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A. Upper bounds on the elastic moduli of two-phase solid-void isotropic

materials

In the following, E, G, and K represent Young’s modulus, shear modulus, and bulk

modulus, respectively, and ν denotes Poisson’s ratio. When these parameters are writ-

ten without subscripts, they refer to the properties of the solid-void composites; when

accompanied by the subscript “s”, they describe the properties of the solid phase. The

subscript “HS” indicates the Hashin-Shtrikman upper bounds [1, 2], “CGD” refers to

the upper bounds for beam networks in 3D derived by Christensen [3] and Gurtner

and Durand [4], and “NUB” denotes the new upper bounds introduced in this study.

Poisson’s ratio of the dense solid phase, νs, ranges from −1 to 0.5, for both 2D and 3D

composites, with the exception of hierarchical lattices (section A.3), wherein the solid

phase itself comprises a lattice structure on successively smaller scales, and therefore

−1 < νs < 1. Furthermore, ρ̄ denotes the relative density of the composite.

A1. 2D materials

When expressed in terms of the relative density ρ̄ of the composite and Poisson’s ratio

νs of the solid material, the Hashin-Shtrikman upper bounds in 2D have the following

form:

EHS

Es
= ρ̄

3 − 2 ρ̄
, (A1)

GHS

Es
= ρ̄

8 − 2 ρ̄(3 − νs)
, (A2)

KHS

Es
= ρ̄

4 − 2 ρ̄(1 + νs)
, (A3)

νHS = 1 − ρ̄(1 − νs)
3 − 2 ρ̄

. (A4)

Supplementary Fig. 1a illustrates the evolution of νHS (equation A4), which repre-

sents the Poisson’s ratio of a composite that satisfies the Hashin-Shtrikman (HS) upper

bounds for a given combination of ρ̄ and νs, as a function of νs. When ρ̄ = 1, νHS is

equivalent to νs, as expected. For ρ̄ < 1, νHS is confined within the limits of νHS-min and

νHS-max, where νHS-min corresponds to νs → −1 (i.e., νHS |νs→−1) and νHS-max corresponds

to νs → 0.5 (i.e., νHS |νs→0.5). As ρ̄ decreases, the range of νHS progressively narrows.
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Supplementary Fig. 1 | Upper bounds on the elastic moduli of two-dimensional two-phase

solid-void isotropic composites. a, Variation of νHS (Poisson’s ratio of a composite adhering to the

HS upper bounds for a specific combination of relative density, ρ̄, and solid material Poisson’s ratio, νs;

see equation A4), as a function of νs. b-d, Evolution of the upper bounds for Young’s modulus, shear

modulus, and bulk modulus as functions of the composite Poisson’s ratio, ν (see equations A5-A14),

for ρ̄ values of 0.75, 0.50, and 0.25, respectively.

To elucidate the significance of the limits νHS-min and νHS-max, consider 2D lattices

at the low-density limit (ρ̄ ≪ 1), where νHS converges to a single value: νHS-min = νHS =

νHS-max = 1/3. For instance, take the infinite periodic Kagome truss, in which all cell

walls align with one of the three symmetry lines (labelled I, II, and III in Extended

Data Fig. 1a).

When the Kagome truss is subjected to uniaxial loading along one of its symmetry

lines, the cell walls aligned with the loading direction deform purely through stretch-

ing. The local axial strain in these aligned cell walls matches the applied macroscopic
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strain (see Fig. 2a). This equivalence of local and macroscopic strains indicates maxi-

mal resistance to uniaxial loading (although, for arbitrary loading directions, the local

and macroscopic strains may not necessarily be equivalent in the Kagome truss). The

remaining cell walls undergo rigid-body motion to accommodate the overall deforma-

tion, meaning that only the cell walls aligned with the loading direction—comprising

one-third of the total cell walls—bear the load.

In 2D, isotropy of the elasticity tensor requires three-fold structural symmetry [5, 6].

Consequently, for an isotropic 2D lattice, at most one-third of the cell walls can con-

tribute to carrying uniaxial loads along a symmetry axis. The fact that the maximum

number of cell walls allowed by isotropy stretch to the maximum possible strain (i.e.,

the applied macroscopic strain) renders the Young’s modulus of the Kagome truss the

upper bound for 2D lattices: E/Es ≤ ρ̄/3.

Hydrostatic loading is analogous to uniaxial loading applied uniformly in all di-

rections, and pure shear corresponds to the combined uniaxial tension and uniaxial

compression in two mutually perpendicular directions. It is therefore evident that the

Kagome truss attains the upper bound for all three elastic moduli.

Equations (2) through (5) demonstrate that isotropic materials are characterised by

only two independent elastic constants. This indicates that an isotropic truss exhibiting

a Poisson’s ratio different from that of the Kagome truss can achieve equivalence with

the Kagome truss in only one elastic modulus, while being inferior in the remaining

two. Consequently, a 2D isotropic truss where ν ̸= 1/3 exhibits a suboptimal distri-

bution of the solid phase, resulting in a reduced proportion of load-bearing cell walls

under specific loading conditions at low relative densities.

Variational methods used to derive upper bounds on the elastic moduli, including

those of Hashin and Shtrikman, rely on the assumption of an optimal distribution of

solid material that maximizes load-bearing capacity under all loading conditions. For

low-density 2D lattices, this results in νHS-min = νHS = νHS-max = 1/3, reflecting the
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most efficient material arrangement. Similarly, νHS-min ≤ v ≤ νHS-max defines the range

of Poisson’s ratio where the composite maintains an optimal solid phase distribution.

However, this does not preclude the determination of upper bounds for v < νHS-min or

v > νHS-max, as explained below.

Equation (A2) illustrates that GSH is inversely proportional to νs, reaching its

peak value at νHS-min (specifically, at νHS |νs→−1). Concurrently, the isotropy relation

G = E/(2 + 2v) demonstrates that G increases as ν decreases, thus achieving its max-

imum when ν → −1. These two principles, when considered in tandem, establish that

GHS |νs→−1 serves as a rigorous upper bound for the shear modulus within the com-

posite’s Poisson’s ratio range from -1 to νHS-min. The corresponding upper bounds for

Young’s modulus and bulk modulus can subsequently be determined employing the

isotropy relations specified in in equations (2) and (4).

In a parallel manner, equation (A3) demonstrates that KHS is a monotonically

increasing function of νs, reaching its maximum at νHS-max (i.e., when νs → 0.5). Addi-

tionally, the isotropy relation K = E/(2 − 2v) dictates that K attains its maximum as

ν approaches 0.5. The confluence of these two conditions establishes that KHS |νs→0.5

serves as a rigorous upper bound for the bulk modulus within the composite’s Poisson’s

ratio range from νHS-max to 0.5. The corresponding upper bounds for Young’s modulus

and shear modulus can be derived through the application of the isotropy relations

elucidated in equations (3) and (4).

Considering the aforementioned factors, the upper limits of the elastic moduli for

two-phase solid-void isotropic materials in 2D can be expressed for any given combi-

nation of 0 ≤ ρ ≤ 1 and −1 < ν < 1. For −1 < ν ≤ νHS-min:

GNUB

Es
= GHS

Es
|νs→−1 = ρ̄

8(1 − ρ̄) , (A5)

ENUB

Es
= 2(1 + ν)GNUB, (A6)

KNUB

Es
= 1 + ν

1 − ν
GNUB, (A7)
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when νHS-min ≤ ν ≤ νHS-max:

νs = (1 − 2ν) ρ̄ − (1 − 3ν)
ρ̄

, (A8)

ENUB

Es
= EHS

Es
= ρ̄

3 − 2 ρ̄
, (A9)

GNUB

Es
= GHS

Es
= ρ̄

8 − 4 ρ̄(1 + ν) − 2(1 − 3ν) , (A10)

KNUB

Es
= KHS

Es
= ρ̄

4 − 4 ρ̄(1 − ν) + 2(1 − 3ν) , (A11)

and for νHS-max ≤ ν < 1:

KNUB

Es
= KHS

Es
|νs→0.5 = ρ̄

4 − 3 ρ̄
, (A12)

ENUB

Es
= 2(1 − ν)KNUB, (A13)

GNUB

Es
= 1 − ν

1 + ν
KNUB, (A14)

Supplementary Figs. 1b-d illustrate the evolution of the upper limits of the elastic

moduli as functions of ν for ρ̄ values of 0.75, 0.50, and 0.25. As ρ̄ approaches zero,

these upper bounds converge to those outlined in equation (6); see also Fig. 1a.

A2. 3D materials

Supplementary Fig. 2a illustrates the relationship between νHS and νs for various ρ̄

values (equation A18) in 3D solid-void composites. As in the 2D case, νHS covers the

entire thermodynamically feasible range of Poisson’s ratio in 3D, from -1 to 0.5, but

only when ρ̄ = 1. For ρ̄ values below 1, the highest νHS is less than 0.5, decreasing

further as ρ̄ decreases (compare Supplementary Figs. 2b and 2c). Employing the same

methodology used for 2D, the upper bounds on the elastic moduli for two-phase solid-

void isotropic materials in 3D can be expressed for any given pair of 0 ≤ ρ ≤ 1 and

−1 < ν < 0.5. For −1 < ν ≤ νHS-max:

ENUB

Es
= EHS

Es
= 2(7 − 5νs) ρ̄

3(1 − νs)(9 + 5νs) − ρ̄(1 + νs)(13 − 15νs)
, (A15)
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GNUB

Es
= GHS

Es
= (7 − 5νs) ρ̄

2(1 + νs)
(
15(1 − νs) − ρ̄(8 − 10νs)

) (A16)

KNUB

Es
= KHS

Es
= 2 ρ̄

3
(
3(1 − νs) − ρ̄(1 + νs)

) , (A17)

νHS =
2(1 + νs)

(
15(1 − νs) − ρ̄(8 − 10νs)

)
3(1 − νs)(9 + 5νs) − ρ̄(1 + νs)(13 − 15νs)

− 1, (A18)

νs =
6(1 + ν) + ρ̄(1 − ν) −

√
9(3 − 7ν)2 − 12 ρ̄(4 − 35ν + 51ν2) + 4 ρ̄2 (2 − 7ν)2

5
(
3(1 − ν) − ρ̄(1 − 3ν)

) ,

(A19)

and for νHS-max ≤ ν < 0.5:

KNUB

Es
= KHS

Es
|νs→0.5 = 4 ρ̄

9(1 − ρ̄) , (A20)

ENUB

Es
= 3(1 − 2ν)KNUB, (A21)

GNUB

Es
= 3(1 − 2ν)

2(1 + ν) KNUB, (A22)

A comparative analysis of Supplementary Figs. 2 and 3 reveal substantial dispari-

ties between the 2D and 3D solid-void composites. In 3D, νHS encompasses the entire

spectrum of negative Poisson’s ratios irrespective of the ρ̄ value. Furthermore, the up-

per bound of the shear modulus in the negative Poisson’s ratio regime continuously

increases as ν decreases, approaching infinity as ν tends towards −1 for all ρ̄ values.

Conversely, this behaviour is observed exclusively at ρ̄ = 1 in the 2D composites.

Another significant distinction lies in the nature of the material represented by

ρ̄ → 0 in different dimensions. In 2D, ρ̄ → 0 corresponds to interconnected beam

networks or truss lattices, whereas in 3D, ρ̄ → 0 allows for both closed-cell (such

as plate and shell lattices) and open-cell (such as truss lattices) configurations. The

variational formulation of Hashin and Shtrikman does not differentiate between closed-

and open-cell materials. Consequently, the HS upper bounds effectively correspond to

closed-cell materials, which are generally stiffer than open-cell materials. The HS upper

bounds for ρ̄ → 0 and −1 < ν ≤ νHS-max reduce to:
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Supplementary Fig. 2 | Upper bounds on the elastic moduli of three-dimensional two-

phase solid-void isotropic composites. a, Variation of νHS (Poisson’s ratio of a composite adhering

to the HS upper bounds for a specific combination of relative density, ρ̄, and solid material Poisson’s

ratio, νs; see equation A18), as a function of νs. b-d, Evolution of the upper bounds for Young’s

modulus, shear modulus, and bulk modulus as functions of the composite Poisson’s ratio, ν, for:

b, composites with ρ̄ = 0.75 (equations A15-A22); c, closed-cell composites in the limit ρ̄ → 0

(equations A23-A30), and d, open-cell composites in the limit ρ̄ → 0 (equations A31-A36).

ENUB

Es
= EHS

Es
= 2(7 − 5νs) ρ̄

3(1 − νs)(9 + 5νs)
, (A23)

GNUB

Es
= GHS

Es
= (7 − 5νs) ρ̄

30(1 − ν2
s ) (A24)

KNUB

Es
= KHS

Es
= 2 ρ̄

9(1 − νs)
, (A25)
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νHS = 1 + 5νs

9 + 5νs
, (A26)

νs = 9ν − 1
5(1 − ν) , (A27)

and for νHS-max ≤ ν < 0.5:

KNUB

Es
= KHS

Es
|νs→0.5 = 4 ρ̄

9 , (A28)

ENUB

Es
= 3(1 − 2ν)KNUB, (A29)

GNUB

Es
= 3(1 − 2ν)

2(1 + ν) KNUB, (A30)

Christensen [3] and Gurtner and Durand [4] derived more stringent upper bounds

for open-cell composites (or truss lattices) by constraining the solid distribution in

the composite to slender struts. As in the 2D case, these upper bounds, derived from

variational principles, are limited to a single value of the composite’s Poisson’s ratio,

ν = 0.25 in 3D. Here, we extend these bounds to encompass the full range of Poisson’s

ratios. For −1 < ν ≤ 0.25:

GNUB

Es
= GCGD

Es
= ρ̄

15 , (A31)

ENUB

Es
= 2(1 + ν)GNUB, (A32)

KNUB

Es
= 1 + ν

1 − ν
GNUB, (A33)

and for 0.25 ≤ ν < 0.5:

KNUB

Es
= KHS

Es
= ρ̄

9 , (A34)

ENUB

Es
= 2(1 − ν)KNUB, (A35)

GNUB

Es
= 1 − ν

1 + ν
KNUB, (A36)

The evolution of the upper bounds on the elastic moduli as a function of ν for both

closed- and open-cell composites in the limit of ρ̄ → 0 is shown in Supplementary Figs.

2c and 2d, respectively.
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A3. Hierarchical lattices

In hierarchical or multiscale lattices, each strut is composed of a smaller-scale lattice [7].

Let the mechanical properties of the larger-scale lattice be denoted by the subscript

“1” and those of the smaller-scale lattice by “2”. The overall relative density of the

composite is thus given by ρ̄ = ρ̄1 ρ̄2. For ρ̄2 → 0 (implying ρ̄ → 0), Poisson’s ratio of

the cell wall, νs = ν2, can span the full theoretical range from −1 to 1, regardless of

whether the composite is a 2D or 3D material. In the limit of dilute relative density

(ρ̄ ≪ 1), the upper bounds of the elastic moduli for truss lattices, in both 2D and

3D, remain independent of νs. Thus, hierarchy has no impact on the upper bounds of

truss lattices. However, this principle does not apply to 3D plate or shell lattices, as

evidenced in equations (A23)-(A30).

For low-density 3D plate or shell lattices, shifting the upper limit of νs from 0.5 to

1 increases νHS-max from 0.304 to 0.429 (equation A26). This shift enables the upper

bounds for all three elastic moduli (equations A23-A25) to grow significantly as ν

approaches νHS-max (i.e., as vs → 1). However, the moduli remain finite since νs can

approach but never attain 1. In the regime where νHS-max ≤ ν < 0.5, the upper bounds

simplify to:

KNUB

Es
= KHS

Es
|νs→1 ≫ 1, (A37)

ENUB

Es
= 3(1 − 2ν)KNUB, (A38)

GNUB

Es
= 3(1 − 2ν)

2(1 + ν) KNUB, (A39)

Equations (A37)-(A39) demonstrates that increasing ν beyond νHS-max does not al-

ter KNUB, which remains significantly larger than Es. Concurrently, ENUB and GNUB

decrease continuously as ν increases, with ENUB → 3GNUB → 0 as ν approaches 0.5.

In our derivation of upper bounds for isotropic materials, encompassing two-dimensional,

three-dimensional, and hierarchical materials, we allowed the Poisson’s ratio of the

composite ν to fall below νHS-min or exceed νHS-max, where ν is independent of the solid

10



material’s Poisson’s ratio νs. This approach involves an implicit assumption that any

thermodynamically permissible ν value can be achieved in two-phase solid-void com-

posites through appropriate engineering of the solid phase distribution, regardless of

the relative density ρ̄. While this assumption holds for low-density lattices, it remains

subject to scrutiny for high-density composites. Our analysis of various lattices reveals

that ν deviates from the extremes of −1 and 1 as ρ̄ increases. For instance, the Poisson’s

ratio of the hexagonal lattice, which approaches 1 in the low-density limit, decreases

with increasing ρ̄, falling below 0.5 for ρ̄ > 0.5 [8, 9]. It is therefore imperative to note

that the existence of upper bounds on elastic properties does not necessarily imply the

availability of materials that achieve these bounds. Nonetheless, these findings offer in-

sights that may guide future efforts in designing stiff, lightweight materials, broadening

potential directions for material innovation.

B. Mechanical properties and mechanisms of infinite periodic trusses trough

matrix methods

In the regime of low relative density (ρ̄ ≪ 1), the mechanical behaviour of an infinite

periodic pin-jointed truss closely mirrors that of a rigid-jointed lattice. This correspon-

dence enables a simplified mathematical analysis of the lattice’s mechanical properties

by using the less complex truss model as a proxy.

Seminal papers by Pellegrino and Calladine [10] and Pellegrino [11] established

methods for identifying inextensional mechanisms and self-stress states in finite pin-

jointed truss structures using equilibrium matrix analysis. These methods were subse-

quently expanded by Deshpande et al. [12], Guest and Hutchinson [13], and Hutchinson

and Fleck [14] for application to infinite periodic trusses.

Ickin and Tekoğlu [15] recently enhanced existing matrix methods to derive closed-

form expressions for the mechanical properties of lattice materials. They also introduced

an innovative finite element method-based approach to identify self-stress states and

infinitesimal mechanisms in periodic trusses under specific uniform macroscopic loading

conditions (used to create Fig. 2 of this study). This research adopts the methodologies

11



outlined in [15]. Below, we elucidate the key steps of the matrix methods as applied

to infinite periodic twisted Kagome trusses. Additionally, we provide MATLAB [16]

codes implementing the matrix methods for twisted Kagome (Appendix A), hexachiral

(Appendix B), and Double Triangular trusses (Appendix C). The unit cells of these

trusses, used in the matrix analysis, are shown in Supplementary Fig. 3 (see also Fig. 1

and Extended Data Fig. 1). For more comprehensive information on matrix methods,

readers are referred to Ickin and Tekoğlu [15] and the references therein.

An infinite, periodic, pin-jointed twisted Kagome truss can be generated by trans-

lating the unit cell shown in Supplementary Fig. 3a using the direct lattice translation

vector x = nkak, where nk denotes any set of integer values. The translation basis is

defined as ak =
(

cos(kπ/3)i+sin(kπ/3)j
)
2 cos(θ)L, with k ∈ {1, 2}, and i and j being

unit vectors along the x1 and x2 axes, respectively. Under a periodic displacement field,

the displacement difference between homologous boundary joint pairs is given by:

d
(2)
k − d

(5)
k =

(
cos(π/3)Ek1 + sin(π/3)Ek2

)
2 cos(θ)L,

d
(4)
k − d

(3)
k =

(
cos(π/3)Ek1 − sin(π/3)Ek2

)
2 cos(θ)L, (B1)

where d
(i)
k is the displacement of the i’th joint along the k-axis direction, and Ek1 and

Ek2 are the components of the macroscopically homogeneous strain field E imposed

on the pin-jointed truss. Bar elongations can be determined from joint displacements

through the relation:

B · d = e, (B2)

where B is the kinematic matrix, d is the joint displacement vector, e is the bar

elongation vector. For the twisted Kagome trusses:

dT =
[
d

(1)
1 d

(1)
2 d

(2)
1 d

(2)
2 d

(3)
1 d

(3)
2 d

(4)
1 d

(4)
2 d

(5)
1 d

(5)
2 d

(6)
1 d

(6)
2

]
, (B3)

eT = [e1 e2 e3 e4 e5 e6] , (B4)
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Supplementary Fig. 3 | Node and bar numbering scheme of the unit cells for matrix

analysis. Illustrations of unit cells with corresponding node and bar numbering schemes for three types

of infinite periodic pin-jointed trusses: a, twisted Kagome (0° < θ < 60°); b, hexachiral (0° < θ < 90°);

and c, Double Triangular (0° < θ < 180°). Empty circles represent the joints where the cell walls meet,

and unit cell boundaries are indicated by dotted lines.
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BT =



0 − cos(θ + π/3) cos(θ − π/3) − cos(θ + π/3) cos(θ − π/3) 0

0 − cos(θ − π/6) − cos(θ + π/6) cos(θ − π/6) cos(θ + π/6) 0

cos(θ) cos(θ + π/3) 0 0 0 0

cos(θ − π/2) cos(θ − π/6) 0 0 0 0

− cos(θ) 0 − cos(θ − π/3) 0 0 0

− cos(θ − π/2) 0 cos(θ + π/6) 0 0 0

0 0 0 cos(θ + π/3) 0 cos(θ)

0 0 0 − cos(θ − π/6) 0 − cos(θ − π/2)

0 0 0 0 − cos(θ − π/3) − cos(θ)

0 0 0 0 − cos(θ + π/6) cos(θ − π/2)



,

(B5)

where the superscript T denotes the transpose operator.

Substituting the periodicity relations (B1) into the unit cell kinematic relation

B · d = e results in the reduced kinematic statement B̄ · d̄ = ē for the infinite, pin-

jointed, twisted Kagome truss, where:

B̄T =



0 − cos(θ + π/3) cos(θ − π/3) − cos(θ + π/3) cos(θ − π/3) 0

0 − cos(θ − π/6) − cos(θ + π/6) cos(θ − π/6) cos(θ + π/6)) 0

cos(θ) cos(θ + π/3) 0 0 − cos(θ − π/3) − cos(θ)

cos(θ − π/2) cos(θ − π/6) 0 0 − cos(θ + π/6) cos(θ − π/2)

− cos(θ) 0 − cos(θ − π/3) cos(θ + π/3) 0 cos(θ)

− cos(θ − π/2) 0 cos(θ + π/6) − cos(θ − π/6) 0 − cos(θ − π/2)



,

(B6)
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d̄T =
[
d

(1)
1 d

(1)
2 d

(2)
1 d

(2)
2 d

(3)
1 d

(3)
2

]
, (B7)

ēT = [e1 e2 e3 e4 + g4(E, θ) e5 + g5(E, θ) e6 + g6(E, θ)] , (B8)

with

g4(E, θ) =
(

cos(θ)
(
E11 + 3E22 − 2

√
3E12

)
−

cos(θ − π/2)
(√

3E11 −
√

3E22 − 2E12
))

cos(θ)L/2,
(B9)

g5(E, θ) =
(

cos(θ)
(
E11 + 3E22 + 2

√
3E12

)
+

cos(θ − π/2)
(√

3E11 −
√

3E22 + 2E12
))

cos(θ)L/2,
(B10)

g6(E, θ) =
(

cos(θ) E11 − cos(θ − π/2) E12

)
2 cos(θ)L. (B11)

The conjugate reduced equilibrium relation is Ā · t̄ = 0, where Ā denotes the

reduced equilibrium matrix and t̄ denotes the reduced bar tension vector. The principle

of virtual work entails Ā = B̄T, and the null space of Ā, Z = Null(Ā) = Null(B̄T), is

a linearly independent basis spanning all the reduced bar tension vectors t̄ compatible

with unit cell-periodic states of self-stress. For the twisted Kagome trusses:

ZT =


2
√

3 sin(2θ)/3 2
√

3 cos(2θ + π/6)/3 −2
√

3 sin(2θ + π/3)/3 −1 1 0

2
√

3 sin(2θ + π/3)/3 −2
√

3 sin(2θ)/3 −2
√

3 cos(2θ + π/6)/3 −1 0 1

 .

(B12)

It is important to emphasize that each column of the Z matrix represents the rela-

tive tension in each bar for an independent state of bar tensions. For any macroscopic

stress state (where the loading is applied at infinity on the infinite periodic truss, re-

sulting in zero nodal forces), the bar tensions must conform to a linear combination of

these independent tension states. This ensures that the bar tensions satisfy the equi-

librium conditions dictated by the macroscopic stress field.

The bar tension ratios provided by the Z matrix can be expressed through a system

of linear homogeneous equations:

Q(l−n)×l Zn×l = 0. (B13)
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In this context, l represents the total number of bars in the unit cell, while n denotes

the number of independent self-stress states (for twisted Kagome trusses, l = 6 and

n = 2). The matrix Q is defined as the transpose of the left null space of Z, expressed

as:

Q =
(
Null

(
ZT

))T
. (B14)

Given that the bar tensions t corresponding to any macroscopic stress state must be a

linear combination of the columns in the Z matrix, one can express:

Qt = 0. (B15)

In this study, we assume, without loss of generality, that all l bars in the unit cell possess

identical axial rigidity EsA. When expressing bar tensions in terms of bar elongations

(tl = EsAel/Ll, no summation on l), equation (B15) simplifies to:

Qe(L) = 0, (B16)

where each element of e(L) corresponds to the elongation of the of the lth bar relative

to its length, i.e., el/Ll. To rewrite equation (B16) in terms of e, the bar lengths are

absorbed into the Q matrix, resulting in:

P 4×6 e6×1 = 0. (B17)

Here, Pij = Qij(Lu/Lj), with Lu = L as the unit bar length, and no summation over

j. Since the right-hand side remains zero, multiplying by Lu does not affect equa-

tion (B17) but ensures that the components of the P matrix are dimensionless. For

twisted Kagome trusses, where the bar lengths are uniform (Lj = Lu = L), Pij sim-

plifies to Qij. However, this equivalence does not hold for structures with non-uniform

bar lengths, such as Double Triangular trusses (see Appendix C for details).

The twisted Kagome unit cell comprises six bars; however, (B17) provides only four

equations. The remaining two equations for the bar elongations e can be derived by by

recognising that the Z matrix is the left null space of the reduced kinematic matrix B̄

and that ē = e − g(E):

ZTB̄d̄ = ZTē = 0
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=⇒ZTe = ZTg(E). (B18)

Combining (B17) and (B18) into one set of equations provides the complete set of

equations for e: [
P

ZT

]
e =

[
0

ZTg(E)

]
, (B19)

where the horizontal line between matrices (and vectors) denotes matrix concatenation

operation. For the twisted Kagome lattices, equation (B19) reduces to:



1 1 1 0 0 0

2
√

3 sin(2θ + π/3)/3 2
√

3 cos(2θ + π/6)/3 0 1 0 0

−2
√

3 sin(2θ)/3 −2
√

3 sin(2θ + π/3)/3 0 0 1 0

−2
√

3 cos(2θ + π/6)/3 2
√

3 sin(2θ)/3 0 0 0 1

2
√

3 sin(2θ)/3 2
√

3 cos(2θ + π/6)/3 −2
√

3 sin(2θ + π/3)/3 −1 1 0

2
√

3 sin(2θ + π/3)/3 −2
√

3 sin(2θ)/3 −2
√

3 cos(2θ + π/6)/3 −1 0 1





e1

e2

e3

e4

e5

e6



=



0

0

0

0

√
3/2 sin(2θ)L (E11 − E22) +

√
3(cos(2θ) + 1)L E12

(
√

3/2 sin(2θ + π/3) + 3/4)L (E11 − E22) +
√

3(cos(2θ + π/3) + 1/2)L E12



.

(B20)

The last two equations in (B20) show that macroscopic strain producing (E ̸= 0) inex-

tensional mechanisms (e = 0) of the twisted Kagome lattices occur for the equibiaxial
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strain state E11 = E22 with E12 = 0, regardless of the twist angle. The collapse modes

correspond to rigid-body rotations of the unit cell’s two triangles at equal angles but

in opposite directions, with node (1) serving as the rotation center (see Supplementary

Fig. 3a). Bar elongations are derived by solving equation (B20):

e1 = (cos(2θ) + 1) L/4 (E11 − E22) + sin(2θ)L/2 E12,

e2 = (cos(2θ − π/3)/4 + 1/8) L (E22 − E11) +
(
cos(2θ + π/6)/2 +

√
3/4

)
L E12,

e3 = (cos(2θ + π/3)/4 + 1/8) L (E22 − E11) −
(
sin(2θ + π/3)/2 +

√
3/4

)
L E12,

e4 = (cos(2θ − π/3)/4 + 1/8) L (E22 − E11) −
(
cos(2θ + π/6)/2 +

√
3/4

)
L E12,

e5 = (cos(2θ + π/3)/4 + 1/8) L (E22 − E11) +
(
sin(2θ + π/3)/2 +

√
3/4

)
L E12,

e6 = (cos(2θ) + 1) L/4 (E11 − E22) − sin(2θ)L/2 E12. (B21)

The strain energy per unit area of the unit cell represented in Supplementary Fig.

3a is W = tlel/(2S), where S is the unit cell area calculated using S = 2
√

3 cos2(θ)L2.

The components of the macroscopic stiffness tensor L̄ are thus given by:

Lαβγδ = ∂2W (E)
∂Eαβ∂Eγδ

= EsA

LS

∂el(E)
∂Eαβ

∂el(E)
∂Eγδ

∀ α, β, γ, δ ∈ {1, 2}, (B22)

summed over l ∈ {1, 2, ..., 6}. By substituting the bar elongations from equation (B21)

into equation (B22), the components of the macroscopic stiffness tensor for twisted

Kagome lattices are obtained:

L1111 = L2222 = −L1122 = −L2211 = L1212 = L2121 = L1221 = L2112 =
√

3
8

EsA

L
,

(B23)

irrespective of the twist angle θ. The elastic constants of the twisted Kagome lattices

are derived as follows:

E

Es
= L1111(1 − ν2)

Es
= L2222(1 − ν2)

Es
= 0, (B24)

G

Es
= L1212

Es
= cos2(θ)

8 ρ̄, (B25)
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ν = L1122

L2222
= L1122

L1111
= −1, (B26)

where ρ̄ =
√

3A/(cos2(θ)L) is the first-order relative density of the twisted Kagome lat-

tices. The fact that ν → −1 at ρ̄ → 0 for twisted Kagome lattices can also be deduced

as follows. Under uniaxial compression, for example, along the x1-axis, the collapse

mechanism of the pin-jointed twisted Kagome trusses is activated, where E11 = E22

and E12 = 0, and consequently ν = −E22/E11 = −1.

Guest and Hutchinson [13] demonstrated that the null space of the augmented

kinematic matrix, Baug, offers a linearly independent basis for the nodal displacements

corresponding to infinitesimal mechanisms in an infinite periodic truss, regardless of

whether they induce macroscopic strain (see also [17]). The MATLAB code provided

in Appendix A illustrates this by calculating the relative nodal displacement ratios for

a collapse mechanism under hydrostatic loading. These computed displacements are in

perfect agreement with the finite element (FE) results shown in Fig. 2h.

Appendix B contains a MATLAB code for analyzing hexachiral lattices. Here, the

hexachiral microarchitecture is characterized by the angle θ = arctan(2r/L), instead

of the Rr = R/r ratio used in the main text, which simplifies the construction of the

B̄ matrix. The analysis produces an empty Z matrix, irrespective of the θ value, in-

dicating that infinite periodic hexachiral trusses exhibit macroscopic strain-producing

collapse mechanisms under all loading conditions. Consequently, for ρ̄ ≪ 1, hexachiral

lattices are bending-dominated across all loading scenarios, in agreement with the re-

sults shown in Figs. 2m-p.

In contrast to the MATLAB codes for the twisted Kagome and hexachiral trusses,

the MATLAB code for Double Triangular trusses, provided in Appendix C, cannot solve

the equations if θ is defined symbolically. Therefore, the user must assign a specific θ

value for each run. For all θ values except 60° and 145.66°, the null space of the Baug

matrix contains two columns, corresponding to the rigid body translations of the entire

truss in the x1 and x2 directions, indicating redundancy and the absence of infinitesimal

mechanisms, whether strain-producing or not. At θ = 60°, the truss supports only shear
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loading, while at θ = 145.66°, it supports only hydrostatic loading. The MATLAB

code calculates the relative nodal displacement ratios for collapse mechanisms under

hydrostatic loading at θ = 60° and pure shear loading at θ = 145.66°, with the results

perfectly matching the FE simulations presented in Fig. 2.

C. Deformation mechanisms in lattice materials

The effective macroscopic elastic moduli of lattice materials can be expressed as power-

law relationships in terms of the relative density ρ̄ and the solid’s Young’s modulus Es

as follows:
E

Es
= Aρ̄a,

G

Es
= Bρ̄b,

K

Es
= Cρ̄c, (C1)

where A, B, and C are functions of ρ̄, Poisson’s ratio ν, and the the lattice’s microar-

chitecture. The exponents a, b, and c typically range from 1 to 3 in 2D lattices and

from 1 to 2 in 3D lattices, with the lower bound corresponding to stretching-dominated

behaviour and the upper bound to bending-dominated behaviour. In the limit of low

relative density (ρ̄ → 0), the exponents adopt boundary values of either 1 or 3 in 2D,

and 1 or 2 in 3D [7].

For instance, in a 2D hexagonal lattice, which is bending-dominated under uniaxial

and shear loading and stretching-dominated under hydrostatic loading, the exponents

are a = 3, b = 3, and c = 1. If the elastic moduli and Poisson’s ratio were entirely inde-

pendent, there would be eight possible combinations of these exponents as ρ̄ → 0, each

representing distinct deformation mechanisms under uniaxial, shear, and hydrostatic

loads. Here, we address the central question of which combinations are theoretically

feasible for isotropic lattices.

C1. 2D lattices

Substituting equation (C1) into equations (2) through (4), we obtain:

ν = A

2B
ρ̄(a−b) − 1, (C2)

= 1 − A

2C
ρ̄(a−c), (C3)
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= 2Cρ̄(c−b)

Cρ̄(c−b) + B
− 1, (C4)

From (C2), it is clear that if a < b, then ν → ∞ as ρ̄ → 0. Similarly, (C3) indicates

that if a < c, then ν → −∞ as ρ̄ → 0. Therefore, for physically meaningful results, the

following inequalities must hold:

a ≥ b ∧ a ≥ c. (C5)

This leads to the conclusion that the following combinations of deformation modes

are not possible (where S denotes ”stretching-dominated” and B denotes ”bending-

dominated”): a = 1, b = 1, c = 3 (S, S, B); a = 1, b = 3, c = 3 (S, B, B); and

a = 1, b = 3, c = 1 (S, B, S). In other words, if a lattice is stretching-dominated under

uniaxial loading (i.e., a = 1), it must also be stretching-dominated both under shear

and hydrostatic loadings, implying that a = 1 ⇐⇒ b = c = 1.

In accordance with the inequalities in (C5), a potentially feasible scenario emerges

with a = 3, b = 1, c = 1 (B,S,S). Substituting a = 3 and b = 1 into (C2) yields:

ν = A

2B
ρ̄2 − 1 ⇒ ν → −1 as ρ̄ → 0. (C6)

On the other hand, substituting a = 3 and c = 1 into (C3) produces:

ν = 1 − A

2C
ρ̄2 ⇒ ν → 1 as ρ̄ → 0. (C7)

The contradiction between the results from (C6) and (C7) indicates that the combina-

tion a = 3, b = 1, c = 1 (B, S, S) is also not feasible. FE analyses conducted in this

paper have already established that the remaining four deformation combinations—(S,

S, S), (B, B, B), (B, S, B), and (B, B, S)—are realizable and correspond to different

lattice designs. The following sections will explore these feasible combinations in detail,

along with their associated ranges of Poisson’s ratio.

C1.1. a=b=c (S, S, S or B, B, B)

In cases where the lattice is either stretching- or bending-dominated under all loading

conditions, Poisson’s ratio simplifies to:

ν = A

2B
− 1, (C8)
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= 1 − A

2C
, (C9)

= 2C

C + B
− 1. (C10)

Solving these equations yields the following relations:

A = 4BC

B + C
, B = AC

4C − A
, C = AB

4B − A
. (C11)

The examination of equations (C8) to (C11) leads to the following conditions and

their corresponding ranges for Poisson’s ratio:

(2C < A < 4C ∧ A < 2B ∧ C < B) ⇒ −1 < ν < 0 (C12)

A = 2B = 2C ⇒ ν = 0 (C13)

(2B < A < 4B ∧ A < 2C ∧ B < C) ⇒ 0 < ν < 1 (C14)

(C → 0 ⇐⇒ A → 4C) ⇒ (B → BUB ∧ ν → −1) (C15)

(B → 0 ⇐⇒ A → 4B) ⇒ (C → CUB ∧ ν → 1) (C16)

C1.2. a=3, b=1, c=3 (B, S, B)

When the lattice is bending-dominated under uniaxial and hydrostatic loadings and

stretching-dominated under shear, Poisson’s ratio can be expressed as:

ν = A

2B
ρ̄2 − 1, (C17)

= 1 − A

2C
, (C18)

= 2Cρ̄2

Cρ̄2 + B
− 1, (C19)

leading to the following relations:

A = 4BC

B + Cρ̄2 , B = ACρ̄2

4C − A
, C = AB

4B − Aρ̄2 . (C20)

The effect of A, B, and C on Poisson’s ratio can be expressed through the following

conditions:

(2C < A < 4C ∧ Aρ̄2 < 2B ∧ Cρ̄2 < B) ⇒ −1 < ν < 0 (C21)

Aρ̄2 = 2B = 2Cρ̄2 ⇒ ν = 0 (C22)
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(2B < Aρ̄2 < 4B ∧ A < 2C ∧ B < Cρ̄2) ⇒ 0 < ν < 1 (C23)

(C → 0 ∨ ρ̄ → 0 ⇐⇒ A → 4C) ⇒ (B → BUB ∧ ν → −1) (C24)

(B → 0 ⇐⇒ Aρ̄2 → 4B) ⇒ (C → CUB ∧ ν → 1) (C25)

C1.3. a=3, b=3, c=1 (B, B, S)

If the lattice is bending-dominated under uniaxial and shear loadings but stretching-

dominated under hydrostatic loading, Poisson’s ratio is given as follows:

ν = A

2B
− 1, (C26)

= 1 − A

2C
ρ̄2, (C27)

= 2C

C + Bρ̄2 − 1. (C28)

Accordingly, the relations among the parameters A, B, and C are given by:

A = 4BC

Bρ̄2 + C
, B = AC

4C − Aρ̄2 , C = ABρ̄2

4B − A
. (C29)

The conditions governing Poisson’s ratio values in this scenario are:

(2C < Aρ̄2 < 4C ∧ A < 2B ∧ C < Bρ̄2) ⇒ −1 < ν < 0 (C30)

Aρ̄2 = 2Bρ̄2 = 2C ⇒ ν = 0 (C31)

(2B < A < 4B ∧ Aρ̄2 < 2C ∧ Bρ̄2 < C) ⇒ 0 < ν < 1 (C32)

(C → 0 ⇐⇒ Aρ̄2 → 4C) ⇒ (B → BUB ∧ ν → −1) (C33)

(B → 0 ∨ ρ̄ → 0 ⇐⇒ A → 4B) ⇒ (C → CUB ∧ ν → 1) (C34)

The parameters A, B, and C, along with the exponents a, b, and c, presented in

Extended Data Tables 1 and 2 for various lattices, were obtained by fitting power func-

tions to the finite element results. It is straightforward to demonstrate that, depending

on the deformation mechanism of each lattice (as outlined in Table 1), the fitting co-

efficients can be substituted into the corresponding sets of equations and inequalities

provided in sections C1.1, C1.2, or C1.3, resulting in perfect agreement.
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C2. 3D lattices

For three-dimensional isotropic materials, the expressions for Poisson’s ratio in terms

of elastic moduli are given as:

ν = A

2B
− 1 = 1

2
E

6K
= 1

2
3G

2(G + 3K) . (C35)

By plugging the effective elastic moduli given in (C1) into (C35), we arrive at the

following representations for Poisson’s ratio:

ν = A

2B
ρ̄(a−b) − 1, (C36)

= 1
2 − A

6C
ρ̄(a−c), (C37)

= 1
2 − 3Bρ̄(b−c)

2Bρ̄(b−c) + 6C
, (C38)

As with the two-dimensional case, these equations yield physically meaningful values

for Poisson’s ratio only if the following conditions are met:

(a ≥ b ∧ a ≥ c) ∧ (b < a ⇐⇒ c = a). (C39)

These constraints render certain deformation combinations infeasible: a = 1, b = 1,

c = 2 (S, S, B); a = 1, b = 2, c = 2 (S, B, B); a = 1, b = 2, c = 1 (S, B, S); and

a = 2, b = 1, c = 1 (B, S, S). Consequently, we are left with four viable combinations,

analogous to those in the two-dimensional scenario.

Below we outline the relationships between Poisson’s ratio ν and the parameters A,

B, C, along with the conditions that must be fulfilled for ν to attain specific values in

each of the possible deformation combinations.

C2.1. a=b=c (S, S, S or B, B, B)

ν = A

2B
− 1, (C40)

= 1
2 − A

6C
, (C41)

= 1
2 − 3B

2B + 6C
, (C42)
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A = 9BC

B + 3C
, B = 3AC

9C − A
, C = AB

3(3B − A) . (C43)

(3C < A < 9C ∧ A < 2B ∧ 3C < 2B) ⇒ −1 < ν < 0 (C44)

A = 2B = 3C ⇒ ν = 0 (C45)

(2B < A < 3B ∧ A < 3C ∧ 2B < 3C) ⇒ 0 < ν < 0.5 (C46)

(C → 0 ⇐⇒ A → 9C) ⇒ (B → BUB ∧ ν → −1) (C47)

(B → 0 ⇐⇒ A → 3B) ⇒ (C → CUB ∧ ν → 0.5) (C48)

C2.2. a=2, b=1, c=2 (B, S, B)

ν = A

2B
ρ̄ − 1, (C49)

= 1
2 − A

6C
, (C50)

= 1
2 − 3B

2B + 6Cρ̄
, (C51)

A = 9BC

B + 3Cρ̄
, B = 3ACρ̄

9C − A
, C = AB

3(3B − Aρ̄) . (C52)

(3C < A < 9C ∧ Aρ̄ < 2B ∧ 3Cρ̄ < 2B) ⇒ −1 < ν < 0 (C53)

Aρ̄ = 2B = 3Cρ̄ ⇒ ν = 0 (C54)

(2B < Aρ̄ < 3B ∧ A < 3C ∧ 2B < 3Cρ̄) ⇒ 0 < ν < 0.5 (C55)

(C → 0 ∨ ρ̄ → 0 ⇐⇒ A → 9C) ⇒ (B → BUB ∧ ν → −1) (C56)

(B → 0 ⇐⇒ Aρ̄ → 3B) ⇒ (C → CUB ∧ ν → 0.5) (C57)

C2.3. a=2, b=2, c=1 (B, B, S)

ν = A

2B
− 1, (C58)

= 1
2 − A

6C
ρ̄, (C59)

= 1
2 − 3Bρ̄

2Bρ̄ + 6C
, (C60)
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A = 9BC

Bρ̄ + 3C
, B = 3AC

9C − Aρ̄
, C = ABρ̄

3(3B − A) . (C61)

(3C < Aρ̄ < 9C ∧ A < 2B ∧ 3C < 2Bρ̄) ⇒ −1 < ν < 0 (C62)

Aρ̄ = 2Bρ̄ = 3C ⇒ ν = 0 (C63)

(2B < A < 3B ∧ Aρ̄ < 3C ∧ 2Bρ̄ < 3C) ⇒ 0 < ν < 0.5 (C64)

(C → 0 ⇐⇒ Aρ̄ → 9C) ⇒ (B → BUB ∧ ν → −1) (C65)

(B → 0 ∨ ρ̄ → 0 ⇐⇒ A → 3B) ⇒ (C → CUB ∧ ν → 0.5) (C66)
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APPENDIX A: MATLAB CODE FOR THE STRUCTURAL ANALYSIS

OF THE TWISTED KAGOME TRUSSES

1 % ---------------------------------------------------------%

2 % Clear all variables from the current workspace to free

3 % up system memory.

4 % ---------------------------------------------------------%

5 clear

6 % ---------------------------------------------------------%

7 % Variables used in the analysis :

8 %

9 % tht: The angle that defines the geometry of the infinite

10 % periodic twisted Kagome truss

11 % (see Supplementary Fig. 3a).

12 %

13 % rho: Relative density of the truss structure .

14 %

15 % E_s: Young 's modulus of the material that makes up the

16 % truss 's cell walls.

17 %

18 % Lu: The unit bar length. For twisted Kagome Kagome truss ,

19 % all bars have the same length L = Lu

20 % (see Supplementary Fig. 3a).

21 %

22 % A: The cross - sectional area of the bar elements .

23 %

24 % a, b, c, d, f, r, h, k, m: Direction cosines of the bar

25 % elements .

26 %

27 % UC_EL: The edge length of the unit cell (see Fig. XXX).

28 %

29 % E_ij (i, j in {1, 2}): Components of the externally
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30 % imposed , macroscopically uniform strain field.

31 %

32 % d11 , d12 , d22: Deformations of the unit cell in response

33 % to the imposed macroscopic strains .

34 %

35 % Eij and nuij (i, j in {1, 2}) represent the truss 's

36 % Young 's modulus and Poisson 's ratio in the i-j

37 % directions , respectively . G is the shear modulus

38 % of the truss.

39 %

40 % It is important to note that isotropic properties for the

41 % truss (E11 = E22 = 2G(1 + nu12) = 2G(1 + nu21)) are not

42 % assumed a priori. They emerge directly from the

43 % calculations .

44 %

45 % Also , the equation numbers referenced below correspond to

46 % the paper by Ickin , O. A., and Tekoglu , C.

47 % (August 7, 2024). " Structural Analysis of Periodic

48 % Trusses and Lattice Materials : States of Self -Stress ,

49 % Mechanisms , and Mechanical Properties ." ASME Journal of

50 % Applied Mechanics . doi: https :// doi.org /10.1115/1.4066177

51 % ---------------------------------------------------------%

52 syms tht E_11 E_22 E_12 rho E_s Lu A real

53 %

54 a=cos(tht);

55 b=cos(tht -pi /2);

56 c=cos(tht+pi /3);

57 d=cos(tht -pi /6);

58 f=cos(tht +2* pi /3);

59 r=cos(tht+pi /6);

60 h=cos(tht -2* pi /3);
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61 k=cos(tht -pi /3);

62 m=cos(tht -pi);

63 %

64 L=Lu;

65 %

66 UC_EL =2*a*Lu;

67 %

68 d11=UC_EL*E_11 /2;

69 d12=UC_EL*E_12 /2;

70 d22=UC_EL*E_22 /2;

71 % ---------------------------------------------------------%

72 % Steps 1 and 2 of the flowchart must be performed manually

73 % by the user.

74 % ---------------------------------------------------------%

75 % Step 3: Obtain and input the reduced kinematic

76 % matrix (BR).

77 % ---------------------------------------------------------%

78 BR =[0 0 a b -a -b; ...

79 -c -d c d 0 0 ; ...

80 -f -r 0 0 f r; ...

81 h d 0 0 -h -d; ...

82 k r -k -r 0 0; ...

83 0 0 m b -m -b];

84 % ---------------------------------------------------------%

85 % Step 4: Compute the Z matrix as the null space of the

86 % transpose of the reduced kinematic matrix BR.

87 % ---------------------------------------------------------%

88 Z = null( transpose (BR));

89 % ---------------------------------------------------------%

90 % Step 5: Compute the Q matrix as the transpose of the null

91 % space of the transpose of Z.
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92 % ---------------------------------------------------------%

93 Q = transpose (null( transpose (Z)));

94 % ---------------------------------------------------------%

95 % Step 6: Determine the P matrix.

96 % Since the bar length is uniform in the twisted Kagome

97 % truss , the P matrix is equal to the Q matrix

98 % ---------------------------------------------------------%

99 P=Q;

100 % ---------------------------------------------------------%

101 % Step 7: Solve Eq. (32) to express the bar elongation

102 % vector ({e}) in terms of the macroscopic strain

103 % components (E_ij). Perform the matrix concatenation as

104 % described in Eq. (32) , where Left_C and Right_C

105 % correspond to the concatenated matrices on the left and

106 % right sides of the equation , respectively .

107 % ---------------------------------------------------------%

108 Left_C=cat(1,P,Z(: ,1).',Z(: ,2).');

109 %

110 g(4 ,1)=(-h*d11 +( sqrt (3)*h-d)*d12+sqrt (3)*d*d22);

111 g(5 ,1) =(k*d11 +( sqrt (3)*k+r)*d12+sqrt (3)*r*d22);

112 g(6 ,1) =( -2*m*d11 -2*b*d12);

113 %

114 Zero_Vector = zeros (4 ,1);

115 %

116 Right_C =cat(1, Zero_Vector ,((Z.')*g));

117 %

118 e = linsolve ( simplify (Left_C), simplify ( Right_C ));

119 % ---------------------------------------------------------%

120 % Step 8: Calculate the components of the macroscopic

121 % stiffness tensor L_ijkl (S represents the area of the

122 % unit cell).
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123 % ---------------------------------------------------------%

124 S = sqrt (3)*UC_EL ˆ2/2;

125 %

126 DeDeps11 = diff(e, E_11);

127 L1111 = simplify (dot(DeDeps11 , DeDeps11 )* ...

128 E_s * A / Lu / S);

129 %

130 DeDeps22 = diff(e, E_22);

131 L2222 = simplify (dot(DeDeps22 , DeDeps22 )* ...

132 E_s * A / Lu / S);

133 %

134 L1122 = simplify (dot(DeDeps11 , DeDeps22 )* ...

135 E_s * A / Lu / S);

136 %

137 DeDeps12 = diff(e, E_12) / 2;

138 L1212 = simplify (dot(DeDeps12 , DeDeps12 )* ...

139 E_s * A / Lu / S);

140 % ---------------------------------------------------------%

141 % Step 9: Construct the stiffness matrix [L_Mat ].

142 % ---------------------------------------------------------%

143 L_Mat = [L1111 L1122 0;...

144 L1122 L2222 0;...

145 0 0 L1212 ];

146 % ---------------------------------------------------------%

147 % Step 10: Calculate the mechanical properties .

148 % To express the mechanical properties in terms of the

149 % truss 's relative density (rho), first normalize the

150 % moduli by the value of the relative density ( rho_val ),

151 % and then multiply the normalized values by rho.

152 % ---------------------------------------------------------%

153 rho_val = simplify (sqrt (3)*A/(aˆ2*L));
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154 %

155 nu12 = L1122/L2222;

156 nu21 = L1122/L1111;

157 E11 = L1111 *(1- nu12*nu21)/ rho_val *rho;

158 E22 = L2222 *(1- nu12*nu21)/ rho_val *rho;

159 G = L1212/ rho_val *rho;

160 %

161 Modulus = [" E_11/E_s "; "E_22/E_s "; "nu_12 "; "nu_21 "; "G/E_s

"];

162 Value = [E11/E_s; E22/E_s; nu12; nu21; G/E_s ];

163 % ---------------------------------------------------------%

164 % Print the mechanical properties in a formatted table.

165 % ---------------------------------------------------------%

166 fprintf ('<strong > Results for any tht value </ strong >\n\n');

167 fprintf ('<strong > Mechanical Properties :</strong >\n\n');

168 disp(table(Modulus , Value));

169 % ---------------------------------------------------------%

170 % Identify the macroscopic strain - producing mechanisms . For

171 % detailed information , refer to the paper: "A Quest for

172 % 2D Lattice Materials for Actuation ," Journal of the

173 % Mechanics and Physics of Solids , 105 (2017) , pp. 199 -216.

174 % ---------------------------------------------------------%

175 BAUG =[0 0 a b -a -b 0 0 0; ...

176 -c -d c d 0 0 0 0 0; ...

177 -f -r 0 0 f r 0 0 0; ...

178 h d 0 0 -h -d -h (sqrt (3)*h-d) sqrt (3)*d; ...

179 k r -k -r 0 0 k (sqrt (3)*k+r) sqrt (3)*r; ...

180 0 0 m b -m -b -2*m -2*b 0];

181 % ---------------------------------------------------------%

182 % Print null space of the augmented kinematic matrix.

183 % ---------------------------------------------------------%
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184 fprintf (['<strong > Null space of the augmented ' ...

185 'kinematic matrix :</strong >\n\n']);

186 NSAKM=null(BAUG);

187 disp( simplify (NSAKM));

188 % ---------------------------------------------------------%

189 % Print the vector that provides the relative ratios of the

190 % nodal displacements for the collapse mechanism under

191 % hydrostatic loading .

192 % ---------------------------------------------------------%

193 fprintf (['<strong >The relative ratios of the nodal ' ...

194 'displacements for the </ strong >\n']);

195 fprintf (['<strong > collapse mechanism under ' ...

196 'hydrostatic loading </ strong >\n\n']);

197 disp( simplify (NSAKM (: ,3)));
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APPENDIX B: MATLAB CODE FOR THE STRUCTURAL ANALYSIS

OF THE HEXACHIRAL TRUSSES

1 % ---------------------------------------------------------%

2 % Clear all variables from the current workspace to free

3 % up system memory.

4 % ---------------------------------------------------------%

5 clear

6 % ---------------------------------------------------------%

7 % Variables used in the analysis :

8 %

9 % tht: The angle that defines the geometry of the infinite

10 % periodic hexachiral truss

11 % (see Supplementary Fig. 3b).

12 %

13 % a, b, c, d, f, r: Direction cosines of the bar elements .

14 %

15 % UC_EL = R: The edge length of the unit cell

16 % (see Supplementary Fig. 3a).

17 %

18 % E_ij (i, j in {1, 2}): Components of the externally

19 % imposed , macroscopically uniform strain field.

20 %

21 % d11 , d12 , d22: Deformations of the unit cell in response

22 % to the imposed macroscopic strains .

23 % ---------------------------------------------------------%

24 syms tht R E_11 E_22 E_12 real

25 %

26 a=cos(pi/2-tht);

27 b=cos(tht);

28 c=cos(pi/6-tht);

29 d=cos(pi /3+ tht);

35



30 f=cos(pi /6+ tht);

31 r=cos(pi/3-tht);

32 %

33 UC_EL=R;

34 %

35 d11=UC_EL*E_11;

36 d12=UC_EL*E_12;

37 d22=UC_EL*E_22;

38 % ---------------------------------------------------------%

39 % Steps 1 and 2 of the flowchart must be performed manually

40 % by the user.

41 % ---------------------------------------------------------%

42 % Step 3: Obtain and input the reduced kinematic

43 % matrix (BR).

44 % ---------------------------------------------------------%

45 BR=[-a -b 0 0 0 0 a b 0 0 0 0;...

46 0 0 -c -d 0 0 0 0 c d 0 0;...

47 0 0 0 0 -f r 0 0 0 0 f -r;...

48 -r -f r f 0 0 0 0 0 0 0 0;...

49 0 0 -b a b -a 0 0 0 0 0 0;...

50 0 0 0 0 -d c d -c 0 0 0 0;...

51 0 0 0 0 0 0 r f -r -f 0 0;...

52 0 0 0 0 0 0 0 0 b -a -b a;...

53 -d c 0 0 0 0 0 0 0 0 d -c];

54 % ---------------------------------------------------------%

55 % Step 4: Compute the Z matrix as the null space of the

56 % transpose of the reduced kinematic matrix BR.

57 % ---------------------------------------------------------%

58 Z = null( transpose (BR))

59 % ---------------------------------------------------------%

60 % Z results in an empty set. This indicates that , in the
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61 % low density limit , the hexachiral lattice exhibits

62 % bending - dominated behavior under all loading conditions ,

63 % irrespective of the R/r ratio or the angle tht.

64 % ---------------------------------------------------------%

65 if isempty (Z)

66 fprintf (['<strong >Z results in an empty set. This ' ...

67 'indicates that </ strong >\n']);

68 fprintf (['<strong >in the low density limit , the ' ...

69 ' hexachiral lattice </ strong >\n']);

70 fprintf (['<strong > exhibits bending - dominated ' ...

71 ' behavior under all loading </ strong >\n']);

72 fprintf (['<strong >conditions , irrespective of' ...

73 ' the R/r ratio or the angle tht.</strong >\n\n']);

74 end
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APPENDIX C: MATLAB CODE FOR THE STRUCTURAL ANALYSIS

OF THE DOUBLE TRIANGULAR TRUSSES

1 % ---------------------------------------------------------%

2 % Clear all variables from the current workspace to free

3 % up system memory.

4 % ---------------------------------------------------------%

5 clear

6 % ---------------------------------------------------------%

7 % Variables used in the analysis :

8 %

9 % tht: The angle that defines the geometry of the infinite

10 % periodic Double Triangular truss

11 % (see Supplementary Fig. 3c). Note that the infinite

12 % periodic Double Triangular truss exhibits

13 % macroscopic strain - producing collapse mechanisms

14 % only at tht = 60 degrees and tht = 145.6589 degrees .

15 %

16 % rho: Relative density of the truss structure .

17 %

18 % E_s: Young 's modulus of the material that makes up the

19 % truss 's cell walls.

20 %

21 % Lu: The unit bar length. Specifically , bars 1 to 28, 32,

22 % and 36 to 42 have a length L1 = Lu , while bars 29,

23 % 30, 31, 33, 34, and 35 have a length L2 , defined as:

24 % L2 = (sqrt (3) * d + sin(tht /2)) * Lu (see Fig. XXX).

25 %

26 % A: The cross - sectional area of the bar elements .

27 %

28 % a, b, c, d, f, r, h, k, m, n, p: Direction cosines of the

29 % bar elements .
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30 %

31 % UC_EL: The edge length of the unit cell (see Fig. 1e).

32 %

33 % E_ij (i, j in {1, 2}): Components of the externally

34 % imposed , macroscopically uniform strain field.

35 %

36 % d11 , d12 , d22: Deformations of the unit cell in response

37 % to the imposed macroscopic strains .

38 %

39 % Eij and nuij (i, j in {1, 2}) represent the truss 's

40 % Young 's modulus and Poisson 's ratio in the i-j

41 % directions , respectively . G is the shear modulus

42 % of the truss.

43 %

44 % It is important to note that isotropic properties for the

45 % truss (E11 = E22 = 2G(1 + nu12) = 2G(1 + nu21)) are not

46 % assumed a priori. They emerge directly from the

47 % calculations .

48 %

49 % Also , the equation numbers referenced below correspond to

50 % the paper by Ickin , O. A., and Tekoglu , C.

51 % (August 7, 2024). " Structural Analysis of Periodic

52 % Trusses and Lattice Materials : States of Self -Stress ,

53 % Mechanisms , and Mechanical Properties ." ASME Journal of

54 % Applied Mechanics . doi: https :// doi.org /10.1115/1.4066177

55 % ---------------------------------------------------------%

56 syms E_11 E_22 E_12 rho E_s Lu A

57 assume(Lu , "real ");

58 tht =(30* pi /180);

59 % tht =(60* pi /180);

60 % tht =(145.658906273255289* pi /180);
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61 %

62 a=cos(tht /2+ pi /6);

63 b=cos(tht/2-pi /3);

64 c=cos(tht /2+ pi /2);

65 d=cos(tht /2);

66 f=cos(tht/2-pi /6);

67 r=cos(tht /2 -2* pi /3);

68 h=cos(tht/2-pi /2);

69 k=cos(tht /2 -5* pi /6);

70 m=cos(tht /2+ pi /3);

71 n=cos(pi /6);

72 p=cos(pi /3);

73 %

74 L1=Lu;

75 L2=( sqrt (3)*d+sin(tht /2))*Lu;

76 %

77 UC_EL =(4*f+2*h)*Lu;

78 %

79 d11=UC_EL*E_11;

80 d12=UC_EL*E_12;

81 d22=sqrt (3) /2* UC_EL*E_22;

82 % ---------------------------------------------------------%

83 % Steps 1 and 2 of the flowchart must be performed manually

84 % by the user.

85 % ---------------------------------------------------------%

86 % Step 3: Obtain and input the reduced kinematic

87 % matrix (BR).

88 % ---------------------------------------------------------%

89 BR = [-h -d h d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

91 -f -m 0 0 f m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
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92 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

93 0 0 k b -k -b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

94 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

95 0 0 0 0 -f -r f r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

96 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

97 0 0 0 0 0 0 -k -b 0 0 k b 0 0 0 0 0 0 0 0 0 0 0 0 ...

98 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

99 0 0 -f -r 0 0 0 0 0 0 f r 0 0 0 0 0 0 0 0 0 0 0 0 ...

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

101 0 0 0 0 0 0 0 0 c d -c -d 0 0 0 0 0 0 0 0 0 0 0 0 ...

102 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

103 0 0 -a -b 0 0 0 0 a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

104 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

105 0 0 0 0 0 0 -h -d 0 0 0 0 h d 0 0 0 0 0 0 0 0 0 0 ...

106 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

107 0 0 0 0 0 0 0 0 0 0 -f -m f m 0 0 0 0 0 0 0 0 0 0 ...

108 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

109 0 0 0 0 0 0 0 0 0 0 0 0 c d -c -d 0 0 0 0 0 0 0 0 ...

110 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b a b 0 0 0 0 0 0 ...

112 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

113 0 0 0 0 0 0 0 0 0 0 0 0 -f -r 0 0 f r 0 0 0 0 0 0 ...

114 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

115 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -m 0 0 f m 0 0 0 0 ...

116 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b a b 0 0 ...

118 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

119 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -m 0 0 f m 0 0 ...

120 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -k -b k b ...

122 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
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123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -h -d 0 0 0 0 h d ...

124 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -r ...

126 f r 0 0 0 0 0 0 0 0 0 0 0 0;...

127 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -c ...

128 -d c d 0 0 0 0 0 0 0 0 0 0;...

129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b ...

130 0 0 a b 0 0 0 0 0 0 0 0 0 0;...

131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -h ...

132 -d 0 0 h d 0 0 0 0 0 0 0 0;...

133 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

134 0 0 0 -c -d 0 0 c d 0 0 0 0;...

135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

136 0 -h -d 0 0 0 0 h d 0 0 0 0;...

137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

138 0 0 0 0 0 -f -m f m 0 0 0 0;...

139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

140 0 -k -b 0 0 k b 0 0 0 0 0 0;...

141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

142 0 0 0 -a -b 0 0 0 0 a b 0 0;...

143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

144 0 0 0 0 0 0 0 -f -r f r 0 0;...

145 0 0 0 0 0 0 0 0 0 0 -p -n 0 0 0 0 0 0 0 0 0 0 0 0 ...

146 0 0 0 0 0 0 0 0 0 0 0 0 p n;...

147 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p -n 0 0 0 0 0 0 0 ...

148 0 0 0 0 0 0 0 0 0 0 0 -p n;...

149 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

150 1 0 0 0 0 0 0 0 0 0 -1 0;...

151 0 0 0 0 0 0 0 0 -k -b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

152 0 0 0 k b 0 0 0 0 0 0 0 0;...

153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
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154 0 0 -1 0 0 0 0 0 0 0 1 0;...

155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -p n 0 0 0 0 0 ...

156 0 0 0 0 0 0 0 0 0 0 0 p -n;...

157 0 0 0 0 p n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

158 0 0 0 0 0 0 0 0 0 0 -p -n;...

159 0 0 0 0 c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

160 0 0 0 0 -c -d 0 0 0 0 0 0;...

161 0 0 0 0 0 0 a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

162 0 0 0 0 -a -b 0 0 0 0 0 0;...

163 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k b 0 0 0 0 0 0 0 0 0 0 ...

164 0 0 0 0 0 0 0 0 -k -b 0 0;...

165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h d 0 0 0 0 0 0 ...

166 0 0 0 0 0 0 0 0 -h -d 0 0;...

167 0 0 0 0 0 0 0 0 f m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f ...

168 -m 0 0 0 0 0 0 0 0 0 0 0 0;...

169 -c -d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c d 0 0 0 ...

170 0 0 0 0 0 0 0 0 0 0 0 0 0;...

171 f r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -r 0 0 0 0 ...

172 0 0 0 0 0 0 0 0 0 0 0 0 0 0];

173 % ---------------------------------------------------------%

174 % Step 4: Compute the Z matrix as the null space of the

175 % transpose of the reduced kinematic matrix BR.

176 % ---------------------------------------------------------%

177 Z = null( transpose (BR), 'r');

178 % ---------------------------------------------------------%

179 % Step 5: Compute the Q matrix as the transpose of the null

180 % space of the transpose of Z.

181 % ---------------------------------------------------------%

182 Q = transpose (null( transpose (Z)));

183 % ---------------------------------------------------------%

184 % Step 6: Determine the P matrix.
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185 % ---------------------------------------------------------%

186 P = (Lu/L1)*Q;

187 for i=1: 36

188 P(i ,29) =(Lu/L2)*Q(i ,29);

189 P(i ,30) =(Lu/L2)*Q(i ,30);

190 P(i ,31) =(Lu/L2)*Q(i ,31);

191 P(i ,33) =(Lu/L2)*Q(i ,33);

192 P(i ,34) =(Lu/L2)*Q(i ,34);

193 P(i ,35) =(Lu/L2)*Q(i ,35);

194 end

195 % ---------------------------------------------------------%

196 % Step 7: Solve Eq. (32) to express the bar elongation

197 % vector ({e}) in terms of the macroscopic strain

198 % components (E_ij). Perform the matrix concatenation as

199 % described in Eq. (32) , where Left_C and Right_C

200 % correspond to the concatenated matrices on the left and

201 % right sides of the equation , respectively .

202 % ---------------------------------------------------------%

203 Left_C = cat(1, P, Z(: ,1).', Z(: ,2).', Z(: ,3).', ...

204 Z(: ,4).', Z(: ,5).', Z(: ,6).');

205 %

206 g(32 ,1)=(-k*d11 -b*d12);

207 g(33 ,1) =( d11);

208 g(34 ,1) =(0.5 e0*p*d11 -( sqrt (3. e0)/2. e0*p+0.5 e0*n) ...

209 *d12+n*d22);

210 g(35 ,1) =(0.5 e0*p*d11 +( sqrt (3. e0)/2. e0*p+0.5 e0*n) ...

211 *d12+n*d22);

212 g(36 ,1) =(0.5 e0*c*d11 +( sqrt (3. e0)/2. e0*c+0.5 e0*d) ...

213 *d12+d*d22);

214 g(37 ,1) =(0.5 e0*a*d11 +( sqrt (3. e0)/2. e0*a+0.5 e0*b) ...

215 *d12+b*d22);
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216 g(38 ,1) =(0.5 e0*k*d11 +( sqrt (3. e0)/2. e0*k+0.5 e0*b) ...

217 *d12+b*d22);

218 g(39 ,1) =(0.5 e0*h*d11 +( sqrt (3. e0)/2. e0*h+0.5 e0*d) ...

219 *d12+d*d22);

220 g(40 ,1) =(f*d11+m*d12);

221 g(41 ,1)=(-c*d11 -d*d12);

222 g(42 ,1) =(f*d11+r*d12);

223 %

224 Zero_Vector = zeros (36 ,1);

225 %

226 Right_C = cat(1, Zero_Vector , ((Z.')*g));

227 %

228 e = linsolve (vpa(Left_C), vpa( Right_C ));

229 % ---------------------------------------------------------%

230 % Step 8: Calculate the components of the macroscopic

231 % stiffness tensor L_ijkl (S represents the area of

232 % the unit cell).

233 % ---------------------------------------------------------%

234 S = sqrt (3) * UC_EL ˆ2 / 2;

235 % --------------------------------------------------------%

236 % Note: The summation in Eq. (34) is performed using a dot

237 % product , as shown below. For bars 2, 4, 6, and 8, which

238 % have a length of (sqrt (2) /2) * Lu , we divide the

239 % elongation e_i by sqrt(sqrt (2) /2) for these bars

240 % (i in {2, 4, 6, 8}). This adjustment ensures that

241 % dividing the dot product by Lu yields the correct length

242 % for each bar , as specified in Eq. (34).

243 % ---------------------------------------------------------%

244 e(29 ,:)=e(29 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));

245 e(30 ,:)=e(30 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));

246 e(31 ,:)=e(31 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));
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247 e(33 ,:)=e(33 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));

248 e(34 ,:)=e(34 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));

249 e(35 ,:)=e(35 ,:) /( sqrt (( sqrt (3)*d+sin(tht /2))));

250 %

251 DeDeps11 = diff(e, E_11);

252 L1111 = simplify (dot(DeDeps11 , DeDeps11 )* ...

253 E_s * A / Lu / S);

254 %

255 DeDeps22 = diff(e, E_22);

256 L2222 = simplify (dot(DeDeps22 , DeDeps22 )* ...

257 E_s * A / Lu / S);

258 %

259 L1122 = simplify (dot(DeDeps11 , DeDeps22 )* ...

260 E_s * A / Lu / S);

261 %

262 DeDeps12 = diff(e, E_12) / 2;

263 L1212 = simplify (dot(DeDeps12 , DeDeps12 )* ...

264 E_s * A / Lu / S);

265 % ---------------------------------------------------------%

266 % Step 9: Construct the stiffness matrix [L_Mat ].

267 % ---------------------------------------------------------%

268 L_Mat = [L1111 L1122 0; ...

269 L1122 L2222 0; ...

270 0 0 L1212 ];

271 % ---------------------------------------------------------%

272 % Step 10: Calculate the mechanical properties .

273 % To express the mechanical properties in terms of the

274 % truss 's relative density (rho), first normalize the

275 % moduli by the value of the relative density ( rho_val ),

276 % and then multiply the normalized values by rho.

277 % ---------------------------------------------------------%
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278 rho_val =vpa ((36.0+6.0*( sqrt (3)*d+sin(tht /2)))*Lu*A/S);

279 %

280 nu12 = L1122/L2222;

281 nu21 = L1122/L1111;

282 E11 = L1111 *(1- nu12*nu21)/ rho_val *rho;

283 E22 = L2222 *(1- nu12*nu21)/ rho_val *rho;

284 G = L1212/ rho_val *rho;

285 %

286 Modulus = [" E_11/E_s "; "E_22/E_s "; "nu_12 "; "nu_21 "; ...

287 "G/E_s "];

288 Value = [E11/E_s; E22/E_s; nu12; nu21; G/E_s ];

289 % ---------------------------------------------------------%

290 % Print the mechanical properties in a formatted table.

291 % ---------------------------------------------------------%

292 fprintf (['<strong > Results for tht = %.10f' ...

293 '</strong >\n\n'], tht *180/ pi);

294 fprintf (['<strong > Mechanical Properties :' ...

295 '</strong >\n\n']);

296 disp(table(Modulus , Value));

297 % ---------------------------------------------------------%

298 % Identify the macroscopic strain - producing mechanisms . For

299 % detailed information , refer to the paper: "A Quest for

300 % 2D Lattice Materials for Actuation ," Journal of the

301 % Mechanics and Physics of Solids , 105 (2017) , pp. 199 -216.

302 % ---------------------------------------------------------%

303 BAUG =[-h -d h d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

304 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

305 -f -m 0 0 f m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

307 0 0 k b -k -b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

308 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...
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309 0 0 0 0 -f -r f r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

310 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

311 0 0 0 0 0 0 -k -b 0 0 k b 0 0 0 0 0 0 0 0 0 0 0 ...

312 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

313 0 0 -f -r 0 0 0 0 0 0 f r 0 0 0 0 0 0 0 0 0 0 0 ...

314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

315 0 0 0 0 0 0 0 0 c d -c -d 0 0 0 0 0 0 0 0 0 0 0 ...

316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

317 0 0 -a -b 0 0 0 0 a b 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

318 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

319 0 0 0 0 0 0 -h -d 0 0 0 0 h d 0 0 0 0 0 0 0 0 0 ...

320 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

321 0 0 0 0 0 0 0 0 0 0 -f -m f m 0 0 0 0 0 0 0 0 0 ...

322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

323 0 0 0 0 0 0 0 0 0 0 0 0 c d -c -d 0 0 0 0 0 0 0 ...

324 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

325 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b a b 0 0 0 0 0 ...

326 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

327 0 0 0 0 0 0 0 0 0 0 0 0 -f -r 0 0 f r 0 0 0 0 0 ...

328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

329 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -m 0 0 f m 0 0 0 ...

330 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

331 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b a b 0 ...

332 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -m 0 0 f m 0 ...

334 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

335 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -k -b k ...

336 b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

337 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -h -d 0 0 0 0 h ...

338 d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

339 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -r ...
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340 f r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;...

341 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

342 -c -d c d 0 0 0 0 0 0 0 0 0 0 0 0 0;...

343 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -a -b ...

344 0 0 a b 0 0 0 0 0 0 0 0 0 0 0 0 0;...

345 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

346 -h -d 0 0 h d 0 0 0 0 0 0 0 0 0 0 0;...

347 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

348 0 0 0 0 -c -d 0 0 c d 0 0 0 0 0 0 0;...

349 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

350 0 0 -h -d 0 0 0 0 h d 0 0 0 0 0 0 0;...

351 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

352 0 0 0 0 0 0 -f -m f m 0 0 0 0 0 0 0;...

353 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

354 0 0 -k -b 0 0 k b 0 0 0 0 0 0 0 0 0;...

355 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

356 0 0 0 0 -a -b 0 0 0 0 a b 0 0 0 0 0;...

357 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

358 0 0 0 0 0 0 0 0 -f -r f r 0 0 0 0 0;...

359 0 0 0 0 0 0 0 0 0 0 -p -n 0 0 0 0 0 0 0 0 0 0 0 ...

360 0 0 0 0 0 0 0 0 0 0 0 0 0 p n 0 0 0;...

361 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p -n 0 0 0 0 0 0 ...

362 0 0 0 0 0 0 0 0 0 0 0 0 -p n 0 0 0;...

363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

364 0 0 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0;...

365 0 0 0 0 0 0 0 0 -k -b 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

366 0 0 0 0 0 k b 0 0 0 0 0 0 0 0 -k -b 0;...

367 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

368 0 0 0 0 -1 0 0 0 0 0 0 0 1 0 1 0 0;...

369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -p n 0 0 0 ...

370 0 0 0 0 0 0 0 0 0 0 0 0 0 p -n 0.5 e0*p...
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371 -(sqrt (3. e0)/2. e0*p+0.5 e0*n) n;...

372 0 0 0 0 p n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

373 0 0 0 0 0 0 0 0 0 0 0 0 -p -n 0.5 e0*p...

374 (sqrt (3. e0)/2. e0*p+0.5 e0*n) n;...

375 0 0 0 0 c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

376 0 0 0 0 0 0 -c -d 0 0 0 0 0 0 0.5 e0*c...

377 (sqrt (3. e0)/2. e0*c+0.5 e0*d) d;...

378 0 0 0 0 0 0 a b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

379 0 0 0 0 0 0 -a -b 0 0 0 0 0 0 0.5 e0*a...

380 (sqrt (3. e0)/2. e0*a+0.5 e0*b) b;...

381 0 0 0 0 0 0 0 0 0 0 0 0 0 0 k b 0 0 0 0 0 0 0 0 ...

382 0 0 0 0 0 0 0 0 0 0 -k -b 0 0 0.5 e0*k...

383 (sqrt (3. e0)/2. e0*k+0.5 e0*b) b;...

384 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 h d 0 0 0 0 ...

385 0 0 0 0 0 0 0 0 0 0 -h -d 0 0 0.5 e0*h...

386 (sqrt (3. e0)/2. e0*h+0.5 e0*d) d;...

387 0 0 0 0 0 0 0 0 f m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

388 -f -m 0 0 0 0 0 0 0 0 0 0 0 0 f m 0;...

389 -c -d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c d 0 0 ...

390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -c -d 0;...

391 f r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -f -r 0 0 0 ...

392 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 f r 0];

393 % ---------------------------------------------------------%

394 % Print null space of the augmented kinematic matrix.

395 % ---------------------------------------------------------%

396 fprintf (['<strong > Null space of the augmented ' ...

397 'kinematic matrix :</strong >\n\n']);

398 NSAKM=null(BAUG ,'r');

399 disp(NSAKM);

400 % ---------------------------------------------------------%

401 % Print the vector that provides the relative ratios of the
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402 % nodal displacements for the collapse mechanism under

403 % hydrostatic loading at tht = 60 degrees .

404 % ---------------------------------------------------------%

405 if tht == (60* pi /180)

406 fprintf (['<strong >The relative ratios of the nodal ' ...

407 ' displacements for the </ strong >\n']);

408 fprintf (['<strong > collapse mechanism under ' ...

409 'hydrostatic loading :</strong >\n\n']);

410 disp(NSAKM (: ,3));

411 end

412 % ---------------------------------------------------------%

413 % Print the vector that provides the relative ratios of the

414 % nodal displacements for the collapse mechanism under

415 % pure shear loading at tht = 145.6589 degrees .

416 % ---------------------------------------------------------%

417 if tht == (145.658906273255289* pi /180)

418 fprintf (['<strong >The relative ratios of the nodal ' ...

419 ' displacements for the </ strong >\n']);

420 fprintf (['<strong > collapse mechanism under ' ...

421 'pure shear :</strong >\n\n']);

422 disp(NSAKM (: ,4));

423 end
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