using the edge qubit’s ZZ-OTOC as the normalization denominator introduces279

over-corrections and temporal misalignment, as shown in Fig. S6f,g. These findings underscore the importance of280

employing the IZ-OTOC for accurate normalization and reliable mitigation.281



11

We further study finite-size effects by comparing the OTOC dynamics of the central two qubits in chains of varying282

lengths (5-, 9-, 13-, and 25-qubit chains with open boundary conditions). Numerical simulations reveal that in283

smaller atomic systems, finite-size effects are very pronounced, as shown in Fig. S6h,i. This suggests that we need to284

extend the chain length to ensure that our experimental observations accurately reflect the scrambling of quantum285

information. However, simulating 25 atoms requires substantial computational resources, even when using the MPO286

method. To address this challenge, we simulate both a 25-qubit chain with open boundary conditions (OBC) and a287

10-qubit chain with periodic boundary conditions (PBC), shown in Fig. S6j,k. We compare the OTOC dynamics of288

the atom furthest from the perturbation. The results reveal negligible differences within the experimental timescale,289

as the atom remains unaffected by the equivalent local perturbations at both ends during this period.290

Based on this analysis, when simulating the dynamics of OTOC, we employ simulations of a 10-qubit chain with291

PBC. For experimental studies of quantum information scrambling within a constrained Hilbert space, we employ a292

25-qubit chain to shield the central 13 atoms, thereby avoiding boundary effects and finite-size effects.293

3. PROBING QUANTUM INFORMATION SCRAMBLING AND TRANSPORT DYNAMICS294

Quantum information dynamics, the study of how local quantum information propagates in complex many-body295

systems, plays a crucial role in the understanding of many fundamental questions. It can be employed to study296

the limits on the speed of information propagation in quantum systems65–81. It is also deeply linked to quantum297

chaos and quantum thermodynamics45,59,82–86, providing insights into dynamics in thermal and non-ergodic systems298

87–99. Moreover, in black hole physics, quantum information scrambling is related to the information paradox100–104.299

Additionally, quantum information dynamics has broad potential applications. In quantum computing, understanding300

information spreading is vital for developing noise-resistant systems and enhancing quantum error correction64,105;301

in quantum metrology, it could inspire novel precision measurement protocols106. In this section, we present the302

details of our study on quantum information scrambling and transport using a Rydberg atom array, including the303

measurements of out-of-time-ordered correlators, and Holevo information.304

3.1. OTOC measurements details305

Out-of-time-ordered correlators (OTOCs) have become a powerful tool for investigating quantum information306

scrambling, revealing how local perturbations propagate through quantum systems45,93,94,96–98,107–112. Experimental307

demonstrations of OTOC measurements have been achieved in several quantum platforms, including superconduct-308

ing circuits64,113–116, trapped ions105,117–119, nuclear magnetic resonance (NMR)120–125, NV centres126, degenerate309

Fermi gases127 and cavity quantum electrodynamics (cavity QED) system106. In this section, we provide a detailed310

description of the OTOC measurements.311

Figure S7 illustrates the detailed pulse sequence for measuring the ZZ-OTOC. The measurement protocol begins312

with the preparation of two distinct initial states, |Z2⟩ and |0⟩ (see section 1.3 for details on state preparations). The313

system then undergoes forward time evolution under the Hamiltonian H for a duration t. Next, a local perturbation314

σz
j is selectively applied to the central (13th) atom by inducing a π-phase shift with a 795-nm addressing laser. At the315

same time, a global
∏

i σ
z
i rotation is performed on all qubits via a microwave field. This global rotation, combined with316

the subsequent Hamiltonian evolution, effectively implements the time-reversed Hamiltonian −H for an equal duration317

t. This carefully designed sequence realizes the desired OTOC measurement, Fij(t) = ⟨ψ|W †
i (t)V

†
j Wi(t)Vj |ψ⟩.318

To mitigate the differential AC-Stark shifts induced by the tweezer traps on the ground and Rydberg states, the319

traps are switched off before Rydberg excitation and turned back on after state evolution. Given the estimated atomic320

temperature of approximately 10µK and the release and recapture time of 10µs, the resulting atomic loss is estimated321

to be around 1%.322

In the regime where Vi,i+2 ≪ Ω ≪ Vi,i+1, the Rydberg blockade effect introduces kinetic constraints, excluding323

configurations with adjacent qubits in the Rydberg state, |· · · ↑i↑i+1 · · ·⟩, from the computational basis. This kinet-324

ically constrained system is well approximated by the PXP model. However, due to the nature of van der Waals325

interactions, the ratio Vi,i+1/Vi,i+2 is fixed at approximately 64, making it difficult to fully separate these energy326

scales. The experimental parameters are carefully optimized, with Ω set to approximately Vi,i+1/6, as detailed in327

section 2.2. Additionally, a small non-zero detuning ∆ between the Raman excitation lasers and the ground-Rydberg328

transition is introduced to mitigate the residual next-nearest-neighbour interactions. Numerical simulations (Fig. S8a)329

indicate that a detuning of 2Vi,i+2 ∼ 2π × 0.2MHz better preserves OTOC oscillations, closely approximating the330

expected PXP dynamics.331

The 795-nm addressing laser used for local perturbation σz
j and the laser array for generating the alternating light332

shifts in |Z2⟩ state preparation are both directed onto different regions of the same SLM. These two independent333
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Figure S7. Pulse sequence for OTOC measurements.

regions display distinct holograms, allowing for different addressing laser patterns. This spatial multiplexing enables334

sub-microsecond switching of 795-nm addressing laser patterns between |Z2⟩ state preparation and local perturbation,335

without being limited by the refresh rates of devices such as AODs (microsecond scale) and SLMs (millisecond scale).336

The duration of the local perturbation pulse is ∼110 ns, resulting in a π-phase shift on the ground states. The337

effectiveness of this local perturbation is experimentally verified by applying it to a single atom between two π/2338

pulses separated by a fixed interval. By varying the phase of the second pulse, Ramsey-type oscillations of both339

addressed and unaddressed atoms are observed (Fig. S8b). The oscillations of the addressed atom are shifted by340

1.01(2)π relative to those of the unaddressed atoms, confirming a controlled phase shift on individual atoms.341

One of the key challenges in measuring OTOCs is implementing the inverse Hamiltonian evolution exp(−iHt) in342

a many-body system. In the Rydberg PXP model, we overcome this difficulty by exploiting particle-hole symmetry,343

represented by C =
∏

j σ
z
j , which leads to the relation CHPXPC = −HPXP, effectively reversing the sign of the Hamil-344

tonian. This symmetry allows us to implement the time-reversed Hamiltonian (
∏

i σ
z
i )HPXP(

∏
i σ

z
i ) = −HPXP

128,129.345

Experimentally, this is achieved by applying a global σz gate to all qubits using a ∼180 ns-long far-detuned mi-346

crowave (MW) field. The MW field off-resonantly couples the Rydberg states |↑⟩ = |r⟩ = |68D5/2,mJ = 5/2⟩ and347

|r′⟩ = |69P3/2⟩, and induces a π-phase shift on the state |↑⟩ via the AC Stark effect. This method enables the forward-348

and-backward evolution of the |Z2⟩ state, with the measured results presented in Fig. 3c of the main text. Our349

digital-analogue approach offers an efficient and elegant way to implement time reversal in programmable Rydberg350

atom arrays, enabling precise measurements of quantum information scrambling via OTOCs. For the ZZ-OTOC351

measurement, we apply a local butterfly operator Wi = σz
c to perturb the central qubit (the 13th qubit), while the352

measurement operator Vj = σz
j acts on the j-th qubit. The ZZ-OTOC, denoted as Fij(t), where i = c for the central353

qubit, can be expressed as:354

Fij(t) = Fcj(t) = ⟨Ψ0|σz
c (t)σ

z
jσ

z
c (t)σ

z
j |Ψ0⟩ = ⟨Ψ0|σz

j |Ψ0⟩⟨Ψc(t)|σz
j |Ψc(t)⟩, (S4)

where |Ψ0⟩ is the initial state, and |Ψc(t)⟩ = eiHtσz
ce

−iHt |Ψ0⟩ represents the time-evolved state after forward-355

and-backward Hamiltonian evolution over time t. For consistency, we fix ⟨Ψ0|σz
j |Ψ0⟩ = 1. The expectation value356

⟨Ψc(t)|σz
j |Ψc(t)⟩, which represents the correlation between the central qubit and the j-th qubit, can be directly357

obtained from site-resolved measurements of the Rydberg state population. Specifically, it is given by:358

⟨Ψc(t)|σz
j |Ψc(t)⟩ = 2Pj(↑)− 1, (S5)

where Pj(↑) is the measured population of the |↑⟩ state for the j-th qubit in the array. Consequently, the ZZ-OTOC359

can be written as:360

Fcj(t) = 2Pj(↑)− 1. (S6)



13

Figure S8. Local perturbation. Phase-dependent Ramsey oscillation of the central qubit, with (blue) and without (red)
the local butterfly operator σz

c .

In the experiment, the Rydberg state population P (↑) is measured for each qubit after time evolution, allowing us to361

extract the full spatio-temporal dynamics of the OTOC across the atomic array.362

To ensure consistency when measuring qubits in the |Z2⟩ state, the measured j-th qubit is always initialized in the363

|↑⟩ state. Consequently, the indexing of the initial |Z2⟩ state must be adjusted based on whether the measured qubit364

index j is odd or even. For the central 13 qubits, the initial |Z2⟩ state is defined as |Z2⟩ = |... ↓j−1↑j↓j+1 ...⟩, where365

the measured qubit is always initialized as |↑⟩, with the central qubit labeled as qubit 13. The data acquisition and366

processing procedure depends on the odd or even nature of the measured qubit index. For odd indices, |↑⟩-initialized367

qubit 13 is perturbed, and the OTOC data is collected from qubits 7, 9, ..., 19. For even indices, |↓⟩-initialized qubit368

12 is perturbed, OTOC data is collected from qubits 7, 9, ..., 17, and aligned with qubit indices 8, 10, ..., 18 for369

consistency in indexing. Throughout the measurement process, the initial 25-qubit |Z2⟩ state remains unchanged to370

maintain consistent initial state preparation fidelity.371

To mitigate boundary effects inherent in finite-size systems (Fig. S6), the OTOC measurements focus on the central372

13 qubits of the prepared 25-qubit |Z2⟩ state. Boundary qubits experience fewer neighbouring interactions, which can373

lead to deviations in their dynamics. By concentrating on the central region, we limit the influence of these boundary374

effects and ensure that the measured dynamics more accurately represent the bulk behaviour of the PXP model. This375

strategy allows us to observe the intrinsic quantum information scrambling and collapse-and-revival phenomena with376

higher fidelity, as the central qubits are less affected by edge-induced artifacts. Thus, the measured OTOCs from377

these qubits provide a better approximation of the expected PXP behaviour.378

3.2. Holevo information measurements details379

Holevo information, introduced by Alexander Holevo in 1973130, is a fundamental concept in quantum information380

theory that sets an upper bound on the amount of information that can be reliably transmitted through a quantum381

channel131,132. It is formally defined as the difference between the von Neumann entropy of the average output state382

and the average of the von Neumann entropies of the individual output states. Mathematically, if ρX =
∑

i piρi is383

the average output state corresponding to the quantum channel’s output ensemble {pi, ρi}, the Holevo information X384

is given by:385

X = S(ρX)−
∑
i

piS(ρi),

where S(ρ) denotes the von Neumann entropy, defined as S(ρ) = −Tr(ρ log2 ρ). Importantly, Holevo information386

represents the upper bound on the accessible information that can be shared between two parties using a quantum387

channel, reflecting the best-case scenario for the amount of information that can be transmitted, regardless of the388

specific measurement strategy employed by the receiver.389

To illustrate this, we consider an ensemble with two equally probable quantum states ρ and ρ′. Holevo information in390

this case can be interpreted as a measure of the distinguishability between the two states. Suppose Alice selects either391
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Figure S9. Illustration of ineffective local perturbations. Numerical simulations of a, |Z2⟩ state evolution, b, ZZ-OTOC
dynamics and c, Holevo information dynamics with the same time scale, mirroring Figs. 2e, 3l and 4c in the main text. Time
intervals when all the qubits approach the |↑⟩ or |↓⟩ pure states are marked with two pairs of dashed lines (0.6 µs–0.7 µs and
1.2 µs–1.3 µs). During these intervals, the ZZ-OTOCs (Fij) for all qubits approach 1 since the σz butterfly operator has no
effect on the perturbed qubit. In contrast, Holevo information remains effective throughout, enabling uninterrupted tracking
of quantum information dynamics.

ρ or ρ′ with a probability of 1/2 and sends it to Bob through a quantum channel. Bob then performs a measurement392

to gain as much information as possible about which state Alice has sent. The information Bob retrieves from his393

measurement is upper bounded by the Holevo information X. For instance, if ρ and ρ′ are completely indistinguishable394

(i.e., ρ = ρ′), Bob cannot obtain any information about Alice’s choice, and the Holevo information is zero (X = 0).395

In this case, regardless of Bob’s measurement, the outcome gives no clue about whether ρ or ρ′ was sent. On the396

other hand, if ρ and ρ′ are orthogonal, e.g. ρ = |↑⟩ ⟨↑| and ρ′ = |↓⟩ ⟨↓|, Bob can fully determine Alice’s choice using397

an appropriate measurement, such as a σz measurement. In this case, the Holevo information reaches its maximum398

value of X = 1, meaning Bob retrieves all the information about Alice’s selection.399

Holevo information has also been proposed as a powerful tool for studying scrambling and transport dynamics in400

many-body quantum systems59,133,134. Compared to OTOCs, which measure the scrambling of local perturbations in401

a system, Holevo information provides a different perspective on quantum information dynamics, as it does not rely402

on specific perturbations that may be ineffective under certain conditions.403

In systems exhibiting quantum many-body scars, ZZ-OTOC measurements may occasionally become less informa-404

tive due to the periodic oscillation of the scar state wavefunction. For example, during certain time intervals (such as405

0.6 µs–0.7 µs and 1.2 µs–1.3 µs in Fig. 3j,l and Fig. S9), the ZZ-OTOC values for all qubits approach 1. The reason is406

that during these intervals, the wavefunction of the scar state |Z2⟩ partially revives, causing the perturbed qubit to407

be mostly in either the |↑⟩ or |↓⟩ pure state, where the butterfly operator σz becomes ineffective. Consequently, no408

effective perturbation occurs, and no measurable scrambling is observed. As a result, ZZ-OTOC values of all qubits409

approach 1, due to the lack of an effective perturbation. In contrast, Holevo information can continuously capture410

quantum information dynamics, even during periods when the butterfly operator in ZZ-OTOCs become less effective411

(Fig. S9c).412

This distinction is further emphasized when comparing Holevo information to classical Shannon information. While413

Shannon information only accounts for classical probability distributions, ignoring quantum phases, Holevo informa-414

tion captures both classical and quantum aspects of information, including coherence and entanglement. For example,415

between |←⟩ and |→⟩ states, Shannon information may be minimized to zero, while Holevo information can still be416

maximized, reflecting the quantum coherence between these states. In the specific context of the PXP model with the417

initial state |Z2⟩, Holevo information reveals the retarded spin dynamics within the light-cone structure (see Fig. S23).418

This analysis highlights how kinetic constraints lead to a persistent phase delay in the propagation of spin rotations,419

influencing the overall information dynamics. Within this light cone, spins resume their constrained rotations; how-420

ever, the distinguishability of spin states periodically collapses and revives, as captured by Holevo information. This421

behaviour reflects the constrained dynamics of the PXP model, where the Rydberg blockade effect induces delayed422

spin rotations near the central flipped spin, with this delay propagating outwards in a light-cone-like wavefront.423

To understand how Holevo information applies to our experimental system, we consider the scenario where Alice424

and Bob transmit information through the |Z2⟩ state. Based on the |Z2⟩ state, Alice at the central site chooses425

whether to flip her qubit at t = 0, and Bob at site j measures his qubit at time t to infer Alice’s choice. Outside the426

light cone, Bob retrieves no information (Xj(t) = 0) due to the finite speed of information propagation. Inside the427

light cone, Bob periodically gains and loses information, as the distinguishability of spin states collapses and revives,428

leading to corresponding oscillations in Holevo information. This behaviour reflects the constrained dynamics of the429

PXP model, where the Rydberg blockade effect induces delayed spin rotations near the central flipped spin, with this430
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Figure S10. Pulse sequence for Holevo information measurements.

delay propagating outwards. Notably, even when Bob measures the same qubit perturbed by Alice, the phenomenon431

of collapse and revival can still occur due to the constrained dynamics in the system. Additionally, information can432

be retrieved from other sites, as the quantum information propagates across the system, even when Bob’s qubit does433

not provide it.434

Furthermore, Holevo information provides a robust measure of non-Markovianity, capturing the information back-435

flow from surrounding spins to the central spin. Each spin exhibits periodic increases in Holevo information, signaling436

the backflow of quantum information, which is a clear signature of positive non-Markovianity135–137. This unique437

collapse-and-revival behaviour of Holevo information is distinct from the quantum scar state oscillations observed in438

similar systems, as it incorporates thermal eigenstates, thereby providing a broader picture of quantum dynamics439

beyond the scarred subspace.440

To the best of our knowledge, this work presents the first experimental investigation of many-body dynamics in441

Rydberg atom array using Holevo information. In the rest of this section, we provide details regarding the experimental442

sequence and parameters utilized in our measurements of Holevo information.443

Figure S10 illustrates the pulse sequence used to measure Holevo information dynamics, corresponding to Fig. 4a444

in the main text. The protocol begins with the preparation of two distinct initial states: |Z2⟩ and σx
c |Z2⟩, where σx

c445

acts on the central spin in the chain. These initial states evolve under the Rydberg Hamiltonian, after which quantum446

state tomography is performed to reconstruct the density matrix ρj for each qubit, enabling a detailed investigation447

of quantum information transport dynamics under kinetic constraints.448

The Holevo information is extracted from the reconstructed density matrix, which includes both diagonal and449

off-diagonal elements. The diagonal elements of ρj(t) and ρ′j(t) are obtained through projective measurement of450

σz
j on the j-th qubit, which can be accessed via Rydberg population measurement. However, measuring the off-451

diagonal elements requires a single-qubit π/2-rotation with a variable phase. This process is particularly challenging in452

strongly interacting Rydberg atom systems due to the constraints imposed by the PXP model, which requires nearest-453

neighbouring Rydberg atoms to be in the excitation blockade regime. The strong interactions between neighbouring454

Rydberg atoms create significant obstacles for performing spin rotations on any given qubit. If a nearest-neighbouring455

atom of the target qubit is in the Rydberg state, the blockade effect will prevent the target qubit from undergoing456

rotation. Even if only a next-nearest-neighbouring atom is in the Rydberg state, though not causing a full blockade,457

the residual Rydberg interaction will still affect the phase during quantum state tomography. Moreover, even when458

both nearest-neighbouring and next-nearest-neighbouring atoms are in the ground state, performing a spin rotation459

on the target qubit still remains difficult, as surrounding atoms can become entangled with the target qubit due460

to their involvement in the Rydberg excitation, resulting in a complex many-body quantum state. Therefore, to461

carry out the spin rotations required for quantum state tomography on the target qubit, it is necessary for the462

nearest-neighbouring and next-nearest-neighbouring atoms to neither be in the Rydberg state nor resonant with the463
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Figure S11. Holevo information measurement details. a, Rydberg population of the central 7 qubits, with (blue) and
without (red) the Rydberg population transfer process. The data is obtained via Rydberg population measurement of even
atoms and odd atoms, respectively. b, Under the driving of global 480-nm and 780-nm lasers, the target qubit (red diamonds)
exhibits Rabi oscillation between the ground and Rydberg states, while the neighbouring qubits (blue squares), due to the EIT
condition created by the 480-nm addressing lasers, do not participate in the spin rotation process.

ground-Rydberg transition.464

Experimentally, we implement a novel approach for density matrix reconstruction using global rotations combined465

with 480-nm addressing lasers. The addressing beams, resonant with the transition from the excited state |e⟩ to the466

Rydberg state |r⟩, are selectively applied to the four neighbouring qubits, transferring their Rydberg populations to467

the ground state via spontaneous emission from the intermediate state |e⟩. The decay rate of the Rydberg population468

during the transfer process, Γr, can be estimated by:469

Γr = Γe
Ω2

480/4

δ2 + Γ2/4 + Ω2
480/2

. (S7)

Here, Γe = 2π×6.06MHz is the natural linewidth of the excited state |5P3/2⟩. The terms Ω480 and δ denote the Rabi470

frequency and detuning of the addressing beams, respectively. This process lasts for approximately 200 ns, which is471

sufficient to deplete the Rydberg population at neighbouring sites (Fig. S11a), while being short enough to avoid the472

unwanted effects on the target qubit due to crosstalk from the 480-nm addressing lasers. After the state transfer473

process, the Rydberg population in the neighbouring qubits is reduced by 96(1)%, with negligible crosstalk-induced474

reduction in the Rydberg population of the target qubit.475

Next, the 480-nm addressing lasers split the bare Rydberg state |r⟩ into two dressed states: |+⟩ = 1√
2
(|r⟩+ |e⟩) and476

|−⟩ = 1√
2
(|r⟩ − |e⟩), separated by ℏΩ480, where Ω480 ∼ 2π × 20MHz is the Rabi frequency of the 480-nm addressing477

laser. The dressed states are significantly detuned from the ground-Rydberg transition. The off-resonant excitation478

from the ground state |g⟩ to the dressed states |+⟩ and |−⟩ causes destructive interference, preventing population479

transfer to the Rydberg state. This creates an electromagnetically induced transparency (EIT) condition, ensuring480

neighbouring qubits do not participate in the ground-Rydberg coherent driving implemented by the global excitation481

lasers.482

Finally, single-qubit rotation on the target qubit is implemented using global excitation lasers. Figure S11b demon-483

strates that the target qubit can undergo single-qubit rotation (Rabi oscillation between the ground and Rydberg484

states) in the presence of neighbouring qubits addressed by the 480-nm laser. The addressed neighbouring qubits485

remain ineligible for the ground-Rydberg excitation process due to the EIT condition induced by the 480-nm laser.486

In an ideal scenario with periodic boundary conditions, the PXP model would exhibit a stationary expectation487

value of the Pauli-X operator ⟨σx⟩ throughout the evolution. For initial states like |Z2⟩ and σx
c |Z2⟩, this implies that488

⟨σx⟩ = 0. However, during the gap time between the evolution and the projection measurement, the residual van489

der Waals interaction between the atoms could lead to the accumulation of phases, causing ⟨σx⟩ to become non-zero.490

This introduces challenges in accurately measuring the desired off-diagonal elements of the system’s density matrix.491

Due to the difference in the initial states (|Z2⟩ and σx
c |Z2⟩), even after the same PXP evolution, the two output492

states may accumulate different residual phases. This phase difference introduces additional distinguishability when493

directly measuring the off-diagonal elements, increasing the difference between the two output states ρj(t) and ρ
′
j(t).494
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As a result, this extra distinguishability reduces the accuracy of the Holevo information. To address this, we measure495

the full parity oscillation curve by scanning the phase shift between two π/2 pulses. From this curve, we extract the496

oscillation amplitude A by fitting it to a sinusoidal function.497

With the measured values of P (↑) and A for each qubit, we reconstruct the density matrix ρ(t) at time t using the498

following expression:499

ρ(t) =
1

2
(I+ (2P (↑)− 1)σz) + ϵ(t)Aσy, (S8)

where ϵ(t) represents the sign of ⟨σy⟩, with ϵ(t) = 1 when P (↑) is expected to be increasing, and ϵ(t) = −1 otherwise.500

Here, I is the identity matrix, and σy and σz are the Pauli-Y and Pauli-Z matrices, respectively.501

The Holevo information for qubit j at time t can be obtained:502

Xj(t) = S

(
ρj(t) + ρ′j(t)

2

)
−
S(ρj(t)) + S(ρ′j(t))

2
, (S9)

where ρj(t) and ρ
′
j(t) are the density matrices of the j-th qubit evolved from distinct initial states |Z2⟩ and σx

c |Z2⟩.503

The von Neumann entropy S(ρ) = −Tr(ρ log2 ρ) is used to quantify the information content of the density matrices.504

The measurement of off-diagonal elements is what distinguishes quantum information from classical Shannon infor-505

mation. Shannon information, which only considers the diagonal elements of the density matrix, is a simple measure506

of classical probability distributions. In contrast, quantum information involves off-diagonal elements, which capture507

quantum effects like coherence and entanglement—features not present in classical systems. We emphasize that von508

Neumann entropy goes beyond Shannon entropy in quantum information science. While Shannon entropy only reflects509

the uncertainty in classical probability distributions, von Neumann entropy plays a central role in quantum systems. It510

is essential for quantifying information in quantum states and determining the capacities of quantum channels. More511

importantly, it captures quantum phenomena, such as entanglement, which are critical for understanding quantum512

systems. This is why we have made significant efforts to measure the off-diagonal elements, as they provide deeper513

insights into the unique aspects of quantum information.514

3.3. Non-Markovian quantum information dynamics in a strongly-interacting Rydberg atom array515

Non-Markovian quantum dynamics are often characterized by memory effects, where a system’s evolution depends516

on its past interactions with the environment. Unlike Markovian dynamics, where information is irreversibly lost to517

the environment, non-Markovian systems can experience information backflow, allowing for the recovery of previously518

lost information138–141. In many-body quantum systems, strong interactions could lead to non-Markovian dynamics,519

significantly influencing the spread and preservation of quantum information520

In this work, we observe non-Markovian dynamics in a strongly interacting Rydberg atom array, focusing on the521

unusual behaviour of information backflow. We designate the central spin in an atomic array as the “system” and522

the surrounding spins as the “environment”. The strong spin interactions allow information to transfer between the523

system and environment in complex ways, making it possible to observe non-Markovian effects.524

Our experimental setup allows for precise quantum state tomography of each spin, enabling real-time tracking of525

information flow across the system. This capability provides detailed insight into non-Markovian behaviour by directly526

measuring how information, initially lost to the environment, returns to the spins that originally held it.527

To quantify non-Markovianity, we assess the degree of information backflow using metrics like trace distance142,143528

and Holevo information135–137, which track the evolution of quantum state distinguishability over time. The con-529

strained spin rotations within the system drive this backflow, causing periodic collapses and revivals in information530

distinguishability. This allows us to capture key signatures of non-Markovian dynamics as information spreads,531

collapses, and recovers between the system and environment. These findings offer valuable insights into quantum532

information dynamics and hold promise for advancing quantum memory technologies.533

The trace distance is defined as534

D(ρ1, ρ2) =
1

2
Tr|ρ1 − ρ2|, (S10)

where ρ1 and ρ2 are density matrices of |Z2⟩ and σx
c |Z2⟩, respectively. Figure S12 shows the experimentally measured535

spatio-temporal dynamics of the trace distance between the |Z2⟩ state and σx
c |Z2⟩ under the Rydberg Hamiltonian.536

Density matrices are reconstructed from Holevo information measurements. The plot reveals a clear linear light cone537

structure and a spatial-temporal collapse-and-revival pattern, mirroring observations in the Holevo information data538

presented in the main text. Trace distance, a widely used metric for quantifying non-Markovianity in quantum systems,539
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Figure S12. Quantify non-Markovian dynamics via trace distance measurements. Spatio-temporal dynamics of trace
distance between |Z2⟩ and σx

c |Z2⟩ states under Rydberg Hamiltonian. Density matrices reconstructed from Holevo information
measurements. The measurements reveal a linear light cone and collapse-and-revival pattern, demonstrating periodic increases
in state distinguishability. This non-monotonic behaviour provides evidence of quantum information backflow, indicating non-
Markovian dynamics in the Rydberg atom array.

tracks the distinguishability between two quantum states over time. While Markovian processes exhibit monotonic540

decay of trace distance, indicating irreversible information loss to the environment, our data shows periodic increases541

in trace distance. This observed pattern provides compelling evidence for quantum information backflow and the non-542

Markovian nature of the system’s dynamics. These dynamics, marked by changes in state distinguishability, align543

well with theoretical expectations from the PXP model and display features of information backflow, where quantum544

information is periodically exchanged between the system and its environment rather than being permanently lost.545

Our findings are consistent with previous studies on non-Markovian behaviour in quantum systems142.546

4. ERROR ANALYSIS AND MITIGATION547

In our Rydberg atom quantum simulator, imperfect Hamiltonian evolution and finite qubit coherence lead to the548

accumulation of both coherent and incoherent errors in the dynamics of OTOCs and Holevo information. This section549

analyses the major error sources, develops an error model to identify and characterize primary error mechanisms, and550

implements error mitigation techniques for ZZ-OTOC, enhancing the performance of the quantum simulator.551

4.1. Initial state preparation error552

As the number of atomic qubits increases, the exponential growth in the dimension of the density matrix amplifies553

the complexity of quantum state dynamics and the impact of initial state preparation errors. In studying ZZ-OTOC554

or Holevo information dynamics for |Z2⟩ initial states within the constrained Hilbert space, rapid thermalization of555

the error states could affect the behaviour of quantum information scrambling. Therefore, the fidelity of initial |Z2⟩556

state preparation is crucial for accurately probing quantum information dynamics in our system.557

1. Influence on OTOCs558

As mentioned in section 1.3, the |Z2⟩ state preparation under global coherent Rabi excitation with site-selective559

addressing technique introduces errors primarily from infidelity in single-qubit operations. Our measurements of the560

microstate distribution revealed that errors in |Z2⟩ state preparation are predominantly attributable to single qubit561

|↑⟩ → |↓⟩ flips. These error states account for 86(2)% of all occurrences in conjunction with the |Z2⟩ state (Fig. S3d,e).562

The remaining error contribution primarily stems from detection errors (approximately 1% per qubit). Consequently,563

the prepared density matrix can be expressed as a weighted sum of the target |Z2⟩ state and the major error states.564

Given the |Z2⟩ state preparation fidelity of FZ2
, the measurement results of ZZ-OTOC F exp

ij (t) can be therefore565

expressed as:566
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Figure S13. Impact of |Z2⟩ state preparation fidelity on ZZ-OTOC dynamics. a–d show ZZ-OTOC evolution for four
qubits exhibiting non-trivial dynamics. The coloured curves represents increasing fidelity values (0.2–1.0). The blue circle in
the qubit chain diagram (top) indicates the qubit in each plot.

F exp
ij (t) = FZ2

· FZ2
ij (t) +

∑
α

ραα(0)F
α
ij(t) (S11)

Here, FZ2
ij (t) represents the ZZ-OTOC dynamics with the ideal initial |Z2⟩ state, and Fα

ij(t) denotes the dynamics567

for the α-th error state in the prepared density matrix ρ(0) = FZ2
|Z2⟩ ⟨Z2| + ραα(0) |α⟩ ⟨α|. To investigate the568

impact of |Z2⟩ state preparation fidelity on ZZ-OTOCs, we simulated the ZZ-OTOC dynamics with various |Z2⟩ state569

preparation fidelity (ranging from 0.2 to 1.0), as shown in Fig. S13. The atomic array in our experiment exhibits570

symmetry around the central qubit, which means that the dynamics of qubits at symmetrically equivalent positions are571

exactly the same. Taking advantage of this symmetry, we can fully characterize the system’s behaviour by examining572

a subset of qubits. We present simulation results for four qubits that exhibit non-trivial dynamics and represent the573

distinct behaviours observed in the array. For these error states, we considered uniformly distributed |↑⟩ → |↓⟩ errors.574

This error state distribution aligns with the typical experimental conditions as characterized in section 1.3. The575

simulations reveal that the |Z2⟩ state preparation fidelity significantly affects the contrast of the collapse-and-revival576

pattern within the light cone. Moreover, given our high |Z2⟩ state preparation fidelity (78(1)% for 13-qubit chain,577

after detection error correction.) and the measured microstate distribution, numerical simulation results (Fig. 3b of578

the main text for qubit 13, and Fig. S14 for other qubits) demonstrate that the characteristic collapse-and-revival579

pattern remains clearly observable.580

2. Influence on Holevo information581

For Holevo Information, we consider the evolution of both the |Z2⟩ and the σx
c |Z2⟩ states, accounting for imper-582

fections in state preparation. With the prepared density matrices ρ(0) = FZ2
· |Z2⟩ ⟨Z2| +

∑
α ραα(0) |α⟩ ⟨α| and583

ρ′(0) = FZx
2
σx
c |Z2⟩ ⟨Z2|σx

c +
∑

β ρ
′
ββ(0) |β⟩ ⟨β| for |Z2⟩ and σx

c |Z2⟩ respectively, the final density matrices after evo-584

lution are given by:585

ρ(t) = FZ2 · |Z2(t)⟩ ⟨Z2(t)|+
∑
α

ραα(0) |α(t)⟩ ⟨α(t)| (S12)

for imperfect |Z2⟩ and:586
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Figure S14. Impact of experimental |Z2⟩ state preparation errors on ZZ-OTOC dynamics. Solid and dashed lines
represent numerical simulations of OTOC evolution with the experimentally measured microstate combination (MMC) and
perfect |Z2⟩ state as initial states, respectively, showing a negligible difference for each qubit in the 13-atom array. The results
for the central (13th) qubit are shown in Figure 3b of the main text.
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Figure S15. Impact of initial state preparation fidelity on Holevo information dynamics. a–d, Simulated Holevo
information dynamics with initial state preparation fidelities varying from 0.2 to 1. e and f, Solid lines represent dynamics with
perfect initial states, while dashed lines show dynamics with experimentally prepared initial state fidelities. The qubit chain
above each plot indicates the positions of the qubits under consideration (coloured circles).

ρ′(t) = FZx
2
· |Zx

2(t)⟩ ⟨Zx
2(t)|+

∑
β

ρββ(0) |β(t)⟩ ⟨β(t)| (S13)

for imperfect σx
c |Z2⟩. Here, |Z2(t)⟩ = e−iHt |Z2⟩ and |Zx

2(t)⟩ = e−iHtσx
c |Z2⟩ represent the final states after evolution587

for the ideal |Z2⟩ and σx
c |Z2⟩ initial states under the Rydberg Hamiltonian H, respectively. FZ2

and FZx
2
denote588

the preparation fidelity for |Z2⟩ and σx
c |Z2⟩, respectively. The summation terms account for contributions from the589

evolution of the various initial error states |α⟩ and |β⟩ : |α(t)⟩ = e−iHt |α⟩ and |β(t)⟩ = e−iHt |β⟩, with weights ραα(0)590

and ρββ(0) representing their respective probabilities in the initial density matrices.591

Using these final states, we calculate the reduced density matrices for each qubit:592

ρj(t) = Tri ̸=jρ(t) (S14)

593

ρ′j(t) = Tri̸=jρ
′(t) (S15)

where Tri ̸=j denotes the partial trace over all qubits except the j-th qubit. And the Holevo information is then594

calculated following the equation (S9).595

To assess the impact of imperfect initial state preparation on the Holevo information dynamics, we performed596

numerical simulations with different initial state preparation fidelities. Figure S15a–d demonstrates the Holevo in-597

formation dynamics for initial state preparation fidelity ranging from 0.2 to 1.0. The results suggest that for low598

preparation fidelities, the collapse-and-revival phenomenon after 1 µs (driving Rabi frequency ∼ 2π × 1.2MHz) is de-599

graded, particularly for qubits far away from center. These results further emphasize the necessity of high |Z2⟩ state600

preparation fidelity for observing the collapse-and-revival of quantum information. Based on the measured microstates601

combinations of the experimental prepared initial states, equal preparation fidelities for both |Z2⟩ and σx
c |Z2⟩ states602

were assumed in the numerical simulations, with error states uniformly distributed across all |↑⟩-initialized qubits. To603

this end, Fig. S15e,f compare the Holevo information dynamics from the experimentally prepared |Z2⟩ and σx
c |Z2⟩604

states (dashed lines) with perfectly initial states (solid lines). The results suggest that, given the experimentally605

achieved high initial state preparation fidelity, the distinctive features of Holevo information dynamics persist and606

remain readily discernible.607
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4.2. Detection and evolution error608

Imperfections in quantum state evolution and detection introduce errors into experimental results, which degrade609

the performance of the Rydberg quantum simulator. This section identifies and analyzes two main categories of error:610

detection errors and evolution errors.611

1. Detection error612

The gap time (as described in section 3.1) between the end of evolution and the start of detection results in613

Rydberg-state atoms decaying to the ground state due to their finite lifetime, contributing to detection errors. Ad-614

ditionally, measurements of both Rydberg and ground states are subject to inherent detection errors (quantum state615

discrimination error).616

To quantify these errors, we introduce two parameters: ε to represent the detection error for the Rydberg state617

and η to account for atomic loss in the ground state, both of which arise from the factors mentioned above. The618

experimentally measured ground state population, P (↓), can then be expressed as:619

P (↓) = ε(1− η)P ′(↑) + (1− η)P ′(↓) (S16)

Here, P ′(↑) and P ′(↓) represent the actual Rydberg and ground state population after experimental evolution,620

respectively.621

2. Evolution error622

While we consider only two states (ground state |↓⟩ and Rydberg state |↑⟩) in numerical simulations, a third state623

(intermediate state |e⟩ = |5P3/2⟩, with a linewidth of Γe ≈ 2π × 6.06MHz) is involved in the evolution driven by624

the Raman lasers, and introduces incoherent errors in the dynamics of OTOC and Holevo information. The 480-nm625

(780-nm) Raman laser couples the |↑⟩ (|↓⟩) state to |e⟩, leading to unwanted scattering and depolarization between626

|↓⟩ and |↑⟩. Furthermore, the radiative lifetime of the Rydberg state also contributes to the depolarization during the627

evolution process. These effects can be summed up and characterized by one parameter, the depolarization time T1,628

accounting for the amplitude damping of both OTOC and Holevo information oscillations.629

Another major error source is coherent evolution error, also referred to as evolution noises. During the evolution,630

two dominant noise sources emerge: fluctuations in the relative phase between |↓⟩ and |↑⟩, and variations in the631

Rabi frequency. These sources contribute to non-unitarity in the forward-and-backward Hamiltonian evolution and632

decoherence in Rabi oscillations. The time-dependent noisy Rydberg Hamiltonian is modeled as:633

H(t) =
∑
i

[
Ω(t)e−iϕ(t)

2
σx
i −∆(t)ni

]
+

∑
i<j

Vij(t)ninj (S17)

Here, ϕ(t) and Ω(t) represent the time-dependent phase and Rabi frequency, respectively. ∆(t) accounts for time-634

dependent laser frequency detuning. These time-dependent fluctuations contribute to the single-atom decoherence635

time T ∗
2 , arising from various sources including laser noises and Doppler effects. Additionally, Vij(t) denotes the time-636

dependent Rydberg-Rydberg interaction strength between atoms i and j in the many-body system, whose uncertainty637

is introduced by atomic motion and the disorder in the initial atomic distance.638

In our experiment, as described in section 1.1, we employ the Pound-Drever-Hall (PDH) technique to frequency-639

stabilize the Rydberg excitation laser to a ULE cavity. This method effectively suppresses laser frequency noise below640

the cavity linewidth. We treat the high-frequency noises above the linewidth in two components: one attributed641

to servo bumps144,145, and the remaining noise, which can be modeled as spectrally uniform (white) phase noise146.642

As a result, ∆(t) in equation (S17) can be approximated by a Gaussian distribution with a root-mean-square (RMS)643

amplitude of δ∆. Moreover, variations in laser power and spatial inhomogeneities induce Gaussian-type perturbations644

in the Rabi frequency, characterized by an RMS amplitude of δΩ. Additionally, the parameter δϕ is introduced to645

represent the uncertainty in ϕ(t), to account for the fluctuations in the relative phase between the Rydberg state and646

the ground state during the evolution process, typically arising from the servo bump of the excitation lasers.647

The fidelity of the local perturbation σz
c also significantly impacts the experimentally measured ZZ-OTOC values.648

Numerical simulations show that the fidelity of σz
c operations directly affects the contrast of OTOC oscillations within649

the light cone. This relationship is illustrated in Fig. S16, presenting simulation results for a 13-qubit array. Since650

the σz
c gate is accomplished with a relative π phase shift between the Rydberg state and ground state induced by651

far-detuned 795-nm addressing laser beams, the infidelity mainly stems from uncertainty in the accumulated phase.652

This comprehensive error model captures the primary sources of noise in our system. By identifying and formalizing653

these errors, we establish a framework for accurately interpreting experimental results. This approach provides a solid654
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Figure S16. Effect of local perturbation fidelity on ZZ-OTOC measurements. Simulated ZZ-OTOC dynamics for
four representative qubits in a 13-qubit chain, demonstrating the impact of σz

i fidelity on OTOC oscillations. The σz
c fidelity

is represented by the accumulated phase, ranging from 0.8π to 1.2π. a-d, ZZ-OTOC evolution for different qubits. The qubit
configuration is shown above each plot, with the orange circle indicating the qubit under consideration.

foundation for error benchmarking and mitigation protocols, which are crucial for enhancing the accuracy of OTOC655

and Holevo information measurements in probing quantum information collapse and revival.656

4.3. Error Characterization657

To quantify and mitigate errors in our quantum simulator, we conducted a series of calibration experiments to658

characterize the error sources identified in our model.659

1. Detection error660

We systematically characterize detection errors in our system. For atoms in the ground state, the raw detection661

error η is approximately 1%. For Rydberg states, the detection error is more complex, consisting of a raw error662

ε′ ≈ 1% along with an additional time-dependent component arising from the finite Rydberg state lifetime.663

To quantify this time dependence, we measure the lifetime TR of the Rydberg state used in our experiment. Atoms664

are first prepared in the Rydberg state using a global Raman π-pulse, after which we vary the time interval between665

the π-pulse and the population measurement. The population measurement is performed by turning on the optical666

tweezers to recapture ground state atoms while repelling the Rydberg atoms. An exponential fit to the data yields667

a 1/e time constant of TR = 140(15) µs. Given the interval time ti, which depends on the evolution time t in our668

sequence, the Rydberg state detection error accumulates over time. This error is expressed as ε′(t) = 1 − e−ti/TR ,669

representing the probability of Rydberg atoms decaying to the ground state during the interval.670

2. Evolution error671

Evolution errors in our system arise from three main sources: the depolarization caused by spontaneous emission,672

the finite temperature of the atoms, and laser noise.673

Depolarization effects. We accounted for depolarization time T1 due to spontaneous emission via the intermediate674
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Figure S17. Investigating the decay mechanisms in OTOC and Holevo information dynamics. a, Comparison of
experimental data (blue points, corrected the detection errors and the incoherent errors introduced by the depolarization effect)
with numerical simulations (solid lines) for IZ-OTOC with initial |Z2⟩ state. b, Rydberg Hamiltonian evolution dynamics of
initial |Z2⟩ state. Blue circles and red diamonds represent corrected experimental results for |↑⟩- and |↓⟩- initialized state,
respectively, while solid lines show corresponding numerical simulations. The excellent agreement confirms that our under-
standing of the decay mechanisms in OTOC and Holevo information dynamics is accurate.

state and Rydberg state radiative decay. The error probability of a Rydberg state decaying to the ground state during675

evolution time t is approximated as η = γt with γt ≪ 1. Here, γ = 1/T1 is treated as a free parameter due to the676

complexity of many-body evolution. This complexity arises from two factors: (1) during evolution, different initial677

states (e.g., |Z2⟩ and |0⟩) lead to variations in the average Rydberg population, resulting in different effective decay678

rates; and (2) the exponentially growing Hilbert space and complex interactions in many-body state evolution cause679

the effective decay rate to differ from the more easily measured decay rate in single-atom evolution.680

Finite-temperature effects. The thermal motion of atoms leads to two effects: fluctuations in atomic positions681

and Doppler shifts. Position fluctuations affect the Rydberg-Rydberg interactions, which scale as 1/R6, where R is682

the inter-atomic distance. We estimated the standard deviation of position fluctuations to be about 0.3 µm, directly683

impacting the strength of Rydberg-Rydberg interactions. Doppler shifts, on the other hand, introduce frequency684

detuning in the Rydberg excitation. We characterized these thermal effects by measuring the average temperature685

of the atoms at the beginning of evolution using the release and recapture method, finding it to be approximately686

10 µK. From this, we calculated the standard deviation of the atomic velocity distribution as σv =
√
kBT/M , where687

kB is the Boltzmann constant, T is the temperature, and M is the atomic mass. For our counter-propagating two-688

photon excitation scheme with a 480-nm σ+-polarized and a 780-nm σ+-polarized light, this corresponds to a Doppler689

broadening with a standard deviation of δ∆1 = kσv ≈ 2π × 25 kHz, where k ≈ 1.25 µm−1 is the effective two-photon690

wave vector.691

Laser noise. We characterized both intensity and phase noise of our laser sources. The Rabi frequency fluctuation692

δΩ/Ω is related to the laser intensity fluctuation δI/I by δΩ/Ω ≈ δI/(2I). High-bandwidth measurements of 780-nm693

and 480-nm Raman laser power variations using fast photodiodes revealed an RMS amplitude noise of δΩ/Ω ≈ 0.01.694

For laser frequency noise, we analysed the in-loop PDH error signal at Fourier frequencies above the cavity linewidth695

(γcav ≈ 2π × 110 kHz at 960 nm and 2π × 60 kHz at 780 nm). We estimated the laser frequency noise by integrating696

the noise spectral density Sν(f):697

δ∆2 =

√∫ fh

γcav

Sν(f)df, (S18)

where fh ≈ 1/δt. This yields an RMS frequency noise of δ∆2 ≈ 2π × 5 kHz for the combined 780-nm and 480-nm698

laser contributions. Since this frequency noise contributes to the uncertainty in the relative phase between the qubit699

and the driving field, δϕ, in the same way as the Doppler effect, we consider only δϕ instead of the combination of700

δ∆1 and δ∆2 in the following analysis.701

To further calibrate δϕ and γ, we measured the IZ-OTOC (main text), which follows the same sequence as our702

ZZ-OTOC experiments but without the local perturbation. Numerical simulations treating δϕ as a free parameter703

yield excellent agreement with corrected experimental data for δϕ = 0.08π and γ = 0.035 µs−1 (Fig. S17a). For Holevo704

information evolution, we measured Rydberg Hamiltonian evolution dynamics of the initial |Z2⟩ state, finding good705
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Figure S18. Dynamics of ZZ-OTOC for |Z2⟩ considering experimental imperfections. a, Simulated spatio-temporal
evolution of ZZ-OTOC for |Z2⟩ state under the time-dependent noisy Hamiltonian (S17). b, Experimental ZZ-OTOC data
for |Z2⟩ state, corrected for detection errors and incoherent errors arise from the depolarization effect. Inset, The qubit
index definition of the exhibited qubits (highlighted) in 13-qubit chain (top). c–k, Detailed dynamics plots of the corrected
experimental data (blue points) and the simulation results (solid curve). The shaded areas around the curves represent the error
bar from the numerical simulation. The corresponding qubit index of plots is respectively marked; good agreement between
experimental data and numerical results is found for all qubits.
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Figure S19. Error mitigation for OTOC dynamics of the initial |0⟩ state. a, Qubit index definition for each row in
panels b and c (blue filled circle). The central 7 qubits from the spin chain are used for analysis. b, OTOC dynamics before
error mitigation. Blue curves with shaded error bars represent simulations using the modeled noisy Rydberg Hamiltonian.
Circles are the experimental data, demonstrating excellent agreement with the simulations. c, OTOC dynamics after error
mitigation. Left: Experimental data corrected using measured IZ-OTOC (circles). Right: Experimental data corrected using
simulated IZ-OTOC (diamonds). In both cases, light blue curves represent simulations with the ideal Rydberg Hamiltonian,
while dark blue curves show the ideal PXP Hamiltonian dynamics. d–e, Spatio-temporal OTOC dynamics. d, Simulated
OTOC dynamics for the central 7 qubits using the PXP Hamiltonian, incorporating imperfections from local perturbations.
e, Experimental data corresponding to the left panel data in c. The colour bar corresponds to the values of the OTOC. The
excellent agreement between corrected data and simulations demonstrates the effectiveness of the error mitigation scheme.

agreement when using the same parameters(Fig. S17b).706

The experimental results shown in Fig. S17a and Fig. S18 have been corrected for detection errors and partially707

corrected for evolution errors. Specifically, while detection errors were fully accounted for, only the evolution errors708

related to Rydberg state decay to the ground state (γt) were addressed. First, detection error correction was applied.709

Then, we subtracted the accumulating population of Rydberg states decaying to the ground state (γt) from the exper-710

imentally measured ground state population to compensate for the incoherent errors introduced by the intermediate711

state during the experiment.712

For ZZ-OTOC measurements, an extra error source is the σz local perturbation infidelity. In order to characterize713

the uncertainty in local perturbation, we conducted a comparative analysis of the results obtained from Ramsey714

experiments with and without 795-nm addressing employed for local σz
i . The findings indicate that uncertainty is715

approximately 0.09π. This uncertainty contributes to the overall evolution noise and affects the fidelity of our local716

perturbation.717

Using the noise parameters mentioned above, we simulated the dynamics of the ZZ-OTOC with initial |Z2⟩ state718

under the noisy Rydberg Hamiltonian (S17) based on the Monte Carlo method. We compared the simulation results719

with the experimental results for the central 9 qubits (the qubit index definition is shown in Fig. S18 inset). For the720

OTOC dynamics of the initial state |0⟩, we employed the same error model. Figure S19b presents the comparison721

between the simulation results and the experimental data for the central 7 qubits. The excellent agreement between722

these simulations and our experimental data (Fig. S18 for |Z2⟩ state and Fig. S19b for |0⟩ state) provides solid723

validation for our error model, which accounts for both detection and evolution errors, and enhances our understanding724

of the complex many-body dynamics.725

4.4. Error mitigation for ZZ-OTOC726

We employ an error mitigation scheme inspired by Swingle and Halpern63 and Mi et al.64 to address imperfections727

in OTOC measurements. Theoretical analysis indicates that under experimental conditions with imperfections, the728
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Figure S20. Numerical simulation of error mitigation scheme for ZZ-OTOC. a, Simulated ZZ-OTOC dynamics for
|Z2⟩ considering experimental imperfections same as Fig. S18a. b, Mitigated ZZ-OTOCs using simulated IZ-OTOC results,
exhibiting enhanced collapse-and-revival contrast compared to a. c–d, Simulated ZZ-OTOC dynamics using the PXP Hamil-
tonian while accounting for local perturbation imperfections (c) or not (d). The closer resemblance of the mitigated data b to
c demonstrates that our error mitigation scheme cannot mitigate local perturbation imperfections. The colour scale represents
ZZ-OTOC values from -1.0 (blue) to 1.0 (red).

errors in the measured ZZ-OTOC Fm(W,V ) can be effectively mitigated using the measured IZ-OTOC Fm(I, V )63:729

F c ≈ Fm(W,V )

Fm(I, V )
, (S19)

where F c represents the corrected ZZ-OTOC measurement results.730

This scheme mitigates the imperfections in forward-and-backward evolution caused by coherent noise (δϕ, δΩ,731

δ∆) and partially mitigates those from next-nearest-neighbour interactions Vi,i+2. However, it cannot effectively732

mitigate errors outside the forward-and-backward evolution, such as imperfections in the local σz
i perturbation and733

the detection errors. Consequently, mitigated results are expected to fall between expectations of the noise-free734

Rydberg Hamiltonian and the ideal PXP model.735

The denominator, IZ-OTOC Fm(I, V ), is crucial in the mitigation protocol. As demonstrated by Mi et al.64,736

small variations in the IZ-OTOC used as the denominator can dramatically affect corrected results, particularly for737

near-zero IZ-OTOC values. Recognizing this sensitivity, we conducted a comprehensive analysis of factors potentially738

affecting OTOC measurements and quantified them (detailed in section 4.3). Notably, numerical simulations show739

significant edge effects in small-sized chains (L < 10). Comparing the edge atom’s ZZ-OTOC versus IZ-OTOC as740

the denominator for mitigation in a noisy environment shows that using the edge atom’s ZZ-OTOC leads to over-741

correction and temporal misalignment at critical positions (Fig. S6d). In contrast, using IZ-OTOC produces results742

that align with theoretical predictions. To minimize edge effects, we rely on IZ-OTOC measurements instead of the743

edge atom’s ZZ-OTOC for error mitigation.744

The numerical simulations are conducted to evaluate the effectiveness of this error mitigation scheme in the context745

of our experimental imperfections. Figure. S20a shows the numerically simulated ZZ-OTOC dynamics using the746
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noisy Rydberg Hamiltonian in equation (S17), which incorporates major experimental imperfections (as Fig. S18).747

The mitigated case (Fig. S20b) closely resembles the PXP Hamiltonian with local perturbation imperfections shown748

in Fig. S20c, indicating that the mitigation scheme successfully addresses forward-and-backward evolution noise.749

However, when compared to the ideal PXP Hamiltonian without imperfections (Fig. S20d), the mitigated case shows750

slightly less pronounced features. This subtle difference can be attributed to the local perturbation imperfections751

which can not be mitigated.752

As the first step in error mitigation, we correct the detection errors, i.e., the imperfections in measurement operator753

σz
j . Next, we correct the evolution errors. Given the excellent agreement between experimental IZ-OTOC data and754

numerical simulations of IZ-OTOC (as shown in Fig. S17a), we can effectively use either the experimental IZ-OTOC755

data or the simulated IZ-OTOC results to mitigate the experimental ZZ-OTOC data shown in Fig. S18c–k. The756

mitigated results of the initial |Z2⟩ state are presented in Extended Data Fig. 2 (using the measured IZ-OTOC data)757

and Fig. S21 (using the simulated IZ-OTOC results). Figure S19c shows the mitigated results of the initial |0⟩ state758

using the measured IZ-OTOC data (left) and the simulated IZ-OTOC results (right). All the results demonstrate759

significant improvement in the agreement between mitigated experimental data and theoretical expectations for the760

ZZ-OTOC (with imperfections in local perturbation σz
i , light blue curve under ideal PXP Hamiltonian while the dark761

blue under ideal Rydberg Hamiltonian). This excellent agreement underscores the effectiveness of our error mitigation762

protocol in addressing the complex noise landscape of the Rydberg quantum simulator.763

This approach effectively overcomes experimental imperfections, particularly those associated with forward-and-764

backward evolution in OTOC measurements, enabling accurate probe of quantum information dynamics in Rydberg765

atom quantum simulators.766

4.5. Error mitigation for Holevo information767

The detection error for Holevo information can be mitigated similarly to how OTOCs are handled. The measured768

diagonal elements, which are linear transformations of P (↑), are directly corrected for detection errors, and the off-769

diagonal elements can be extracted from sinusoidal fittings of detection-error-corrected Ramsey oscillations. However,770

evolution errors are more complex and cannot be easily mitigated because they are deeply intertwined with the771

quantum information dynamics. Due to the difficulty in determining whether quantum information initially encoded772

in a qubit is lost due to evolution errors or transferred to other qubits, it is very challenging to apply traditional773

error mitigation techniques that focus on compensating for single-qubit decoherence. Therefore, evolution errors are774

not mitigated for Holevo information. Instead, they are included in the numerical simulations of Holevo information775

dynamics, together with state preparation errors, showing good agreement with experimental data (Fig. S22).776

5. KINETICALLY CONSTRAINED DYNAMICS AND QUANTUM INFORMATION777

COLLAPSE-AND-REVIVAL778

5.1. Investigation of kinetically constrained dynamics779

To characterize the constrained spin dynamics in our Rydberg atom chain, we developed a method to identify780

and analyse the wavefront of excitations. This approach is particularly effective for the |Z2⟩ state, where individual781

spins exhibit periodic but non-sinusoidal oscillations, often with phase differences between neighbouring atoms. Our782

wavefront detection method identifies the moments when adjacent atoms have equal Rydberg excitation probabilities,783

Pi(↑) = Pi+1(↑), based on numerical simulations (Fig. 2e,g in the main text). By connecting these time points for784

each nearest-neighbour atom pair, we construct wavefronts that capture the propagation of excitations throughout785

the system. This technique allows us to study distinct behaviours for different initial configurations.786

Our simulations indicate that the |Z2⟩ state exhibits uniform wavefront propagation throughout the bulk of the787

spin chain, consistent with the synchronized evolution observed in the experiment. This synchronization arises from788

the interplay between the PXP constraints and the initial |Z2⟩ configuration. In this regime, each spin experiences a789

similar effective environment due to the alternating pattern of its neighbours, leading to coherent and synchronized790

rotations across the bulk of the system.791

However, near the edges of the chain, deviations from this synchronized behaviour begin to appear. These boundary792

effects manifest as distortions in the wavefront shape, reflecting the altered local environment of the outermost atoms.793

Near the boundaries, the lack of symmetry and the different neighbouring structure cause spins to evolve out of sync794

with those in the central region. This gradual desynchronization, moving from the outer edges toward the center,795

aligns with the boundary effects described in the main text. Figure 2e in the main text provides a spatial map of the796
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Figure S21. Mitigating ZZ-OTOC for |Z2⟩ state using the simulated IZ-OTOC results. Blue points marked with
qubit indices represent the mitigated experimental data using simulated IZ-OTOC results. Dark blue curves show simulated
ZZ-OTOC dynamics for the initial |Z2⟩ state with the ideal Rydberg Hamiltonian (equation (S1), no gap time during the OTOC
evolution). Light blue curves display simulated ZZ-OTOC dynamics for the initial |Z2⟩ state with the ideal PXP Hamiltonian.
The mitigated experimental data show excellent agreement with simulations.

wavefront propagation, clearly illustrating the transition from uniform propagation in the bulk to distorted behaviour797

at the edges.798

For the σx
c |Z2⟩ state with the central spin flipped, we observe rich dynamical behaviour characterized by a clear799

linear light cone structure, as discussed in the main text. The flipped central spin introduces retardation in adjacent800

spins’ rotation, which propagates outwards as the system evolves. Inside the light cone, there is an interplay between801

periodic spin rotations and retardations due to the kinetically constrained dynamics. This results in an arc-shaped,802

curved wavefront that moves outward from the initial perturbation at the central spin. Figure 2g in the main text803

illustrates this light cone structure and the corresponding wavefront propagation. The clear visualization of the light804

cone and wavefront behaviour offers a valuable tool for understanding the kinetically constrained quantum many-body805

systems.806

5.2. Illustration of quantum information collapse-and-revival in PXP model807

Collapse-and-revival is a dynamical phenomenon in quantum systems where observable quantities, like atomic808

operator expectation values, “collapse” into near-zero values before periodically “reviving”143,147. This effect is most809

famously observed in systems with discrete quantum states interacting with a quantized field, such as the Jaynes-810

Cummings model in cavity quantum electrodynamics (QED)148–150. It serves as clear evidence of quantum coherence811

and the superposition of quantum states. It is more readily observed in systems with fewer degrees of freedom, such812
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Figure S22. Experimental data and numerical simulations for Holevo information dynamics. Holevo information
dynamics of the detection-error-corrected experimental data (blue points), compared to the numerical simulation results (solid
curves). The inset highlights the index definitions of 7 selected qubits within the 13-qubit chain. Monte Carlo methods are
employed in the simulation to account for imperfections during initial state preparation and evolution.

as single-atom or effectively single-particle systems, where simpler dynamics and longer coherence times make the813

effect more pronounced. For example, in the Jaynes-Cummings model, a two-level atom interacts with a quantized814

electromagnetic field mode, producing predictable revival patterns. Similar effects have been seen in superconducting815

circuits151 and cold atom systems like Bose-Einstein condensates152. In contrast, observing collapse-and-revival in816

strongly-interacting many-body quantum systems presents significant challenges. In these systems, the complex817

interactions and increased degrees of freedom usually lead to rapid scrambling of quantum information and loss of818

coherence.819

As demonstrated in the main text, the collapse-and-revival behaviour observed here originates from constrained820

qubit dynamics. Specifically, the Rydberg blockade effect causes a delayed rotation of spins near the central flipped821

spin, which creates regions of delayed spin rotation that propagate outwards. Figure S23 highlights the relationship822

between constrained qubit dynamics and Holevo information, employing three dynamic indicators to characterize two823

key concepts: retardation and distinguishability.824

The background heatmaps in Fig. S23 display the numerical simulation results of the Holevo information under the825

PXP Hamiltonian, which mirrors Fig. 4c in the main text. Figure S23a,b depict the oscillations in the expectation826

values of ⟨σy⟩ and ⟨σz⟩, respectively. These oscillations indicate that when the Holevo information approaches zero827

inside the light cone, the Bloch vectors σ⃗ for each qubit become indistinguishable, sharing the same ⟨σy⟩ and ⟨σz⟩828

values.829

To provide a clearer understanding of the peaks in Holevo information, we introduce a new dynamic indicator:830
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Figure S23. Illustration of constrained qubit dynamics in PXP model. a, Dynamics of ⟨σy⟩ and b, ⟨σz⟩ for each

qubit. c, The dynamic indicator f(σ⃗, t) =
∫ t

0
d{Arg[σ⃗(τ)]}dτ − λΩt, which represents the total rotation angle of the Bloch

vector in the YZ-plane. The blue curves correspond to the initial state |Z2⟩, while the red curves represent the initial state
σx
c |Z2⟩, where the central spin is flipped. The green-filled intervals in c indicate regions of retardation and distinguishability

between the two initial states. Yellow lines connect the divergence points, forming light cones (yellow shaded areas) where the
dynamics of σx

c |Z2⟩ are periodically delayed. The checkerboard background in all panels shows the heatmap of the Holevo
information dynamics (dark yellow: Xj(t) = 1; transparent: Xj(t) = 0).

f(σ⃗, t) =

∫ t

0

d{Arg[σ⃗(τ)]}dτ − λΩt, (S20)

where the first term,
∫ t

0
d{Arg[σ⃗(τ)]}dτ , represents the total rotation angle of the Bloch vector σ⃗ in the YZ-plane.831

This provides a more fundamental perspective on the spin dynamics than the individual expectation values of ⟨σy⟩ and832

⟨σz⟩. To restrict the range of the rotation angle which accumulates almost monotonically over time, we subtract the833

term λΩt in the expression for f(σ⃗, t), where Ω is the Rabi frequency in the PXP Hamiltonian. The factor λ = 1.32 is834

extracted from the slope of a linear fit with all the simulation data for the total rotation angle of each qubit with two835

initial states |Z2⟩ and σx
c |Z2⟩. As shown in Fig. S23c, the retardation can be extracted directly from the difference836

between the blue and red curves (highlighted by the green-filled intervals), which is the source of distinguishability837

in the ⟨σy⟩ and ⟨σz⟩ measurements. Within the light cone, the time delay remains nearly constant, but the rotation838

angle retardation exhibits a periodic collapse-and-revival pattern.839

It is clear that both the retardation and Holevo information follow similar collapse-and-revival dynamics. This840

analysis of constrained qubit dynamics provides insights into the mechanisms behind quantum information propagation841

and the collapse-and-revival behaviour in dynamically constrained systems. The dynamic indicator, f(σ⃗, t), offers a842

way to visualize and quantify the relationship between spin dynamics and information flow. These results contribute843

to a better understanding of quantum information behaviour in constrained systems.844

5.3. Distinguishing scar state oscillations and quantum information collapse-and-revival845

In our experiment, we observe a clear light-cone structure in the dynamics of both OTOCs and Holevo information,846

with periodic collapse-and-revival behaviour within the light cone. Here, we show that these collapse-and-revival847

dynamics in quantum information are relevant, but not equivalent to the previously discovered oscillations of quantum848

scar states wavefunction under the PXP Hamiltonian evolution. The relevance between these two phenomena primarily849

stems from the fact that the physical mechanism driving both the oscillation of quantum scar states’ wavefunctions and850

the quantum information collapse-and-revival observed in our experiment originates from the kinetic constraints in851

the PXP model. Their distinction arises because the dynamics of OTOCs and Holevo information are not confined to852

the scarred subspace but also incorporate contributions from thermal eigenstates. For instance, in the measurement853

of Holevo information dynamics, the σx
c operation, which flips the central spin in the chain, introduces a mixture854

of scarred subspace and thermal eigenstate bath contributions. Such a mixture precludes attributing the periodic855

behaviour of Holevo information solely to the eigenstate decomposition of the initial state. Therefore, the observed856

information backflow within the light cone cannot be simply attributed to the oscillation of quantum scar states857

wavefunction.858

Building on the above discussion, it becomes clear that the quantum information collapse-and-revival observed859

in our experiment is not equivalent to the oscillations of quantum scar states wavefunctions under the Hamiltonian860

evolution. This raises an intriguing question: more generally, does the presence of quantum scar state oscillations861

always imply the existence of quantum information collapse-and-revival? Furthermore, could there be physical systems862
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Figure S24. Comparison of quantum information dynamics in scar states between the toy model and the PXP
model. a, Perfect scarred state wavefunction oscillations under ideal toy model Hamiltonian Htoy evolution. The simulated
wavefunction overlap between the evolved state |ϕ(t)⟩ and the initial state |Dicke⟩ is shown, as a function of evolution time t.
The state |ϕ(t)⟩ is obtained after evolving the initial |Dicke⟩ state under the ideal toy model Hamiltonian Htoy for time t. b,
Numerically simulated spatio-temporal dynamics of the Holevo information for |Dicke⟩ and σx

c |Dicke⟩ initial states, under ideal
toy model Hamiltonian Htoy evolution. c, Damped scarred state wavefunction oscillations under ideal PXP model Hamiltonian
HPXP evolution. The simulated wavefunction overlap between the evolved state |ϕ(t)⟩ and the initial state |Z2⟩ is shown, as
a function of evolution time t. The state |ϕ(t)⟩ is obtained after evolving the initial |Z2⟩ state under the ideal PXP model
Hamiltonian HPXP for time t. d, Numerically simulated spatio-temporal dynamics of the Holevo information for |Z2⟩ and
σx
c |Z2⟩ initial states, under ideal PXP model Hamiltonian HPXP evolution.

where quantum scar state oscillations occur without any accompanying quantum information collapse-and-revival?863

To explore these questions, we turn to a toy model proposed by Choi et al.47, described by the Hamiltonian:864

Htoy =
Ω

2

∑
i

σx
i +

∑
i

Vi−1,i+2Pi,i+1 (S21)

Here Pi,j = (1 − σ⃗i · σ⃗j)/4 is the projection operator onto the singlet state of spins at sites i and j, and Vi,j =865 ∑
µν J

µν
ij σ

µ
i σ

ν
j represents an arbitrary long-range interaction between spins at sites i and j. Dicke states, expressed866

as |s = L/2, Sx = mx⟩, are the scarred eigenstates of Htoy, as the interaction term does not act on these states867

(Pi,j |s = L/2, Sx = mx⟩ = 0).868

We perform numerical simulations for this toy model with L = 25 spins with periodic boundary conditions, using869

the parameters Ω = 2π×1MHz and Vi,j = J(σx
i σ

y
j +σ

y
i σ

x
j ) with J = 2π×2MHz. When initialized in the scarred Dicke870

state |Dicke⟩ = |s = L/2, Sz = −L/2⟩ = |↓↓ · · · ↓⟩, the system exhibits perfect scarred state wavefunction oscillations871

(Fig. S24a). Next, we explore quantum information scrambling and transport within the toy model using the scar872

state. Similar to our study of Holevo information for the |Z2⟩ scar state in the PXP model, we applied a central873

spin flip to the scarred Dicke state in the toy model, denoted as σx
c |Dicke⟩. We then simulated the evolution of both874

σx
c |Dicke⟩ and |Dicke⟩ under the toy model Hamiltonian. From these simulations, we obtained the spatio-temporal875

evolution of Holevo information, allowing us to investigate how quantum information propagates and scrambles in876

this system. Figure S24b shows the simulated Holevo information dynamics, with clear evidence of a rapid, global877

scrambling. This global scrambling behaviour differs significantly from the kinetically constrained PXP model, where878

the spatial-temporal collapse-and-revival of quantum information is very pronounced (Fig. S24d). In the scar state879

|Dicke⟩ of the Htoy, initially encoded quantum information is quickly lost to the environment without revival.880
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These results show that, under the toy model Hamiltonian Htoy, while the scarred state |Dicke⟩ exhibits perfect881

wavefunction oscillations, no collapse-and-revival of quantum information occurs. This suggests that the oscillatory882

behaviour of quantum scar states does not necessarily coincide with periodic quantum information backflow. The883

quantum information spatial-temporal collapse-and-revival dynamics observed in this work is likely a very unique884

feature resulting from the kinetic constraints imposed by the Rydberg blockade effect.885
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3 Barredo, D., de Léséleuc, S., Lienhard, V., Lahaye, T. & Browaeys, A. An atom-by-atom assembler of defect-free arbitrary
two-dimensional atomic arrays. Science 354, 1021–1023 (2016).

4 Lee, W., Kim, H. & Ahn, J. Defect-free atomic array formation using the Hungarian matching algorithm. Phys. Rev. A
95, 053424 (2017).
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