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1. EXPERIMENTAL DETAILS

Programmable atomic arrays have emerged as a novel platform for quantum simulation and computation, offering
exceptional control and scalability for exploring quantum many-body phenomena. In the past decade, significant
progress has been made in this field, including the preparation of atomic array' !, efforts towards quantum com-
putation'? 26, quantum optimization'®24:27:28  quantum simulations?® 3%, and quantum metrology3°40. This section
presents the details of our experiment, including the experimental apparatus, timing sequence, and |Zs) state prepa-
ration and characterization.

1.1. Experimental setup

Our experimental platform is built around a dual-chamber vacuum system, consisting of a 2D magneto-optical
trap (MOT) chamber and a science chamber. In the 2D-MOT chamber, an 8’Rb atom source (ampule) produces a
diffuse atomic vapor. These atoms are cooled and confined by the magnetic fields and 780-nm lasers, 2w x 30 MHz
red-detuned from the [55) /9, ' =2) — |5P5/5, F' = 3) cycling transition. The pre-cooled atomic ensemble is then
transferred through a differential pumping aperture into the science chamber by a 780-nm pushing beam. The
science chamber is a custom-designed rectangular glass cell (Japan Cell) with large optical access. Ultra-high vacuum
conditions inside the chamber are maintained by a non-evaporable getter pump (NEXTorr D 200-5, SAES), achieving
a pressure well below 107! mbar. This low background pressure initially allowed for single-atom trapping lifetimes
exceeding 10 minutes. However, due to the malfunction of an ion pump (SP-4, JJJvac) in the 2D MOT chamber, the
lifetime has since been reduced to approximately 90 seconds. Atoms are captured and cooled in the science chamber
by a three-dimensional magneto-optical trap (3D MOT) using three pairs of counter-propagating 780-nm laser beams,
with a magnetic field gradient of 15 G cm™!. Each beam contains a cooling light red-detuned by 27 x 24 MHz from
the |551/2, F =2) — [5P3)9, F = 3) cycling transition, and a repumping light resonant with the [55; /5, F' = 1) —
|5P3)5, F' = 2) transition.

Single atoms are trapped in a static two-dimensional optical tweezer array generated by an 808-nm laser (TA pro,
Toptica) operating in free-running mode. The laser beam illuminates a phase-control spatial light modulator (SLM,
HED 6010-NIR-080-C, Holoeye) loaded with a phase hologram generated via the weighted Gerchberg-Saxton (WGS)
algorithm. Additionally, a system of atom-shuttling tweezers, utilizing the same 808-nm laser source as the static array
but with orthogonal polarization, allows for precise atom rearrangement. The atom-shuttling tweezers are controlled
by a pair of orthogonally oriented acousto-optic deflectors (AODs, DTSX-400-800.850, AA Opto-Electronic), driven
by radio frequencies with independent arbitrary waveforms generated by a dual-channel arbitrary waveform generator
(AWG, M4i.6631-x8, Spectrum).

A high numerical aperture objective (G Plan Apo 50x, Mitutoyo, NA = 0.5) focuses both the static and movable
tweezers while also collecting atom fluorescence, which is directed to an electron-multiplying CCD (EMCCD, iXon
Ultra 888, Andor) camera for detection. Additionally, a 480-nm beam for local Rydberg control, utilizing a similar
SLM-based approach, is focused through the same objective (see Extended Data Fig. 1a). This shared configuration
for trapping, addressing, and fluorescence detection enhances the stability of the system. Opposite the Mitutoyo
objective is a home-made objective with a numerical aperture of 0.4. A CCD camera images the static tweezer array,
consisting of 36 x 2 tweezers with 7 pm spacing and a beam waist of approximately 0.9 pm. Through iterative feedback
and adjustments, the intensity variation across the entire array is kept well below 1%. The 795-nm addressing laser
beams, essential for |Zy) state preparation and local perturbation, are focused through the home-made objective. Two
counter-propagating laser beams—one at 780 nm and the other at 480 nm—enable global ground-Rydberg coherent
manipulation. A microwave antenna, positioned near the science chamber, generates microwave pulses for Rydberg
state manipulation and detection.

The experimental setup incorporates multiple laser systems for state preparation, qubit control, and detection.
The 780-nm laser system, a tapered amplifier laser (TA Pro, Toptica), is used for both the MOT cooling beams and
Raman light in the Rydberg excitation scheme. Its frequency is stabilized to an ultra-low expansion reference cavity
(SLS) with a finesse of 26,000. An AWG drives a single-pass acousto-optic modulator (AOM, SGT200-780-0.5TA-B),
optimized for modulation bandwidth, to dynamically adjust pulse frequency and intensity. For coupling the |e) — |r)
transition, a 480-nm laser system (frequency-doubled TA-SHG Pro, Toptica) is employed, with the 960-nm seed laser
locked to the same reference cavity as the 780-nm laser. An AOM driven by a direct digital synthesis (DDS, AD9910)
controls the 480-nm laser beam, which is intensity-stabilized and remains on throughout the entire Rydberg operation
sequence. Fast rising and falling edges of the Rydberg excitation lasers are achieved using electro-optic modulators
(EOMs) for precise on-and-off switching.
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Figure S1. Experimental timing sequence. Summary of a typical experimental sequence as described in section 1.2.
Detailed Rydberg experimental sequences for OTOC and Holevo information measurements are provided in Figs. S7,510.

1.2. Experiment timing sequence

The experimental sequence begins with the preparation of a cold atomic ensemble in the science chamber. A
3D MOT is loaded for 200 ms, producing an atomic cloud with a diameter of 500 pm and a temperature of 150 K,
measured via time-of-flight (TOF) expansion. To further reduce the temperature, polarization gradient cooling (PGC)
is applied. This process involves quickly extinguishing the magnetic field gradient (within 500 pus) while increasing the
cooling light detuning to approximately 27 x 90 MHz and reducing the intensity of both the cooling and repumping
lasers. As a result, the atoms are cooled further to approximately 40 pK. The laser-cooled atomic ensemble serves as
a reservoir for stochastic loading of the programmable atomic array. For stochastic loading, A-enhanced grey molasses
(AGM) is implemented using two counter-propagating 795-nm laser beams. An additional stage of polarization
gradient cooling (PGC), optimized for in-trap cooling, is then applied. This combined cooling approach results in
a single-atom loading efficiency of approximately 80%, with an average atom temperature of 15 pK in traps with a
depth of 1mK, as measured using the release-and-recapture (R&R) method. Atom fluorescence detection utilizes
the same 795-nm beams used for AGM, multiplexed after increasing the optical trap depth to 1.3 mK. By carefully
balancing heating and cooling rates, a detection fidelity exceeding 99.9% is achieved with a 30ms exposure time,
while maintaining an average atom loss per detection below 1%. The use of 795-nm fluorescence imaging minimizes
crosstalk from the strong 780-nm beams, ensuring accurate atom detection.

An atom rearrangement procedure generates a defect-free, one-dimensional atomic chain. The process begins by
linearly ramping up the intensity of the movable tweezers from zero to three times the static trap depth, transferring
atoms from the static SLM-generated traps to the movable tweezers. The AODs are then driven with time-dependent
waveforms to transport the atoms at an average speed of 100 pmms™—!, following a sinusoidal velocity profile to
ensure smooth acceleration and deceleration. The rearrangement sequence is determined using a modified Hungarian
algorithm?, optimizing atom movement column by column. To minimize unnecessary atom loss and heating from
moving tweezers sweeping through static traps, the tweezer paths include additional segments to bypass intervening
traps. All AOD waveforms for the rearrangement process are pre-computed, allowing for rapid execution of the
sequence. Post-rearrangement measurements show that atom temperatures increase to approximately 50 pK in the
1mK deep traps.

For coherent Rydberg excitation, a two-photon Raman scheme is employed. A red-detuned 780-nm laser with o+
polarization couples the ground state to the intermediate state [5Ps/2, [’ = 3,mp = 3) (see Extended Data Fig. 1b).
The collimated 780-nm laser is directed onto the atoms with a beam waist of approximately 300 pm and a maximum
Rabi frequency of ~ 27 x 100 MHz. Simultaneously, a blue-detuned 480-nm laser, also with 0¥ polarization, connects
the intermediate state to the Rydberg state 1) = [68D5,5,m; = 5/2). The 480-nm laser is focused onto the atoms
with a beam waist of 13pm, with a maximum Rabi frequency of ~ 27 x 70 MHz. Both lasers are detuned from
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Figure S2. Ground-Rydberg state Rabi oscillation, Rydberg blockade, and Ramsey coherence. a, High-contrast
ground-Rydberg state Rabi oscillation (blue circles) is observed when a single atom is driven by 480-nm and 780-nm Raman
lasers. For a pair of atoms within the blockade radius, double Rydberg excitation (yellow squares) is strongly suppressed, and
the Rabi frequency of the single excitation (red diamonds) is enhanced by a factor of v/2 due to the Rydberg blockade effect.
curves are damped sinusoidal fits. b, Ramsey oscillation showing Gaussian-type inhomogeneous dephasing with a coherence
time of 75 = 11(1) ps. The measured probability represents 1 ((oc¥) + 1) after the gap time.

the intermediate state by A = 27 x 1.16 GHz. A bias magnetic field of 30 G is applied throughout the experiment.
Figure S2a (blue circles) illustrates the high-contrast ground-Rydberg state Rabi oscillation for a single atom, driven
by 780-nm and 480-nm lasers. When two atoms are placed within the Rydberg blockade region, < V', double
Rydberg excitations are strongly suppressed, as indicated by the yellow squares in Fig. S2a. Red diamonds in
Fig. S2a shows that the Rabi oscillation between the Bell state %(|¢> I + 1) ) and the ground state |})|}) is

enhanced by a factor of v/2. Figure S2b presents the ground-Rydberg coherence for a single atom, where we perform
two 7/2 ground-Rydberg rotations, separated by a variable gap, to implement a Ramsey sequence. The decay of
the Ramsey oscillation fringe reveals a ground-Rydberg coherence time of 75 = 11(1)ps. The high-contrast Rabi
oscillations and long coherence times achieved in our system lay a solid foundation for high-fidelity operations in
subsequent experiments.

To perform local operations on the ground and Rydberg states, we employ 795-nm and 480-nm addressing laser
beams generated by SLMs. The 795-nm laser beams are blue-detuned by 27 x 15 GHz from the |55} /5, F' = 2) —
|5P /2) transition, providing a light shift of 27 x 12.2(3) MHz. This enables the creation of an alternating pattern of
excitable and non-excitable atoms, allowing the system to be prepared in a Zs-ordered configuration. Simultaneous
imaging of the 795-nm atomic fluorescence and the 795-nm addressing laser beams on the EMCCD ensures precise
spatial overlap between the lasers and the atoms. Measurements indicate that crosstalk to neighbouring atoms in the
chain is suppressed to less than 27 x 1kHz. The 480-nm laser beams, resonant with the |r) — |e) transition, are used
to enable selective Rydberg-to-ground state transfer and create EIT conditions in nearest-neighbour (NN) and next-
nearest-neighbour (NNN) sites. The 480-nm laser beam alignment is optimized by maximizing Rydberg-to-ground
state transfer efficiency on the target site while minimizing crosstalk on the neighbouring sites. After optimization,
more than 96% of the Rydberg state population in the target site is quickly transferred to the ground state, while the
Rydberg state population in the neighbouring sites is reduced by less than 1%.

Finally, a state detection scheme is implemented to distinguish between ground and Rydberg states. Within 1 ps
after the Rydberg operation, the trap depth is rapidly increased to 1.3 mK to expel Rydberg atoms from the trapping
region while recapturing ground-state atoms. Following this, a strong 2.4 GHz microwave pulse is applied to deplete the
remaining Rydberg populations using an RF power amplifier(HXPA7081G, HXINWB). This comprehensive detection
scheme ensures that the probability of misidentifying a Rydberg atom as being in the ground state is less than 1%.
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Figure S3. |Z:) state preparation details. a, Rydberg excitation spectra of addressed (red) and unaddressed (blue) atoms.
The Rydberg population is shown as a function of Raman excitation laser detuning. b, Impact of the anti-blockade effect
and addressing laser-induced light shift on state preparation fidelity. Simulated |Z2) state preparation fidelity as a function
of 795-nm addressing laser light shift (in units of Rydberg Raman excitation Rabi frequency §2) for various system sizes, with
the nearest-neighbour Rydberg interaction strength V; ;11 = 3Q. The red star marks our experimental condition. ¢, |Z2)
state preparation fidelity as a function of system size. Red and blue lines: the exponential fit for corrected and uncorrected
|Zs) state fidelity. Yellow line: theoretical upper limit for current experimental addressing approach. d, Number of 13-qubit
microstates as a function of occurrences from 1,774 experiments. Successfully prepared |Z2) state: 1,246 counts (70% of events).
e, Measured 13-qubit microstate distribution. Inset: dominant error states.

1.3. |Z:) state preparation and characterization

Rapid thermalization is ubiquitous in ergodic quantum many-body systems, leading to extensive research aimed
at uncovering systems with fundamentally different dynamics*!~4°. Recently, studies involving Rydberg atom arrays
have identified many-body scar states??#52! which show weak breaking of ergodicity and maintain a degree of
coherence over extended timescales. Similar phenomena have been observed in other systems such as superconducting
processors®? and Bose-Hubbard quantum simulators®?, and have triggered further theoretical research®*°%. A previous
theoretical work®® has predicted that when the Zy-ordered scar states are used as initial states for studying the spatial-
temporal evolution of out-of-time-ordered correlators and Holevo information, one may observe persistent information
backflow and an unusual breakdown of quantum chaos. These results suggest novel avenues for investigating unique
dynamics of quantum information scrambling in kinetically constrained many-body systems. Here, we investigate
quantum information scrambling using two initial states: (1) the Zg-ordered state |Zs) = |1J1)71 ...) and (2) the trivial
product state |0) = [JJJJ) ...). While |0) can be readily prepared using optical pumping, achieving high-fidelity
preparation of |Zy) state in large-scale systems remains challenging. Previous studies have successfully prepared |Zs)
states in one-dimensional and two-dimensional atom arrays through adiabatic state transfer techniques'®2?4?, where
the ground state of an engineered Hamiltonian is adiabatically transformed from |0) to |Z3). However, as the system
size increases, the exponential growth of the Hilbert space results in diminishing energy gaps, which causes a rapid
decline of the state preparation fidelity.

Our experiment employs a scalable state preparation approach that combines global Rydberg excitation with site-
selective laser addressing. A SLM is used to generate a customized light shift pattern across the atom array, selectively
detuning certain sites from the ground-Rydberg transition (Fig. S3a), thereby creating an alternating arrangement of
excitable and non-excitable atoms. The 795-nm addressing beams, 27 x 15 GHz detuned from the D1 line resonance,
induce an energy shift of 27 x 12.2(3) MHz on the ground state. The scattering rate caused by the 795-nm addressing
beams is approximately 27 x 5kHz, significantly lower than that caused by the Raman laser beams. Numerical
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simulations (Fig. S3b) indicate that to maximize the fidelity of the |Zs) state, the sign of the light shift must be
opposite to that of the Rydberg interaction, avoiding anti-blockade effects. Under our experimental conditions,
numerical simulations yield a preparation infidelity of ~ 0.012 per qubit.

Our method remains highly effective as the system size scales up (Fig. S3c). The preparation infidelity is primarily
attributed to uncorrelated single-qubit flip errors: 0.8% per qubit from Rydberg excitation inefficiency, 1.2% per qubit
due to finite energy shifts, and 1% (|4) — |1)) and 0.5% (|1) — |[{)) from state detection errors. This decomposition
of many-body scar state preparation into single-qubit state preparations enhances the scalability of our approach
compared to adiabatic transfer protocols. In an array of up to 25 atoms, we achieved the target crystalline state with
a measured fidelity of 49(3)%, which is corrected to 60(3)% after considering the detection errors. This high-fidelity
preparation, in a Hilbert space of dimension 22°, underscores the robustness and scalability of our protocol.

Microstate distribution analysis of the experimentally prepared |Zs) state reveals non-Poissonian error occurrences
(Fig. S3d). Figure S3e shows the measured microstates distribution, highlighting that the dominant errors are single-
qubit flips from [1) to |}), further confirming that our approach employs single-qubit operations to prepare a many-
body state. This predictable error distribution facilitates error mitigation in the experimentally measured data for
quantum information scrambling in |Z,) state, as discussed in section 4.

Next, the evolution and lifetime of the |Zy) state were investigated. The dynamics of the |Zs) state were measured
under both forward-and-backward evolution (e~*#! followed by e/*) and forward-only evolution (e~**) (Fig. S4)
using the PXP Hamiltonian H = Y, P,o¥, | P;42¢%061. To characterize the evolution, the Rydberg state population
P(1) (Fig. S4a,b) and the average domain-wall density (Fig. S4c,d) are measured. Exponential fits to the data in
Fig. S4a,c show the decay rate of the |Zs) state under forward-reverse evolution, with a 1/e lifetime of approximately
1.6(1) ps for population, and 1.0(3) ps for average domain-wall density. This decay limits the contrast in the raw
77-OTOC data presented in Fig. 3f of the main text. Forward-only evolution of the average domain-wall density
(Fig. S4d) is fitted to a damped sinusoidal function, yielding a |Zs) state lifetime of approximately 1.5(1) ps. The
Rydberg population dynamics (Fig. S4b) are fitted using a damped Fourier series, yielding a 1/e decay time of
approximately 2.8(2) us. Additionally, in section 4, the data from Fig. S4b are fitted to the error model to characterize
the noise in the driving fields. The finite lifetime of the |Zs) state results in an overall loss during transport, as reflected
in the global decay of the measured Holevo information in Fig. 4b of the main text. The breakdown of the defect-
free Zy-ordered system into subsystems, indicated by the decay of domain-wall density (Fig. S4c) and the reduction
in oscillation contrast (Fig. S4d), smears the dynamics and impedes quantum information propagation. While the
state preparation errors can be easily corrected, the mitigation of errors during the evolution is far more complex.
The above-detailed characterization of the prepared |Zo) state, particularly the decay rates during driven evolution,
provides insights into the underlying noise sources (see section 4 for details on the noise model) and informs subsequent
error mitigation strategies.

In summary, a scalable approach for preparing |Z,) states in large atomic arrays has been demonstrated. By
combining global Rydberg excitation with site-selective addressing, high-fidelity state preparation was achieved in
systems of up to 25 qubits. Detailed characterization of the state evolution provides valuable understanding of
quantum scar dynamics and systematic noise sources. These findings lay the groundwork for further exploration of
quantum information scrambling in scarred systems.

2. THEORETICAL MODELING AND NUMERICAL SIMULATION
2.1. Effective Hamiltonian and numerical simulation methods

Our experimental setup consists of a linear array of 25 individual atoms trapped in optical tweezers. The system
dynamics are governed by the microscopic Hamiltonian:

i<J

where €2 is the Rabi frequency, A is the detuning, and n; = (1 + aj)/2 is the projector onto 1) at site j, indicating
whether the atom is in the Rydberg state. The interaction term V;; = Cs/ R?j represents the van der Waals interaction
between atoms in [1) state at sites ¢ and j, with Cg being the van der Waals coefficient and R;; the distance between
atoms.

In the regime of strong nearest-neighbour interactions (2 <« V; ;11), neglecting longer-range interactions (V; j>i+1),
and setting the detuning A = 0, the Hamiltonian simplifies to the effective PXP Hamiltonian via the Schrieffer-Wolff
transformation:
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Figure S4. |Z:) state dynamics under PXP Hamiltonian evolution. a and b, Population of |1) (blue) and [{) (red)
initialized qubits during a, forward-and-backward evolution (e~*#* followed by e'*) and b, forward-only (e~***) evolution.
Curves in a represent exponential fits, while b is fitted with damped Fourier series up to the 5th order. ¢ and d, Average
domain-wall density of the central 13 qubits during ¢, forward-and-backward evolution, and d, forward-only evolution. The

blue curve in c¢ is an exponential fit, while d is fitted with a damped sinusoidal function.

Hpxp = Y _ Pioly Piya, (52)

3

where P; = (1 — 07)/2 is the projector onto the ||) state at site i, and o;"¥* are Pauli matrices for the i-th qubit.

The local three-body terms P;o7, | Pi12 impose kinetic constraints, allowing a Rydberg atom state to flip only if both
neighbouring atoms are in the spin-down |/) state. This constraint effectively rules out configurations |- - ;141 -+ *)
from the computational basis, as adjacent Rydberg excitations are forbidden by the blockade effect. The low-energy
subspace, spanned by configurations without adjacent excited states, can be described by the projector:

P = H(l —njnj_H). (SS)

J

This constrained subspace forms the effective Hilbert space of reduced dimensionality, governing the system’s con-
strained dynamics. Remarkably, the dimension of this effective Hilbert space grows according to the Fibonacci
sequence, scaling as ¢V, where ¢ = (1 ++/5)/2 is the golden ratio and N is the system size. This reduced dimension-
ality reflects the exclusion of certain configurations due to the kinetic constraints, which significantly simplifies the
dynamics.

The PXP model exhibits three notable symmetries: (1) Discrete spatial inversion symmetry Z, mapping j —
N — j + 1. (2) Translational symmetry, applicable under periodic boundary conditions. (3) Particle-hole symmetry,
represented by C = Hj o7, resulting in CHpxpC = —Hpxp. The particle-hole symmetry plays a crucial role in
reversing the Hamiltonian evolution exp(—iHt) in our experiment. However, this symmetry is only present in the
PXP Hamiltonian Hpxp, not in the full Rydberg Hamiltonian H governing the experiment, which causes imperfections
in time reversal.



200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

a0 b,
0.5} 0.8¢ M
O~-0-0-0-0-0- 0000000000
8 206
0.0t ©
e N 5 M
(@) SR i iC 0.4}
05t - z. :=20 —0— Qt=1.01
' — ;=80 02} —0—0t=15m
V; i1=10Q —0—Qt=2.0m
1 — Ideal PXP 00
'%.0 05 10 1.5 05 1.0 15 2.0
Time (us) d Q/21t (MHz)
€10 1.0
0.5¢ 05t
Opol Opol
0.0 Qo0
— A=0
— A=V,
05¢+f _ =|,|+2 05}
- ﬁéx:::z Experimental parameters
10 — Ideal PXP 10 — Ideal PXP
~0.0 05 _ 1.0 15 ~0.0 05 _ 1.0 15
Time (us) Time (us)

Figure S5. Optimization of experimental parameters for closely approximating the ideal PXP Hamiltonian
dynamics. Numerical simulations of OTOC and time-reversal fidelity of the central qubit in a 10-qubit chain with periodic
boundary conditions. a, Simulated OTOC dynamics for distinct nearest-neighbour (NN) Rydberg interactions V;;41, in
comparison to those of the ideal PXP model. The interaction strengths vary from 2Q2 to 102 in steps of 2Q2. The optimal
choice, V; ;41 = 6€2, best matches the ideal case. b, Time-reversal fidelity as a function of Rabi frequency 2, with V; ;41 fixed
at 6Q. Different time evolutions are shown for Qt = 1.07 (blue symbols), Qt = 1.57 (yellow symbols), and Qt = 2.07 (red
symbols). As  increases, the fidelity decreases. ¢, OTOC dynamics for different detuning values A, ranging from A = 0 to
3V it+2, where V; ;12 is the next-nearest-neighbour (NNN) interaction. The black curve represents the ideal PXP model. The
optimal detuning, A = 2V; ;42, best matches the ideal dynamics. d, A comparison of OTOC dynamics using the optimized
experimental parameters (violet curve) and the ideal PXP model (black curve), showing close agreement. The optimized
parameters effectively reproduce the key oscillations observed in the OTOC.

When initialized in the |Zy) state, the Rydberg atom system exhibits wavefunction oscillations with a slow decay.
This decay is partially due to state losses and decoherence during the experimental evolution, but also arises from
imperfections in the many-body scars and a small overlap with thermal states in the underlying PXP model. To
better understand the intrinsic dynamics’ contribution to the observed decay, we performed numerical simulations of
the revival behaviour, initializing the system of size N = 25 in the |Zo) state. The results, shown in Fig. S24c, provide
evidence that a significant portion of the observed decay can be attributed to intrinsic features of the PXP model.

For all numerical simulations, we employ the Rydberg Hamiltonian (S1) to closely approximate the experimental
physical conditions. For atomic chains of length < 13, we utilize exact diagonalization to efficiently compute the full
time evolution. However, for chains exceeding 13 atoms, exact diagonalization becomes computationally prohibitive
due to exponentially increasing memory requirements and computation time, as well as limitations in available com-
putational resources. Consequently, we implement the Matrix Product Operator (MPO) method to accelerate our
numerical calculations in these cases. This approach allows us to extend our simulations to longer atomic chains
while maintaining computational feasibility and numerical accuracy with TeNPy%2. Unless otherwise specified, all
simulations employ parameters identical to those in the experimental setup (detailed in Section 1). To account for
experimental uncertainties, we implement a Monte Carlo method: accounting for fluctuations in Rabi frequency and
detuning, laser noise, uncertainties in atomic positions and other relevant experimental parameters, all variables are
randomly sampled from their respective probability distributions. Typically, we perform 200 runs and average the
results. This comprehensive approach provides a robust representation of the system’s behaviour under realistic
experimental conditions.
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2.2. Parameter tuning for optimal quantum dynamics

The approximation of the effective PXP Hamiltonian relies on two key assumptions: (1) Neglecting longer-range
interactions V; j>;+1. (2) Ensuring that the nearest-neighbour interactions dominate over the Rabi frequency (V; ;41 >

However, in practice, the next-nearest-neighbour interactions V; ;42 cannot be ignored. To approximate the PXP
model closely, the system must operate in the regime where V; ;12 < Q < V; ;1. This poses a challenge because, in
our 1D geometry with equally spaced atoms, the ratio V; ;11/V; ;42 is fixed at approximately 64. For example, setting
Viit1 ~ 16Q to meet the second assumption results in £ ~ 4V] ; 1o, making it difficult to fully suppress the effects of
Viit2. This creates a trade-off between the two key assumptions.

To find an optimal ratio of V; ;41 /Q, we performed numerical simulations of the ZZ-OTOC with varying parameters.
We identified the optimal ratio that minimizes the collapse-and-revival decay, as shown in Fig. Sha. Based on these
results, we set the experimental ratio of V;,;41/9Q to 6, which differs from the theoretical intermediate value of
Q= /Viit1Viiyo.

The selection of the Rabi frequency involves balancing two competing factors: (1) Time-reversal fidelity: Our
simulations (Fig. S5b) show that increasing the Rabi frequency reduces time-reversal fidelity when V; ;11/Q is fixed
at 6 and the interval between forward and backward evolution is fixed at 200ns. (2) Single-atom coherence: Higher
Rabi frequencies improve single-atom coherence, which is mainly limited by laser phase noise.

After carefully weighing these factors, we chose a Rabi frequency of Q@ = 27 x 1.21(1) MHz. This value strikes
a balance between maintaining adequate time-reversal fidelity and ensuring sufficient single-atom coherence for our
experimental needs.

In addition to optimizing V; ;11 and {2, we introduced a small detuning A to counteract the residual next-nearest-
neighbour interactions V; ;yo. Our simulations indicate that setting A = 2V ;12 best captures the OTOC collapse-
and-revival phenomenon (Fig. S5c).

In our OTOC measurement, a gap is inserted between the forward and backward evolutions, for the implementation
of local and global single-qubit ¢* operations. To minimize the gap time to ~ 200 ns, we execute the local perturbations
and global o* rotations in parallel, exploiting their commutative properties. We numerically investigated the impact of
this finite gap on the collapse-and-revival behaviour of information observed in the experiment, as shown in Fig. S5d.
Our analysis reveals that the 200 ns single-qubit operation time used in the experiment does not significantly affect
the collapse-and-revival phenomenon.

These parameter optimizations allow us to closely approximate the PXP model in our experimental setup (Fig. S5d),
despite the inherent constraints of our system. These results highlight the importance of precise parameter tuning for
accurately implementing the target Hamiltonian and maximizing the fidelity of quantum many-body scars’ evolution
in Rydberg atom systems. The optimized parameters facilitate the experimental realization of coherent spin rotation
dynamics under kinetic constraints, closely approximating the ideal behaviour of the PXP model.

2.3. Boundary and finite-size effects

In finite-sized qubit chains, the existance of boundary qubits breaks the translational symmetry of the PXP Hamil-
tonian for certain initial states such as |Zs) = |... TJ1)1 ...) and |0) = |... JJJJd ...). This symmetry breaking results
in different interaction strengths between edge and bulk qubits (Fig. S6a), introducing significant boundary effects.
Additionally, the finite number of particles leads to variations in the dynamical evolution of bulk atoms across differ-
ent system sizes, introducing finite-size effects. For the Rydberg Hamiltonian, which includes long-range interactions,
these boundary effects are further amplified due to differences in the residual interactions at the edges compared to
the bulk.

To quantitatively analyse the boundary effect, we numerically simulate the evolution dynamics of both the central
and the edge qubit in a 13-qubit chain, starting from the |Zs) state under the ideal Rydberg Hamiltonian. As shown
in Fig. S6b,c, boundary effects cause the edge qubits to exhibit accelerated periodic oscillations. This acceleration
arises from the reduced constraints on edge qubits, resulting in a stronger effective driving strength.

Moreover, both numerical simulations and experimental results reveal that boundary effects gradually alter the
spin rotations from the outer edge inward, causing the initially uniform propagating wavefront to bend during the
evolution of the |Zs) initial state, underscoring the critical role of boundary effects in shaping the system’s dynamics.

Additionally, we investigate the impact of boundary effects on OTOC measurements by comparing the OTOC of
the edge qubit and its neighbouring qubit in a 9-qubit chain with the corresponding qubits in a 25-qubit chain. As
shown in the inset of Fig. S6d,e, significant differences are observed, highlighting the substantial influence of boundary
effects on the OTOC dynamics. To ensure the accuracy of the observed OTOC dynamics over extended evolution
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Figure S6. Boundary and finite-size effects. Simulated dynamics of OTOCs and time evolution under the ideal Rydberg
Hamiltonian for various system sizes and boundary conditions, initialized in the |Z2) state. a, Schematic illustration of boundary
effects in a 13-qubit chain. Boundary qubits lack nearest and next-nearest neighbours, breaking the translational symmetry.
b and ¢, Numerical results of (n;(t)) for edge (red) and central (blue) qubits in a 13-qubit chain, starting from the |}) state
(b) and the 1) state (c). Accelerated oscillations of edge qubits reflect boundary effects. d and e, OTOC dynamics for the
edge qubit (d) and its neighbouring qubit (e) in 9-qubit chain (red curves), compared to the corresponding qubits in 25-qubit
chain (blue curves). The schematics above each plot, marked with coloured circles, illustrate the specific qubit positions within
their respective chains. Insets show deviations |doroc| between the two dynamics, indicating significant boundary effects that
propagate into the interior of the chain. f, OTOC evolution under the ideal PXP Hamiltonian (yellow), and under the noisy
Rydberg Hamiltonian normalized using IZ-OTOC (blue) and the edge qubit’s ZZ-OTOC (red). g, Deviations of normalized
OTOCs from the ideal PXP case (red: edge ZZ-OTOC, blue: IZ-OTOC). Significant deviations observed in the case normalized
using ZZ-OTOC from the edge qubit. h and i, Simulated OTOC dynamics for the central qubit (h) and nearest-neighbour
(NN) qubit (i) in chains of various lengths (5, 9, 13, and 25 qubits) with open boundary conditions. Distinct variations of
OTOC dynamics in smaller systems show the finite-size effects. j and k, Comparison of OTOC dynamics for qubits furthest
from the perturbation in a 10-qubit chain (periodic boundary conditions, PBC, dark blue) and edge qubits in a 25-qubit chain
(open boundary conditions, OBC, light blue). The negligible deviation |doroc| validates the use of a 10-qubit PBC system to
approximate bulk qubit behaviour in a larger 25-qubit OBC system, matching our experimental conditions.

times, a larger system size is required.

Notably, as discussed in section 4.4, a reference OTOC measurement is required to serve as the normalization
denominator for mitigating experimental imperfections. Theoretical analysis suggests that the IZ-OTOC is an appro-
priate reference for this purpose®%4. In our experiment, qubits near the boundary in the long chain remain unaffected
by the local perturbation for a certain period, making them potentially suitable for approximating the IZ-OTOC dy-
namics for central qubits. To evaluate the effectiveness of different normalization schemes, we compared the edge
qubit’s ZZ-OTOC with the central qubits’ IZ-OTOC as the normalization denominator in a noisy environment. Our
numerical simulations indicate that using the edge qubit’s ZZ-OTOC as the normalization denominator introduces
over-corrections and temporal misalignment, as shown in Fig. S6f,g. These findings underscore the importance of
employing the [Z-OTOC for accurate normalization and reliable mitigation.
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We further study finite-size effects by comparing the OTOC dynamics of the central two qubits in chains of varying
lengths (5-, 9-, 13-, and 25-qubit chains with open boundary conditions). Numerical simulations reveal that in
smaller atomic systems, finite-size effects are very pronounced, as shown in Fig. S6h,i. This suggests that we need to
extend the chain length to ensure that our experimental observations accurately reflect the scrambling of quantum
information. However, simulating 25 atoms requires substantial computational resources, even when using the MPO
method. To address this challenge, we simulate both a 25-qubit chain with open boundary conditions (OBC) and a
10-qubit chain with periodic boundary conditions (PBC), shown in Fig. S6j,k. We compare the OTOC dynamics of
the atom furthest from the perturbation. The results reveal negligible differences within the experimental timescale,
as the atom remains unaffected by the equivalent local perturbations at both ends during this period.

Based on this analysis, when simulating the dynamics of OTOC, we employ simulations of a 10-qubit chain with
PBC. For experimental studies of quantum information scrambling within a constrained Hilbert space, we employ a
25-qubit chain to shield the central 13 atoms, thereby avoiding boundary effects and finite-size effects.

3. PROBING QUANTUM INFORMATION SCRAMBLING AND TRANSPORT DYNAMICS

Quantum information dynamics, the study of how local quantum information propagates in complex many-body
systems, plays a crucial role in the understanding of many fundamental questions. It can be employed to study
the limits on the speed of information propagation in quantum systems® 8. It is also deeply linked to quantum
chaos and quantum thermodynamics*®:°?:32786  providing insights into dynamics in thermal and non-ergodic systems
8799 Moreover, in black hole physics, quantum information scrambling is related to the information paradox!00-104,
Additionally, quantum information dynamics has broad potential applications. In quantum computing, understanding
information spreading is vital for developing noise-resistant systems and enhancing quantum error correction®%1%;
in quantum metrology, it could inspire novel precision measurement protocols'®®. In this section, we present the
details of our study on quantum information scrambling and transport using a Rydberg atom array, including the
measurements of out-of-time-ordered correlators, and Holevo information.

3.1. OTOC measurements details

Out-of-time-ordered correlators (OTOCs) have become a powerful tool for investigating quantum information
scrambling, revealing how local perturbations propagate through quantum systems?*?:93:94:96-98,107-112 ' Experimental
demonstrations of OTOC measurements have been achieved in several quantum platforms, including superconduct-
ing circuits® 113116 " trapped ions!?%117 119 nuclear magnetic resonance (NMR)207125 NV centres'?®, degenerate
Fermi gases'?” and cavity quantum electrodynamics (cavity QED) system!%6. In this section, we provide a detailed
description of the OTOC measurements.

Figure S7 illustrates the detailed pulse sequence for measuring the ZZ-OTOC. The measurement protocol begins
with the preparation of two distinct initial states, |Zs) and |0) (see section 1.3 for details on state preparations). The
system then undergoes forward time evolution under the Hamiltonian H for a duration ¢. Next, a local perturbation
o’ is selectively applied to the central (13th) atom by inducing a w-phase shift with a 795-nm addressing laser. At the
same time, a global [ [, o7 rotation is performed on all qubits via a microwave field. This global rotation, combined with
the subsequent Hamiltonian evolution, effectively implements the time-reversed Hamiltonian —H for an equal duration
t. This carefully designed sequence realizes the desired OTOC measurement, Fj;(t) = (¢| WiT(t)VjTWi(t)Vj [1).

To mitigate the differential AC-Stark shifts induced by the tweezer traps on the ground and Rydberg states, the
traps are switched off before Rydberg excitation and turned back on after state evolution. Given the estimated atomic
temperature of approximately 10 pK and the release and recapture time of 10 ps, the resulting atomic loss is estimated
to be around 1%.

In the regime where V; ;12 < @ < V; 41, the Rydberg blockade effect introduces kinetic constraints, excluding
configurations with adjacent qubits in the Rydberg state, |-+ 1;Ti41 - -), from the computational basis. This kinet-
ically constrained system is well approximated by the PXP model. However, due to the nature of van der Waals
interactions, the ratio V;;41/Vi 42 is fixed at approximately 64, making it difficult to fully separate these energy
scales. The experimental parameters are carefully optimized, with Q set to approximately V; ;41/6, as detailed in
section 2.2. Additionally, a small non-zero detuning A between the Raman excitation lasers and the ground-Rydberg
transition is introduced to mitigate the residual next-nearest-neighbour interactions. Numerical simulations (Fig. S8a)
indicate that a detuning of 2V; ;12 ~ 27 x 0.2MHz better preserves OTOC oscillations, closely approximating the
expected PXP dynamics.

The 795-nm addressing laser used for local perturbation 0% and the laser array for generating the alternating light

J
shifts in |Zs) state preparation are both directed onto different regions of the same SLM. These two independent
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Figure S7. Pulse sequence for OTOC measurements.

regions display distinct holograms, allowing for different addressing laser patterns. This spatial multiplexing enables
sub-microsecond switching of 795-nm addressing laser patterns between |Zs) state preparation and local perturbation,
without being limited by the refresh rates of devices such as AODs (microsecond scale) and SLMs (millisecond scale).
The duration of the local perturbation pulse is ~110ns, resulting in a m-phase shift on the ground states. The
effectiveness of this local perturbation is experimentally verified by applying it to a single atom between two /2
pulses separated by a fixed interval. By varying the phase of the second pulse, Ramsey-type oscillations of both
addressed and unaddressed atoms are observed (Fig. S8b). The oscillations of the addressed atom are shifted by
1.01(2)7 relative to those of the unaddressed atoms, confirming a controlled phase shift on individual atoms.

One of the key challenges in measuring OTOCsS is implementing the inverse Hamiltonian evolution exp(—iHt) in
a many-body system. In the Rydberg PXP model, we overcome this difficulty by exploiting particle-hole symmetry,

represented by C =[] j o3, which leads to the relation CHpxpC = —Hpxp, effectively reversing the sign of the Hamil-

tonian. This symmetry allows us to implement the time-reversed Hamiltonian ([, o7)Hpxp([]; 07) = —Hpxp'21%.

Experimentally, this is achieved by applying a global ¢ gate to all qubits using a ~180ns-long far-detuned mi-
crowave (MW) field. The MW field off-resonantly couples the Rydberg states 1) = |r) = [68D5/5,ms = 5/2) and
|7') = |69P5/5), and induces a 7-phase shift on the state [1) via the AC Stark effect. This method enables the forward-
and-backward evolution of the |Zy) state, with the measured results presented in Fig. 3c of the main text. Our
digital-analogue approach offers an efficient and elegant way to implement time reversal in programmable Rydberg
atom arrays, enabling precise measurements of quantum information scrambling via OTOCs. For the ZZ-OTOC
measurement, we apply a local butterfly operator W; = ¢Z to perturb the central qubit (the 13th qubit), while the
measurement operator V; = o7 acts on the j-th qubit. The ZZ-OTOC, denoted as F;;(t), where ¢ = c for the central
qubit, can be expressed as:

Fij(t) = Fej(t) = (Yolog (t)o5oi (H)of|Wo) = (Wolof[Wo)(We(t)|oF[We(t)), (S4)

where |Wg) is the initial state, and |U.(t)) = eftoZe ! |W) represents the time-evolved state after forward-
and-backward Hamiltonian evolution over time ¢. For consistency, we fix (¥g|o?|¥) = 1. The expectation value
(We(t)|o?|We(t)), which represents the correlation between the central qubit and the j-th qubit, can be directly
obtained from site-resolved measurements of the Rydberg state population. Specifically, it is given by:

(We(t)]oF|We(t)) = 2P;(1) — 1, (S5)

where P;(1) is the measured population of the |1) state for the j-th qubit in the array. Consequently, the ZZ-OTOC
can be written as:

F.j(t) =2P;(1) — 1. (S6)
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the local butterfly operator oZ.

In the experiment, the Rydberg state population P (1) is measured for each qubit after time evolution, allowing us to
extract the full spatio-temporal dynamics of the OTOC across the atomic array.

To ensure consistency when measuring qubits in the |Z,) state, the measured j-th qubit is always initialized in the
|1) state. Consequently, the indexing of the initial |Zs) state must be adjusted based on whether the measured qubit
index j is odd or even. For the central 13 qubits, the initial |Zo) state is defined as |Zz) = |... }j—11j4j+1 -..), where
the measured qubit is always initialized as |1), with the central qubit labeled as qubit 13. The data acquisition and
processing procedure depends on the odd or even nature of the measured qubit index. For odd indices, |1)-initialized
qubit 13 is perturbed, and the OTOC data is collected from qubits 7, 9, ..., 19. For even indices, | )-initialized qubit
12 is perturbed, OTOC data is collected from qubits 7, 9, ..., 17, and aligned with qubit indices 8, 10, ..., 18 for
consistency in indexing. Throughout the measurement process, the initial 25-qubit |Zs) state remains unchanged to
maintain consistent initial state preparation fidelity.

To mitigate boundary effects inherent in finite-size systems (Fig. S6), the OTOC measurements focus on the central
13 qubits of the prepared 25-qubit |Zs) state. Boundary qubits experience fewer neighbouring interactions, which can
lead to deviations in their dynamics. By concentrating on the central region, we limit the influence of these boundary
effects and ensure that the measured dynamics more accurately represent the bulk behaviour of the PXP model. This
strategy allows us to observe the intrinsic quantum information scrambling and collapse-and-revival phenomena with
higher fidelity, as the central qubits are less affected by edge-induced artifacts. Thus, the measured OTOCs from
these qubits provide a better approximation of the expected PXP behaviour.

3.2. Holevo information measurements details

Holevo information, introduced by Alexander Holevo in 197330, is a fundamental concept in quantum information

theory that sets an upper bound on the amount of information that can be reliably transmitted through a quantum
channel'3:132 Tt is formally defined as the difference between the von Neumann entropy of the average output state
and the average of the von Neumann entropies of the individual output states. Mathematically, if px = >, pip; is
the average output state corresponding to the quantum channel’s output ensemble {p;, p;}, the Holevo information X
is given by:

X'=S(px) - ZPiS(Pz‘)7

where S(p) denotes the von Neumann entropy, defined as S(p) = —Tr(plog, p). Importantly, Holevo information
represents the upper bound on the accessible information that can be shared between two parties using a quantum
channel, reflecting the best-case scenario for the amount of information that can be transmitted, regardless of the
specific measurement strategy employed by the receiver.

To illustrate this, we consider an ensemble with two equally probable quantum states p and p’. Holevo information in
this case can be interpreted as a measure of the distinguishability between the two states. Suppose Alice selects either
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Figure S9. Illustration of ineffective local perturbations. Numerical simulations of a, |Z) state evolution, b, ZZ-OTOC
dynamics and ¢, Holevo information dynamics with the same time scale, mirroring Figs. 2e, 3l and 4c in the main text. Time
intervals when all the qubits approach the |1) or ||) pure states are marked with two pairs of dashed lines (0.6 ps—0.7 ps and
1.2ps-1.3us). During these intervals, the ZZ-OTOCs (Fj;) for all qubits approach 1 since the o® butterfly operator has no
effect on the perturbed qubit. In contrast, Holevo information remains effective throughout, enabling uninterrupted tracking
of quantum information dynamics.

p or p/ with a probability of 1/2 and sends it to Bob through a quantum channel. Bob then performs a measurement
to gain as much information as possible about which state Alice has sent. The information Bob retrieves from his
measurement is upper bounded by the Holevo information X. For instance, if p and p’ are completely indistinguishable
(i.e., p = p'), Bob cannot obtain any information about Alice’s choice, and the Holevo information is zero (X = 0).
In this case, regardless of Bob’s measurement, the outcome gives no clue about whether p or p’ was sent. On the
other hand, if p and p’ are orthogonal, e.g. p = |1) (1] and p’ = |}) ({|, Bob can fully determine Alice’s choice using
an appropriate measurement, such as a ¢ measurement. In this case, the Holevo information reaches its maximum
value of X = 1, meaning Bob retrieves all the information about Alice’s selection.

Holevo information has also been proposed as a powerful tool for studying scrambling and transport dynamics in
many-body quantum systems®?133:134 " Compared to OTOCs, which measure the scrambling of local perturbations in
a system, Holevo information provides a different perspective on quantum information dynamics, as it does not rely
on specific perturbations that may be ineffective under certain conditions.

In systems exhibiting quantum many-body scars, ZZ-OTOC measurements may occasionally become less informa-
tive due to the periodic oscillation of the scar state wavefunction. For example, during certain time intervals (such as
0.6 ps—0.7ps and 1.2 ps—1.3 ps in Fig. 3j,1 and Fig. S9), the ZZ-OTOC values for all qubits approach 1. The reason is
that during these intervals, the wavefunction of the scar state |Zs) partially revives, causing the perturbed qubit to
be mostly in either the |1) or |]) pure state, where the butterfly operator c* becomes ineffective. Consequently, no
effective perturbation occurs, and no measurable scrambling is observed. As a result, ZZ-OTOC values of all qubits
approach 1, due to the lack of an effective perturbation. In contrast, Holevo information can continuously capture
quantum information dynamics, even during periods when the butterfly operator in ZZ-OTOCs become less effective
(Fig. S9c¢).

This distinction is further emphasized when comparing Holevo information to classical Shannon information. While
Shannon information only accounts for classical probability distributions, ignoring quantum phases, Holevo informa-
tion captures both classical and quantum aspects of information, including coherence and entanglement. For example,
between |«) and |—) states, Shannon information may be minimized to zero, while Holevo information can still be
maximized, reflecting the quantum coherence between these states. In the specific context of the PXP model with the
initial state |Z2), Holevo information reveals the retarded spin dynamics within the light-cone structure (see Fig. S23).
This analysis highlights how kinetic constraints lead to a persistent phase delay in the propagation of spin rotations,
influencing the overall information dynamics. Within this light cone, spins resume their constrained rotations; how-
ever, the distinguishability of spin states periodically collapses and revives, as captured by Holevo information. This
behaviour reflects the constrained dynamics of the PXP model, where the Rydberg blockade effect induces delayed
spin rotations near the central flipped spin, with this delay propagating outwards in a light-cone-like wavefront.

To understand how Holevo information applies to our experimental system, we consider the scenario where Alice
and Bob transmit information through the |Zs) state. Based on the |Zy) state, Alice at the central site chooses
whether to flip her qubit at t = 0, and Bob at site j measures his qubit at time ¢ to infer Alice’s choice. Outside the
light cone, Bob retrieves no information (X;(t) = 0) due to the finite speed of information propagation. Inside the
light cone, Bob periodically gains and loses information, as the distinguishability of spin states collapses and revives,
leading to corresponding oscillations in Holevo information. This behaviour reflects the constrained dynamics of the
PXP model, where the Rydberg blockade effect induces delayed spin rotations near the central flipped spin, with this
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Figure S10. Pulse sequence for Holevo information measurements.

delay propagating outwards. Notably, even when Bob measures the same qubit perturbed by Alice, the phenomenon
of collapse and revival can still occur due to the constrained dynamics in the system. Additionally, information can
be retrieved from other sites, as the quantum information propagates across the system, even when Bob’s qubit does
not provide it.

Furthermore, Holevo information provides a robust measure of non-Markovianity, capturing the information back-
flow from surrounding spins to the central spin. Each spin exhibits periodic increases in Holevo information, signaling
the backflow of quantum information, which is a clear signature of positive non-Markovianity!3> 137, This unique
collapse-and-revival behaviour of Holevo information is distinct from the quantum scar state oscillations observed in
similar systems, as it incorporates thermal eigenstates, thereby providing a broader picture of quantum dynamics
beyond the scarred subspace.

To the best of our knowledge, this work presents the first experimental investigation of many-body dynamics in
Rydberg atom array using Holevo information. In the rest of this section, we provide details regarding the experimental
sequence and parameters utilized in our measurements of Holevo information.

Figure S10 illustrates the pulse sequence used to measure Holevo information dynamics, corresponding to Fig. 4a
in the main text. The protocol begins with the preparation of two distinct initial states: |Z2) and 0% |Zy), where 0%
acts on the central spin in the chain. These initial states evolve under the Rydberg Hamiltonian, after which quantum
state tomography is performed to reconstruct the density matrix p; for each qubit, enabling a detailed investigation
of quantum information transport dynamics under kinetic constraints.

The Holevo information is extracted from the reconstructed density matrix, which includes both diagonal and
off-diagonal elements. The diagonal elements of p;(t) and p;(t) are obtained through projective measurement of
o7 on the j-th qubit, which can be accessed via Rydberg population measurement. However, measuring the off-
diagonal elements requires a single-qubit 7 /2-rotation with a variable phase. This process is particularly challenging in
strongly interacting Rydberg atom systems due to the constraints imposed by the PXP model, which requires nearest-
neighbouring Rydberg atoms to be in the excitation blockade regime. The strong interactions between neighbouring
Rydberg atoms create significant obstacles for performing spin rotations on any given qubit. If a nearest-neighbouring
atom of the target qubit is in the Rydberg state, the blockade effect will prevent the target qubit from undergoing
rotation. Even if only a next-nearest-neighbouring atom is in the Rydberg state, though not causing a full blockade,
the residual Rydberg interaction will still affect the phase during quantum state tomography. Moreover, even when
both nearest-neighbouring and next-nearest-neighbouring atoms are in the ground state, performing a spin rotation
on the target qubit still remains difficult, as surrounding atoms can become entangled with the target qubit due
to their involvement in the Rydberg excitation, resulting in a complex many-body quantum state. Therefore, to
carry out the spin rotations required for quantum state tomography on the target qubit, it is necessary for the
nearest-neighbouring and next-nearest-neighbouring atoms to neither be in the Rydberg state nor resonant with the
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Figure S11. Holevo information measurement details. a, Rydberg population of the central 7 qubits, with (blue) and
without (red) the Rydberg population transfer process. The data is obtained via Rydberg population measurement of even
atoms and odd atoms, respectively. b, Under the driving of global 480-nm and 780-nm lasers, the target qubit (red diamonds)
exhibits Rabi oscillation between the ground and Rydberg states, while the neighbouring qubits (blue squares), due to the EIT
condition created by the 480-nm addressing lasers, do not participate in the spin rotation process.

ground-Rydberg transition.

Experimentally, we implement a novel approach for density matrix reconstruction using global rotations combined
with 480-nm addressing lasers. The addressing beams, resonant with the transition from the excited state |e) to the
Rydberg state |r), are selectively applied to the four neighbouring qubits, transferring their Rydberg populations to
the ground state via spontaneous emission from the intermediate state |¢). The decay rate of the Rydberg population
during the transfer process, I';., can be estimated by:

Qgo/4

I.=T. .
02 +T2/4+ 03 /2

(S7)

Here, I'. = 27 x 6.06 MHz is the natural linewidth of the excited state |5P3/2). The terms 450 and ¢ denote the Rabi
frequency and detuning of the addressing beams, respectively. This process lasts for approximately 200 ns, which is
sufficient to deplete the Rydberg population at neighbouring sites (Fig. S11a), while being short enough to avoid the
unwanted effects on the target qubit due to crosstalk from the 480-nm addressing lasers. After the state transfer
process, the Rydberg population in the neighbouring qubits is reduced by 96(1)%, with negligible crosstalk-induced
reduction in the Rydberg population of the target qubit.

Next, the 480-nm addressing lasers split the bare Rydberg state |r) into two dressed states: |+) = %(W +e)) and

|—) = %(\r) — |e)), separated by h€ys0, where Q450 ~ 27 x 20 MHz is the Rabi frequency of the 480-nm addressing

laser. The dressed states are significantly detuned from the ground-Rydberg transition. The off-resonant excitation
from the ground state |g) to the dressed states |+) and |—) causes destructive interference, preventing population
transfer to the Rydberg state. This creates an electromagnetically induced transparency (EIT) condition, ensuring
neighbouring qubits do not participate in the ground-Rydberg coherent driving implemented by the global excitation
lasers.

Finally, single-qubit rotation on the target qubit is implemented using global excitation lasers. Figure S11b demon-
strates that the target qubit can undergo single-qubit rotation (Rabi oscillation between the ground and Rydberg
states) in the presence of neighbouring qubits addressed by the 480-nm laser. The addressed neighbouring qubits
remain ineligible for the ground-Rydberg excitation process due to the EIT condition induced by the 480-nm laser.

In an ideal scenario with periodic boundary conditions, the PXP model would exhibit a stationary expectation
value of the Pauli-X operator (o) throughout the evolution. For initial states like |Zs) and 0% |Zz), this implies that
(c®) = 0. However, during the gap time between the evolution and the projection measurement, the residual van
der Waals interaction between the atoms could lead to the accumulation of phases, causing (o®) to become non-zero.
This introduces challenges in accurately measuring the desired off-diagonal elements of the system’s density matrix.
Due to the difference in the initial states (|Z2) and oZ |Zz)), even after the same PXP evolution, the two output
states may accumulate different residual phases. This phase difference introduces additional distinguishability when
directly measuring the off-diagonal elements, increasing the difference between the two output states p;(¢) and p;- (t).
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As a result, this extra distinguishability reduces the accuracy of the Holevo information. To address this, we measure
the full parity oscillation curve by scanning the phase shift between two 7/2 pulses. From this curve, we extract the
oscillation amplitude A by fitting it to a sinusoidal function.

With the measured values of P(1) and A for each qubit, we reconstruct the density matrix p(t) at time ¢ using the
following expression:

1
p(t) = 5[+ (2P(T) — 1)o%) + €(t) Ao, (S8)
where €(t) represents the sign of (¢¥), with €(¢) = 1 when P(?) is expected to be increasing, and e(¢) = —1 otherwise.
Here, I is the identity matrix, and ¥ and ¢* are the Pauli-Y and Pauli-Z matrices, respectively.
The Holevo information for qubit j at time ¢ can be obtained:

r =5 (P08 S S(e;(0)

(S9)

where p;(t) and p(t) are the density matrices of the j-th qubit evolved from distinct initial states |Z2) and o7 |Z2).
The von Neumann entropy S(p) = —Tr(plog, p) is used to quantify the information content of the density matrices.

The measurement of off-diagonal elements is what distinguishes quantum information from classical Shannon infor-
mation. Shannon information, which only considers the diagonal elements of the density matrix, is a simple measure
of classical probability distributions. In contrast, quantum information involves off-diagonal elements, which capture
quantum effects like coherence and entanglement—features not present in classical systems. We emphasize that von
Neumann entropy goes beyond Shannon entropy in quantum information science. While Shannon entropy only reflects
the uncertainty in classical probability distributions, von Neumann entropy plays a central role in quantum systems. It
is essential for quantifying information in quantum states and determining the capacities of quantum channels. More
importantly, it captures quantum phenomena, such as entanglement, which are critical for understanding quantum
systems. This is why we have made significant efforts to measure the off-diagonal elements, as they provide deeper
insights into the unique aspects of quantum information.

3.3. Non-Markovian quantum information dynamics in a strongly-interacting Rydberg atom array

Non-Markovian quantum dynamics are often characterized by memory effects, where a system’s evolution depends
on its past interactions with the environment. Unlike Markovian dynamics, where information is irreversibly lost to
the environment, non-Markovian systems can experience information backflow, allowing for the recovery of previously
lost information'®® 4!, In many-body quantum systems, strong interactions could lead to non-Markovian dynamics,
significantly influencing the spread and preservation of quantum information

In this work, we observe non-Markovian dynamics in a strongly interacting Rydberg atom array, focusing on the
unusual behaviour of information backflow. We designate the central spin in an atomic array as the “system” and
the surrounding spins as the “environment”. The strong spin interactions allow information to transfer between the
system and environment in complex ways, making it possible to observe non-Markovian effects.

Our experimental setup allows for precise quantum state tomography of each spin, enabling real-time tracking of
information flow across the system. This capability provides detailed insight into non-Markovian behaviour by directly
measuring how information, initially lost to the environment, returns to the spins that originally held it.

To quantify non-Markovianity, we assess the degree of information backflow using metrics like trace distance
and Holevo information!3>37  which track the evolution of quantum state distinguishability over time. The con-
strained spin rotations within the system drive this backflow, causing periodic collapses and revivals in information
distinguishability. This allows us to capture key signatures of non-Markovian dynamics as information spreads,
collapses, and recovers between the system and environment. These findings offer valuable insights into quantum
information dynamics and hold promise for advancing quantum memory technologies.

The trace distance is defined as

142,143

1
D(p1,p2) = §Tr|/)1 — p2l, (S10)

where p; and py are density matrices of |Zs) and 0% |Zs), respectively. Figure S12 shows the experimentally measured
spatio-temporal dynamics of the trace distance between the |Zz) state and o |Zy) under the Rydberg Hamiltonian.
Density matrices are reconstructed from Holevo information measurements. The plot reveals a clear linear light cone
structure and a spatial-temporal collapse-and-revival pattern, mirroring observations in the Holevo information data
presented in the main text. Trace distance, a widely used metric for quantifying non-Markovianity in quantum systems,
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Figure S12. Quantify non-Markovian dynamics via trace distance measurements. Spatio-temporal dynamics of trace
distance between |Z2) and of |Z2) states under Rydberg Hamiltonian. Density matrices reconstructed from Holevo information
measurements. The measurements reveal a linear light cone and collapse-and-revival pattern, demonstrating periodic increases
in state distinguishability. This non-monotonic behaviour provides evidence of quantum information backflow, indicating non-
Markovian dynamics in the Rydberg atom array.

tracks the distinguishability between two quantum states over time. While Markovian processes exhibit monotonic
decay of trace distance, indicating irreversible information loss to the environment, our data shows periodic increases
in trace distance. This observed pattern provides compelling evidence for quantum information backflow and the non-
Markovian nature of the system’s dynamics. These dynamics, marked by changes in state distinguishability, align
well with theoretical expectations from the PXP model and display features of information backflow, where quantum
information is periodically exchanged between the system and its environment rather than being permanently lost.
Our findings are consistent with previous studies on non-Markovian behaviour in quantum systems'42.

4. ERROR ANALYSIS AND MITIGATION

In our Rydberg atom quantum simulator, imperfect Hamiltonian evolution and finite qubit coherence lead to the
accumulation of both coherent and incoherent errors in the dynamics of OTOCs and Holevo information. This section
analyses the major error sources, develops an error model to identify and characterize primary error mechanisms, and
implements error mitigation techniques for ZZ-OTOC, enhancing the performance of the quantum simulator.

4.1. Initial state preparation error

As the number of atomic qubits increases, the exponential growth in the dimension of the density matrix amplifies
the complexity of quantum state dynamics and the impact of initial state preparation errors. In studying ZZ-OTOC
or Holevo information dynamics for |Zs) initial states within the constrained Hilbert space, rapid thermalization of
the error states could affect the behaviour of quantum information scrambling. Therefore, the fidelity of initial |Zs)
state preparation is crucial for accurately probing quantum information dynamics in our system.

1. Influence on OTOCs

As mentioned in section 1.3, the |Zs) state preparation under global coherent Rabi excitation with site-selective
addressing technique introduces errors primarily from infidelity in single-qubit operations. Our measurements of the
microstate distribution revealed that errors in |Zy) state preparation are predominantly attributable to single qubit
[1) — |4} flips. These error states account for 86(2)% of all occurrences in conjunction with the |Zs) state (Fig. S3d,e).
The remaining error contribution primarily stems from detection errors (approximately 1% per qubit). Consequently,
the prepared density matrix can be expressed as a weighted sum of the target |Z2) state and the major error states.
Given the |Zy) state preparation fidelity of Fz,, the measurement results of ZZ-OTOC Fjj*(t) can be therefore
expressed as:
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Figure S13. Impact of |Z;) state preparation fidelity on ZZ-OTOC dynamics. a—d show ZZ-OTOC evolution for four
qubits exhibiting non-trivial dynamics. The coloured curves represents increasing fidelity values (0.2-1.0). The blue circle in
the qubit chain diagram (top) indicates the qubit in each plot.

FP(t) = Fo, - F(8) + ) paa(0)F(2) (S11)

Here, FZ%Q (t) represents the ZZ-OTOC dynamics with the ideal initial |Z2) state, and Fyj(t) denotes the dynamics
for the a-th error state in the prepared density matrix p(0) = Fz, |Z2) (Za| + paa(0)|a) (a]|. To investigate the
impact of |Zs) state preparation fidelity on ZZ-OTOCs, we simulated the ZZ-OTOC dynamics with various |Zs) state
preparation fidelity (ranging from 0.2 to 1.0), as shown in Fig. S13. The atomic array in our experiment exhibits
symmetry around the central qubit, which means that the dynamics of qubits at symmetrically equivalent positions are
exactly the same. Taking advantage of this symmetry, we can fully characterize the system’s behaviour by examining
a subset of qubits. We present simulation results for four qubits that exhibit non-trivial dynamics and represent the
distinct behaviours observed in the array. For these error states, we considered uniformly distributed |1) — |{) errors.
This error state distribution aligns with the typical experimental conditions as characterized in section 1.3. The
simulations reveal that the |Z2) state preparation fidelity significantly affects the contrast of the collapse-and-revival
pattern within the light cone. Moreover, given our high |Zs) state preparation fidelity (78(1)% for 13-qubit chain,
after detection error correction.) and the measured microstate distribution, numerical simulation results (Fig. 3b of
the main text for qubit 13, and Fig. S14 for other qubits) demonstrate that the characteristic collapse-and-revival
pattern remains clearly observable.

2. Influence on Holevo information

For Holevo Information, we consider the evolution of both the |Z3) and the o |Z2) states, accounting for imper-
fections in state preparation. With the prepared density matrices p(0) = Fz, - |Z2) (Za| + >_,, pPaa(0) |a) (o] and
p'(0) = Frgoy |Za) (Za| og + 3 5 p5(0) [B) (B| for |Zz) and o7 |Zs) respectively, the final density matrices after evo-
lution are given by:

p(t) = Fzo - | Za(8)) (Zo(t)| + Y paa(0) [al(t)) (alt)] (S12)

for imperfect |Z9) and:
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Figure S14. Impact of experimental |Z;) state preparation errors on ZZ-OTOC dynamics. Solid and dashed lines
represent numerical simulations of OTOC evolution with the experimentally measured microstate combination (MMC) and
perfect |Z2) state as initial states, respectively, showing a negligible difference for each qubit in the 13-atom array. The results
for the central (13th) qubit are shown in Figure 3b of the main text.
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Figure S15. Impact of initial state preparation fidelity on Holevo information dynamics. a—d, Simulated Holevo

information dynamics with initial state preparation fidelities varying from 0.2 to 1. e and £, Solid lines represent dynamics with
perfect initial states, while dashed lines show dynamics with experimentally prepared initial state fidelities. The qubit chain
above each plot indicates the positions of the qubits under consideration (coloured circles).

P(8) = Fag - 1Z5(6) (Z5 (D] + Y pss(0) [B(D) (B(1) (S13)
B

for imperfect 0% |Zs). Here, |Za(t)) = e *H!|Zy) and |Z&(t)) = e~ 110" |Zy) represent the final states after evolution
for the ideal |Z3) and of |Zz) initial states under the Rydberg Hamiltonian H, respectively. Fz, and Fz; denote
the preparation fidelity for |Zs) and o? |Zs), respectively. The summation terms account for contributions from the
evolution of the various initial error states |a) and |3) : |a(t)) = e~ |a) and |B(t)) = e~ |B), with weights paa(0)
and pgg(0) representing their respective probabilities in the initial density matrices.

Using these final states, we calculate the reduced density matrices for each qubit:

p;(t) = Triz;p(t) (S14)

P(1) = Trisyol (1) (S15)
where Tr;x; denotes the partial trace over all qubits except the j-th qubit. And the Holevo information is then
calculated following the equation (S9).

To assess the impact of imperfect initial state preparation on the Holevo information dynamics, we performed
numerical simulations with different initial state preparation fidelities. Figure S15a—d demonstrates the Holevo in-
formation dynamics for initial state preparation fidelity ranging from 0.2 to 1.0. The results suggest that for low
preparation fidelities, the collapse-and-revival phenomenon after 1us (driving Rabi frequency ~ 27 x 1.2 MHz) is de-
graded, particularly for qubits far away from center. These results further emphasize the necessity of high |Zs) state
preparation fidelity for observing the collapse-and-revival of quantum information. Based on the measured microstates
combinations of the experimental prepared initial states, equal preparation fidelities for both |Zy) and oZ |Zy) states
were assumed in the numerical simulations, with error states uniformly distributed across all |1)-initialized qubits. To
this end, Fig. S15e,f compare the Holevo information dynamics from the experimentally prepared |Zs2) and o? |Z5)
states (dashed lines) with perfectly initial states (solid lines). The results suggest that, given the experimentally
achieved high initial state preparation fidelity, the distinctive features of Holevo information dynamics persist and
remain readily discernible.
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4.2. Detection and evolution error

Imperfections in quantum state evolution and detection introduce errors into experimental results, which degrade
the performance of the Rydberg quantum simulator. This section identifies and analyzes two main categories of error:
detection errors and evolution errors.

1. Detection error

The gap time (as described in section 3.1) between the end of evolution and the start of detection results in
Rydberg-state atoms decaying to the ground state due to their finite lifetime, contributing to detection errors. Ad-
ditionally, measurements of both Rydberg and ground states are subject to inherent detection errors (quantum state
discrimination error).

To quantify these errors, we introduce two parameters: ¢ to represent the detection error for the Rydberg state
and 7 to account for atomic loss in the ground state, both of which arise from the factors mentioned above. The
experimentally measured ground state population, P(]), can then be expressed as:

P(l)=e=n)P'(1) + (L —n)P'(]) (S16)

Here, P'(1) and P’({) represent the actual Rydberg and ground state population after experimental evolution,
respectively.

2. Evolution error

While we consider only two states (ground state |[|) and Rydberg state |1)) in numerical simulations, a third state
(intermediate state |e) = |5P5/9), with a linewidth of I', =~ 27 x 6.06 MHz) is involved in the evolution driven by
the Raman lasers, and introduces incoherent errors in the dynamics of OTOC and Holevo information. The 480-nm
(780-nm) Raman laser couples the [1) (]])) state to |e), leading to unwanted scattering and depolarization between
[4) and |1). Furthermore, the radiative lifetime of the Rydberg state also contributes to the depolarization during the
evolution process. These effects can be summed up and characterized by one parameter, the depolarization time 77,
accounting for the amplitude damping of both OTOC and Holevo information oscillations.

Another major error source is coherent evolution error, also referred to as evolution noises. During the evolution,
two dominant noise sources emerge: fluctuations in the relative phase between ||} and |1), and variations in the
Rabi frequency. These sources contribute to non-unitarity in the forward-and-backward Hamiltonian evolution and
decoherence in Rabi oscillations. The time-dependent noisy Rydberg Hamiltonian is modeled as:

—ig(t)
H(t) = Z |:Q(t)620'21 — A(t)nl} + Z V,;j(t)ninj (Sl?)
i i<j

Here, ¢(t) and Q(t) represent the time-dependent phase and Rabi frequency, respectively. A(t) accounts for time-
dependent laser frequency detuning. These time-dependent fluctuations contribute to the single-atom decoherence
time T, arising from various sources including laser noises and Doppler effects. Additionally, V;;(¢) denotes the time-
dependent Rydberg-Rydberg interaction strength between atoms ¢ and j in the many-body system, whose uncertainty
is introduced by atomic motion and the disorder in the initial atomic distance.

In our experiment, as described in section 1.1, we employ the Pound-Drever-Hall (PDH) technique to frequency-
stabilize the Rydberg excitation laser to a ULE cavity. This method effectively suppresses laser frequency noise below
the cavity linewidth. We treat the high-frequency noises above the linewidth in two components: one attributed
to servo bumps!'4*145 and the remaining noise, which can be modeled as spectrally uniform (white) phase noise!4°.
As a result, A(t) in equation (S17) can be approximated by a Gaussian distribution with a root-mean-square (RMS)
amplitude of dA. Moreover, variations in laser power and spatial inhomogeneities induce Gaussian-type perturbations
in the Rabi frequency, characterized by an RMS amplitude of 6X2. Additionally, the parameter d¢ is introduced to
represent the uncertainty in ¢(t), to account for the fluctuations in the relative phase between the Rydberg state and
the ground state during the evolution process, typically arising from the servo bump of the excitation lasers.

The fidelity of the local perturbation o? also significantly impacts the experimentally measured ZZ-OTOC values.
Numerical simulations show that the fidelity of o7 operations directly affects the contrast of OTOC oscillations within
the light cone. This relationship is illustrated in Fig. S16, presenting simulation results for a 13-qubit array. Since
the o7 gate is accomplished with a relative m phase shift between the Rydberg state and ground state induced by
far-detuned 795-nm addressing laser beams, the infidelity mainly stems from uncertainty in the accumulated phase.

This comprehensive error model captures the primary sources of noise in our system. By identifying and formalizing
these errors, we establish a framework for accurately interpreting experimental results. This approach provides a solid
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Figure S16. Effect of local perturbation fidelity on ZZ-OTOC measurements. Simulated ZZ-OTOC dynamics for
four representative qubits in a 13-qubit chain, demonstrating the impact of o} fidelity on OTOC oscillations. The o7 fidelity
is represented by the accumulated phase, ranging from 0.87 to 1.27. a-d, ZZ-OTOC evolution for different qubits. The qubit
configuration is shown above each plot, with the orange circle indicating the qubit under consideration.

foundation for error benchmarking and mitigation protocols, which are crucial for enhancing the accuracy of OTOC
and Holevo information measurements in probing quantum information collapse and revival.

4.3. Error Characterization

To quantify and mitigate errors in our quantum simulator, we conducted a series of calibration experiments to
characterize the error sources identified in our model.

1. Detection error

We systematically characterize detection errors in our system. For atoms in the ground state, the raw detection
error 7 is approximately 1%. For Rydberg states, the detection error is more complex, consisting of a raw error
¢’ =~ 1% along with an additional time-dependent component arising from the finite Rydberg state lifetime.

To quantify this time dependence, we measure the lifetime Tg of the Rydberg state used in our experiment. Atoms
are first prepared in the Rydberg state using a global Raman w-pulse, after which we vary the time interval between
the m-pulse and the population measurement. The population measurement is performed by turning on the optical
tweezers to recapture ground state atoms while repelling the Rydberg atoms. An exponential fit to the data yields
a 1/e time constant of Tp = 140(15) us. Given the interval time ¢;, which depends on the evolution time ¢ in our
sequence, the Rydberg state detection error accumulates over time. This error is expressed as &'(t) = 1 — e ti/Tr,
representing the probability of Rydberg atoms decaying to the ground state during the interval.

2. Evolution error

Evolution errors in our system arise from three main sources: the depolarization caused by spontaneous emission,
the finite temperature of the atoms, and laser noise.
Depolarization effects. We accounted for depolarization time 77 due to spontaneous emission via the intermediate



675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

24

2 10 b o
08t 9
i <
o $1 B
o) 06} ¢ a9 <5><><> ®
l500- P(T) <.'><:> O %9 o(j>
N Numerical simulation 04r o) o) % ;;33
05} O Experimental data 0 O, O o %
0.2r & 00%@ B4 6)
_1.00j0 015 1j0 1j5 0'00.0 0.I5 1j0 1:5 2i0 2i5 3j0
Time (us) Time (ps)

Figure S17. Investigating the decay mechanisms in OTOC and Holevo information dynamics. a, Comparison of
experimental data (blue points, corrected the detection errors and the incoherent errors introduced by the depolarization effect)
with numerical simulations (solid lines) for IZ-OTOC with initial |Z2) state. b, Rydberg Hamiltonian evolution dynamics of
initial |Z2) state. Blue circles and red diamonds represent corrected experimental results for |1)- and ||)- initialized state,
respectively, while solid lines show corresponding numerical simulations. The excellent agreement confirms that our under-
standing of the decay mechanisms in OTOC and Holevo information dynamics is accurate.

state and Rydberg state radiative decay. The error probability of a Rydberg state decaying to the ground state during
evolution time ¢ is approximated as n = ¢ with vt < 1. Here, v = 1/T} is treated as a free parameter due to the
complexity of many-body evolution. This complexity arises from two factors: (1) during evolution, different initial
states (e.g., |Z2) and |0)) lead to variations in the average Rydberg population, resulting in different effective decay
rates; and (2) the exponentially growing Hilbert space and complex interactions in many-body state evolution cause
the effective decay rate to differ from the more easily measured decay rate in single-atom evolution.

Finite-temperature effects. The thermal motion of atoms leads to two effects: fluctuations in atomic positions
and Doppler shifts. Position fluctuations affect the Rydberg-Rydberg interactions, which scale as 1/R%, where R is
the inter-atomic distance. We estimated the standard deviation of position fluctuations to be about 0.3 pm, directly
impacting the strength of Rydberg-Rydberg interactions. Doppler shifts, on the other hand, introduce frequency
detuning in the Rydberg excitation. We characterized these thermal effects by measuring the average temperature
of the atoms at the beginning of evolution using the release and recapture method, finding it to be approximately
10 pK. From this, we calculated the standard deviation of the atomic velocity distribution as o, = \/kgT /M, where
kp is the Boltzmann constant, T  is the temperature, and M is the atomic mass. For our counter-propagating two-
photon excitation scheme with a 480-nm o*-polarized and a 780-nm o+-polarized light, this corresponds to a Doppler
broadening with a standard deviation of 6A; = ko, =~ 2m x 25 kHz, where k ~ 1.25 pm ™! is the effective two-photon
wave vector.

Laser noise. We characterized both intensity and phase noise of our laser sources. The Rabi frequency fluctuation
02/ is related to the laser intensity fluctuation §I/1 by 6Q/Q ~ §I/(2I). High-bandwidth measurements of 780-nm
and 480-nm Raman laser power variations using fast photodiodes revealed an RMS amplitude noise of 62/ ~ 0.01.
For laser frequency noise, we analysed the in-loop PDH error signal at Fourier frequencies above the cavity linewidth
(Yeav = 27 x 110kHz at 960 nm and 27 x 60kHz at 780 nm). We estimated the laser frequency noise by integrating
the noise spectral density S, (f):

0Ay = /fh Sy (f)df, (S18)

cav

where f, = 1/§t. This yields an RMS frequency noise of §As & 27 x 5kHz for the combined 780-nm and 480-nm
laser contributions. Since this frequency noise contributes to the uncertainty in the relative phase between the qubit
and the driving field, d¢, in the same way as the Doppler effect, we consider only d¢ instead of the combination of
0A1 and dA, in the following analysis.

To further calibrate d¢ and v, we measured the IZ-OTOC (main text), which follows the same sequence as our
77-OTOC experiments but without the local perturbation. Numerical simulations treating d¢ as a free parameter
yield excellent agreement with corrected experimental data for §¢ = 0.087 and v = 0.0351s~! (Fig. S17a). For Holevo
information evolution, we measured Rydberg Hamiltonian evolution dynamics of the initial |Zs) state, finding good
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Figure S18. Dynamics of ZZ-OTOC for |Z:) considering experimental imperfections. a, Simulated spatio-temporal
evolution of ZZ-OTOC for |Z;) state under the time-dependent noisy Hamiltonian (S17). b, Experimental ZZ-OTOC data
for |Z2) state, corrected for detection errors and incoherent errors arise from the depolarization effect.
index definition of the exhibited qubits (highlighted) in 13-qubit chain (top). c-k, Detailed dynamics plots of the corrected
experimental data (blue points) and the simulation results (solid curve). The shaded areas around the curves represent the error
bar from the numerical simulation. The corresponding qubit index of plots is respectively marked; good agreement between
experimental data and numerical results is found for all qubits.

Inset, The qubit
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Figure S19. Error mitigation for OTOC dynamics of the initial |0) state. a, Qubit index definition for each row in
panels b and ¢ (blue filled circle). The central 7 qubits from the spin chain are used for analysis. b, OTOC dynamics before
error mitigation. Blue curves with shaded error bars represent simulations using the modeled noisy Rydberg Hamiltonian.
Circles are the experimental data, demonstrating excellent agreement with the simulations. ¢, OTOC dynamics after error
mitigation. Left: Experimental data corrected using measured 1Z-OTOC (circles). Right: Experimental data corrected using
simulated I1Z-OTOC (diamonds). In both cases, light blue curves represent simulations with the ideal Rydberg Hamiltonian,
while dark blue curves show the ideal PXP Hamiltonian dynamics. d—e, Spatio-temporal OTOC dynamics. d, Simulated
OTOC dynamics for the central 7 qubits using the PXP Hamiltonian, incorporating imperfections from local perturbations.
e, Experimental data corresponding to the left panel data in ¢. The colour bar corresponds to the values of the OTOC. The
excellent agreement between corrected data and simulations demonstrates the effectiveness of the error mitigation scheme.

agreement when using the same parameters(Fig. S17b).

The experimental results shown in Fig. S17a and Fig. S18 have been corrected for detection errors and partially
corrected for evolution errors. Specifically, while detection errors were fully accounted for, only the evolution errors
related to Rydberg state decay to the ground state (yt) were addressed. First, detection error correction was applied.
Then, we subtracted the accumulating population of Rydberg states decaying to the ground state (yt) from the exper-
imentally measured ground state population to compensate for the incoherent errors introduced by the intermediate
state during the experiment.

For ZZ-OTOC measurements, an extra error source is the 0% local perturbation infidelity. In order to characterize
the uncertainty in local perturbation, we conducted a comparative analysis of the results obtained from Ramsey
experiments with and without 795-nm addressing employed for local o7. The findings indicate that uncertainty is
approximately 0.097. This uncertainty contributes to the overall evolution noise and affects the fidelity of our local
perturbation.

Using the noise parameters mentioned above, we simulated the dynamics of the ZZ-OTOC with initial |Z5) state
under the noisy Rydberg Hamiltonian (S17) based on the Monte Carlo method. We compared the simulation results
with the experimental results for the central 9 qubits (the qubit index definition is shown in Fig. S18 inset). For the
OTOC dynamics of the initial state |0), we employed the same error model. Figure S19b presents the comparison
between the simulation results and the experimental data for the central 7 qubits. The excellent agreement between
these simulations and our experimental data (Fig. S18 for |Zs) state and Fig. S19b for |0) state) provides solid
validation for our error model, which accounts for both detection and evolution errors, and enhances our understanding
of the complex many-body dynamics.

4.4. Error mitigation for ZZ-OTOC

We employ an error mitigation scheme inspired by Swingle and Halpern®3 and Mi et al.5% to address imperfections
in OTOC measurements. Theoretical analysis indicates that under experimental conditions with imperfections, the
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Figure S20. Numerical simulation of error mitigation scheme for ZZ-OTOC. a, Simulated ZZ-OTOC dynamics for
|Z2) considering experimental imperfections same as Fig. S18a. b, Mitigated ZZ-OTOCs using simulated 1Z-OTOC results,
exhibiting enhanced collapse-and-revival contrast compared to a. ¢—d, Simulated ZZ-OTOC dynamics using the PXP Hamil-
tonian while accounting for local perturbation imperfections (c) or not (d). The closer resemblance of the mitigated data b to
¢ demonstrates that our error mitigation scheme cannot mitigate local perturbation imperfections. The colour scale represents
7Z7Z-OTOC values from -1.0 (blue) to 1.0 (red).

errors in the measured ZZ-OTOC F™(W, V) can be effectively mitigated using the measured 1Z-OTOC F™(I,V)%3:

L Frwv)

where F¢ represents the corrected ZZ-OTOC measurement results.

This scheme mitigates the imperfections in forward-and-backward evolution caused by coherent noise (d¢, 6€2,
dA) and partially mitigates those from next-nearest-neighbour interactions V; ;42. However, it cannot effectively
mitigate errors outside the forward-and-backward evolution, such as imperfections in the local o} perturbation and
the detection errors. Consequently, mitigated results are expected to fall between expectations of the noise-free
Rydberg Hamiltonian and the ideal PXP model.

The denominator, IZ-OTOC F™(I,V), is crucial in the mitigation protocol. As demonstrated by Mi et al.%4,
small variations in the IZ-OTOC used as the denominator can dramatically affect corrected results, particularly for
near-zero 1Z-OTOC values. Recognizing this sensitivity, we conducted a comprehensive analysis of factors potentially
affecting OTOC measurements and quantified them (detailed in section 4.3). Notably, numerical simulations show
significant edge effects in small-sized chains (L < 10). Comparing the edge atom’s ZZ-OTOC versus 1Z-OTOC as
the denominator for mitigation in a noisy environment shows that using the edge atom’s ZZ-OTOC leads to over-
correction and temporal misalignment at critical positions (Fig. S6d). In contrast, using IZ-OTOC produces results
that align with theoretical predictions. To minimize edge effects, we rely on IZ-OTOC measurements instead of the
edge atom’s ZZ-OTOC for error mitigation.

The numerical simulations are conducted to evaluate the effectiveness of this error mitigation scheme in the context
of our experimental imperfections. Figure. S20a shows the numerically simulated ZZ-OTOC dynamics using the
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noisy Rydberg Hamiltonian in equation (S17), which incorporates major experimental imperfections (as Fig. S18).
The mitigated case (Fig. S20b) closely resembles the PXP Hamiltonian with local perturbation imperfections shown
in Fig. S20c, indicating that the mitigation scheme successfully addresses forward-and-backward evolution noise.
However, when compared to the ideal PXP Hamiltonian without imperfections (Fig. S20d), the mitigated case shows
slightly less pronounced features. This subtle difference can be attributed to the local perturbation imperfections
which can not be mitigated.

As the first step in error mitigation, we correct the detection errors, i.e., the imperfections in measurement operator
os. Next, we correct the evolution errors. Given the excellent agreement between experimental IZ-OTOC data and
numerical simulations of IZ-OTOC (as shown in Fig. S17a), we can effectively use either the experimental 1Z-OTOC
data or the simulated 1Z-OTOC results to mitigate the experimental ZZ-OTOC data shown in Fig. S18c-k. The
mitigated results of the initial |Z3) state are presented in Extended Data Fig. 2 (using the measured IZ-OTOC data)
and Fig. S21 (using the simulated IZ-OTOC results). Figure S19¢ shows the mitigated results of the initial |0) state
using the measured IZ-OTOC data (left) and the simulated I1Z-OTOC results (right). All the results demonstrate
significant improvement in the agreement between mitigated experimental data and theoretical expectations for the
ZZ7-OTOC (with imperfections in local perturbation o7, light blue curve under ideal PXP Hamiltonian while the dark
blue under ideal Rydberg Hamiltonian). This excellent agreement underscores the effectiveness of our error mitigation
protocol in addressing the complex noise landscape of the Rydberg quantum simulator.

This approach effectively overcomes experimental imperfections, particularly those associated with forward-and-
backward evolution in OTOC measurements, enabling accurate probe of quantum information dynamics in Rydberg
atom quantum simulators.

4.5. Error mitigation for Holevo information

The detection error for Holevo information can be mitigated similarly to how OTOCs are handled. The measured
diagonal elements, which are linear transformations of P(1), are directly corrected for detection errors, and the off-
diagonal elements can be extracted from sinusoidal fittings of detection-error-corrected Ramsey oscillations. However,
evolution errors are more complex and cannot be easily mitigated because they are deeply intertwined with the
quantum information dynamics. Due to the difficulty in determining whether quantum information initially encoded
in a qubit is lost due to evolution errors or transferred to other qubits, it is very challenging to apply traditional
error mitigation techniques that focus on compensating for single-qubit decoherence. Therefore, evolution errors are
not mitigated for Holevo information. Instead, they are included in the numerical simulations of Holevo information
dynamics, together with state preparation errors, showing good agreement with experimental data (Fig. S22).

5. KINETICALLY CONSTRAINED DYNAMICS AND QUANTUM INFORMATION
COLLAPSE-AND-REVIVAL

5.1. Investigation of kinetically constrained dynamics

To characterize the constrained spin dynamics in our Rydberg atom chain, we developed a method to identify
and analyse the wavefront of excitations. This approach is particularly effective for the |Zy) state, where individual
spins exhibit periodic but non-sinusoidal oscillations, often with phase differences between neighbouring atoms. Our
wavefront detection method identifies the moments when adjacent atoms have equal Rydberg excitation probabilities,
Pi(1) = Pi41(1), based on numerical simulations (Fig. 2e,g in the main text). By connecting these time points for
each nearest-neighbour atom pair, we construct wavefronts that capture the propagation of excitations throughout
the system. This technique allows us to study distinct behaviours for different initial configurations.

Our simulations indicate that the |Zy) state exhibits uniform wavefront propagation throughout the bulk of the
spin chain, consistent with the synchronized evolution observed in the experiment. This synchronization arises from
the interplay between the PXP constraints and the initial |Zs) configuration. In this regime, each spin experiences a
similar effective environment due to the alternating pattern of its neighbours, leading to coherent and synchronized
rotations across the bulk of the system.

However, near the edges of the chain, deviations from this synchronized behaviour begin to appear. These boundary
effects manifest as distortions in the wavefront shape, reflecting the altered local environment of the outermost atoms.
Near the boundaries, the lack of symmetry and the different neighbouring structure cause spins to evolve out of sync
with those in the central region. This gradual desynchronization, moving from the outer edges toward the center,
aligns with the boundary effects described in the main text. Figure 2e in the main text provides a spatial map of the
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Figure S21. Mitigating ZZ-OTOC for |Z.) state using the simulated IZ-OTOC results. Blue points marked with
qubit indices represent the mitigated experimental data using simulated IZ-OTOC results. Dark blue curves show simulated
7Z7-OTOC dynamics for the initial |Z2) state with the ideal Rydberg Hamiltonian (equation (S1), no gap time during the OTOC
evolution). Light blue curves display simulated ZZ-OTOC dynamics for the initial |Z2) state with the ideal PXP Hamiltonian.
The mitigated experimental data show excellent agreement with simulations.

wavefront propagation, clearly illustrating the transition from uniform propagation in the bulk to distorted behaviour
at the edges.

For the 0¥ |Zs3) state with the central spin flipped, we observe rich dynamical behaviour characterized by a clear
linear light cone structure, as discussed in the main text. The flipped central spin introduces retardation in adjacent
spins’ rotation, which propagates outwards as the system evolves. Inside the light cone, there is an interplay between
periodic spin rotations and retardations due to the kinetically constrained dynamics. This results in an arc-shaped,
curved wavefront that moves outward from the initial perturbation at the central spin. Figure 2g in the main text
illustrates this light cone structure and the corresponding wavefront propagation. The clear visualization of the light
cone and wavefront behaviour offers a valuable tool for understanding the kinetically constrained quantum many-body
systems.

5.2. Illustration of quantum information collapse-and-revival in PXP model

Collapse-and-revival is a dynamical phenomenon in quantum systems where observable quantities, like atomic
operator expectation values, “collapse” into near-zero values before periodically “reviving” 43147, This effect is most
famously observed in systems with discrete quantum states interacting with a quantized field, such as the Jaynes-
Cummings model in cavity quantum electrodynamics (QED)!#8150_ Tt serves as clear evidence of quantum coherence
and the superposition of quantum states. It is more readily observed in systems with fewer degrees of freedom, such
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Figure S22. Experimental data and numerical simulations for Holevo information dynamics. Holevo information
dynamics of the detection-error-corrected experimental data (blue points), compared to the numerical simulation results (solid
curves). The inset highlights the index definitions of 7 selected qubits within the 13-qubit chain. Monte Carlo methods are
employed in the simulation to account for imperfections during initial state preparation and evolution.

as single-atom or effectively single-particle systems, where simpler dynamics and longer coherence times make the
effect more pronounced. For example, in the Jaynes-Cummings model, a two-level atom interacts with a quantized
electromagnetic field mode, producing predictable revival patterns. Similar effects have been seen in superconducting
circuits'®! and cold atom systems like Bose-Einstein condensates'®?. In contrast, observing collapse-and-revival in
strongly-interacting many-body quantum systems presents significant challenges. In these systems, the complex
interactions and increased degrees of freedom usually lead to rapid scrambling of quantum information and loss of
coherence.

As demonstrated in the main text, the collapse-and-revival behaviour observed here originates from constrained
qubit dynamics. Specifically, the Rydberg blockade effect causes a delayed rotation of spins near the central flipped
spin, which creates regions of delayed spin rotation that propagate outwards. Figure S23 highlights the relationship
between constrained qubit dynamics and Holevo information, employing three dynamic indicators to characterize two
key concepts: retardation and distinguishability.

The background heatmaps in Fig. S23 display the numerical simulation results of the Holevo information under the
PXP Hamiltonian, which mirrors Fig. 4c in the main text. Figure S23a,b depict the oscillations in the expectation
values of (o¥) and (0%), respectively. These oscillations indicate that when the Holevo information approaches zero
inside the light cone, the Bloch vectors & for each qubit become indistinguishable, sharing the same (o¥) and (o)
values.

To provide a clearer understanding of the peaks in Holevo information, we introduce a new dynamic indicator:
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Figure S23. Illustration of constrained qubit dynamics in PXP model. a, Dynamics of (¢¥) and b, (¢*) for each
qubit. ¢, The dynamic indicator f(&,t) = fg d{Arg[d(7)]}dr — A\Qt, which represents the total rotation angle of the Bloch
vector in the YZ-plane. The blue curves correspond to the initial state |Z2), while the red curves represent the initial state
0% |Z2), where the central spin is flipped. The green-filled intervals in ¢ indicate regions of retardation and distinguishability
between the two initial states. Yellow lines connect the divergence points, forming light cones (yellow shaded areas) where the
dynamics of of |Z2) are periodically delayed. The checkerboard background in all panels shows the heatmap of the Holevo
information dynamics (dark yellow: X;(¢) = 1; transparent: X;(¢) = 0).

£G8) = /0 A{Arglé (r)]}dr — A, (S20)

where the first term, fg d{Arg[d(7)]}dr, represents the total rotation angle of the Bloch vector & in the YZ-plane.
This provides a more fundamental perspective on the spin dynamics than the individual expectation values of (c¥) and
(0%). To restrict the range of the rotation angle which accumulates almost monotonically over time, we subtract the
term AQt in the expression for f(&,t), where 2 is the Rabi frequency in the PXP Hamiltonian. The factor A = 1.32 is
extracted from the slope of a linear fit with all the simulation data for the total rotation angle of each qubit with two
initial states |Zs) and ¢% |Zy). As shown in Fig. S23c, the retardation can be extracted directly from the difference
between the blue and red curves (highlighted by the green-filled intervals), which is the source of distinguishability
in the (0¥) and (0*) measurements. Within the light cone, the time delay remains nearly constant, but the rotation
angle retardation exhibits a periodic collapse-and-revival pattern.

It is clear that both the retardation and Holevo information follow similar collapse-and-revival dynamics. This
analysis of constrained qubit dynamics provides insights into the mechanisms behind quantum information propagation
and the collapse-and-revival behaviour in dynamically constrained systems. The dynamic indicator, f(&,t), offers a
way to visualize and quantify the relationship between spin dynamics and information flow. These results contribute
to a better understanding of quantum information behaviour in constrained systems.

5.3. Distinguishing scar state oscillations and quantum information collapse-and-revival

In our experiment, we observe a clear light-cone structure in the dynamics of both OTOCs and Holevo information,
with periodic collapse-and-revival behaviour within the light cone. Here, we show that these collapse-and-revival
dynamics in quantum information are relevant, but not equivalent to the previously discovered oscillations of quantum
scar states wavefunction under the PXP Hamiltonian evolution. The relevance between these two phenomena primarily
stems from the fact that the physical mechanism driving both the oscillation of quantum scar states’ wavefunctions and
the quantum information collapse-and-revival observed in our experiment originates from the kinetic constraints in
the PXP model. Their distinction arises because the dynamics of OTOCs and Holevo information are not confined to
the scarred subspace but also incorporate contributions from thermal eigenstates. For instance, in the measurement
of Holevo information dynamics, the o operation, which flips the central spin in the chain, introduces a mixture
of scarred subspace and thermal eigenstate bath contributions. Such a mixture precludes attributing the periodic
behaviour of Holevo information solely to the eigenstate decomposition of the initial state. Therefore, the observed
information backflow within the light cone cannot be simply attributed to the oscillation of quantum scar states
wavefunction.

Building on the above discussion, it becomes clear that the quantum information collapse-and-revival observed
in our experiment is not equivalent to the oscillations of quantum scar states wavefunctions under the Hamiltonian
evolution. This raises an intriguing question: more generally, does the presence of quantum scar state oscillations
always imply the existence of quantum information collapse-and-revival? Furthermore, could there be physical systems



863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

32

|Dicke) under Hoy b X dynamics under Hy,y for |Dicke)
a 1.0
~ 25
= —~ 20 )
s g X
S 05 o 15 1.0
O S
g E 10
é 0.5 0.8
0.0 ool THET
1 7 13 19 25 0.6
Time (us) Qubit index
|Z,) under Hpxp p X dynamics under Hpyp for |Z,) 0.4
Cc 1.0 4 .
A
o 34 | N | 0.2
g 2
0.5 2
S 2 0.0
e
- &
0.0 0L " y - :
0 1 2 3 4 1 7 13 19 25
Time (us) Qubit index

Figure S24. Comparison of quantum information dynamics in scar states between the toy model and the PXP
model. a, Perfect scarred state wavefunction oscillations under ideal toy model Hamiltonian Hioy evolution. The simulated
wavefunction overlap between the evolved state |¢(¢)) and the initial state |Dicke) is shown, as a function of evolution time t.
The state |¢(¢)) is obtained after evolving the initial |Dicke) state under the ideal toy model Hamiltonian Hioy for time ¢. b,
Numerically simulated spatio-temporal dynamics of the Holevo information for |Dicke) and o¢ |Dicke) initial states, under ideal
toy model Hamiltonian Hioy evolution. ¢, Damped scarred state wavefunction oscillations under ideal PXP model Hamiltonian
Hpxp evolution. The simulated wavefunction overlap between the evolved state |¢(¢)) and the initial state |Z2) is shown, as
a function of evolution time ¢. The state |¢(t)) is obtained after evolving the initial |Z2) state under the ideal PXP model
Hamiltonian Hpxp for time ¢. d, Numerically simulated spatio-temporal dynamics of the Holevo information for |Z2) and
0% |Z2) initial states, under ideal PXP model Hamiltonian Hpxp evolution.

where quantum scar state oscillations occur without any accompanying quantum information collapse-and-revival?
To explore these questions, we turn to a toy model proposed by Choi et al.4”, described by the Hamiltonian:

Q
Hioy = 5 Zaf + Zvi—l,i+2pi,i+l (S21)

Here P, ; = (1 — &; - &;)/4 is the projection operator onto the singlet state of spins at sites ¢ and j, and V;; =
> v Ji“jyaf o represents an arbitrary long-range interaction between spins at sites ¢ and j. Dicke states, expressed
as |s = L/2,5% =m,), are the scarred eigenstates of Hy,y, as the interaction term does not act on these states
(Pi,j ‘S = L/2, S* = mm> = O)

We perform numerical simulations for this toy model with L = 25 spins with periodic boundary conditions, using
the parameters Q = 27 x 1 MHz and V; j = J(0f 0¥ +0]0¥) with J = 27 x2MHz. When initialized in the scarred Dicke
state |Dicke) = |s = L/2,5% = —L/2) = |]| --- ]), the system exhibits perfect scarred state wavefunction oscillations
(Fig. S24a). Next, we explore quantum information scrambling and transport within the toy model using the scar
state. Similar to our study of Holevo information for the |Zs) scar state in the PXP model, we applied a central
spin flip to the scarred Dicke state in the toy model, denoted as 0¥ |Dicke). We then simulated the evolution of both
0% |Dicke) and |Dicke) under the toy model Hamiltonian. From these simulations, we obtained the spatio-temporal
evolution of Holevo information, allowing us to investigate how quantum information propagates and scrambles in
this system. Figure S24b shows the simulated Holevo information dynamics, with clear evidence of a rapid, global
scrambling. This global scrambling behaviour differs significantly from the kinetically constrained PXP model, where
the spatial-temporal collapse-and-revival of quantum information is very pronounced (Fig. S24d). In the scar state
|Dicke) of the Hioy, initially encoded quantum information is quickly lost to the environment without revival.
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These results show that, under the toy model Hamiltonian Hy,y,, while the scarred state |Dicke) exhibits perfect
wavefunction oscillations, no collapse-and-revival of quantum information occurs. This suggests that the oscillatory
behaviour of quantum scar states does not necessarily coincide with periodic quantum information backflow. The
quantum information spatial-temporal collapse-and-revival dynamics observed in this work is likely a very unique
feature resulting from the kinetic constraints imposed by the Rydberg blockade effect.
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