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A. Upper bounds on the elastic moduli of two-phase solid-void isotropic

materials

In the following, E, G, and K represent Young’s modulus, shear modulus, and bulk
modulus, respectively, and v denotes Poisson’s ratio. When these parameters are writ-
ten without subscripts, they refer to the properties of the solid-void composites; when
accompanied by the subscript “s”, they describe the properties of the solid phase. The
subscript “HS” indicates the Hashin-Shtrikman upper bounds [1, 2|, “CGD” refers to
the upper bounds for beam networks in 3D derived by Christensen [3] and Gurtner
and Durand [4], and “NUB” denotes the new upper bounds introduced in this study.
Poisson’s ratio of the dense solid phase, vy, ranges from —1 to 0.5, for both 2D and 3D
composites, with the exception of hierarchical lattices (section A.3), wherein the solid
phase itself comprises a lattice structure on successively smaller scales, and therefore

—1 < 15 < 1. Furthermore, p denotes the relative density of the composite.

Al. 2D materials

When expressed in terms of the relative density p of the composite and Poisson’s ratio

vs of the solid material, the Hashin-Shtrikman upper bounds in 2D have the following

form:
%HSS 3 —pQﬁ’ (A1)
CZS - 8—25[(73—%)’ (A2)
[;}:S B 4—2ﬁ€1+us)’ (43)
s = L PL— ) (A4)

Supplementary Fig. 1a illustrates the evolution of vyg (equation A4), which repre-
sents the Poisson’s ratio of a composite that satisfies the Hashin-Shtrikman (HS) upper
bounds for a given combination of p and vs, as a function of v5,. When p = 1, vyg is

equivalent to vg, as expected. For p < 1, vygg is confined within the limits of vgg in and

VHS-max, Where vgg min corresponds to v — —1 (i.e., vus|,,——1) and vpg max corresponds

to vs — 0.5 (i.e., vus

v—0.5)- As p decreases, the range of vyg progressively narrows.
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Supplementary Fig. 1 | Upper bounds on the elastic moduli of two-dimensional two-phase
solid-void isotropic composites. a, Variation of vygg (Poisson’s ratio of a composite adhering to the
HS upper bounds for a specific combination of relative density, p, and solid material Poisson’s ratio, v;
see equation A4), as a function of v5. b-d, Evolution of the upper bounds for Young’s modulus, shear
modulus, and bulk modulus as functions of the composite Poisson’s ratio, v (see equations A5-A14),

for p values of 0.75, 0.50, and 0.25, respectively.

To elucidate the significance of the limits vgs min and s max, consider 2D lattices
at the low-density limit (p < 1), where vpg converges to a single value: vgs min = vus =
Vps-max = 1/3. For instance, take the infinite periodic Kagome truss, in which all cell
walls align with one of the three symmetry lines (labelled I, II, and III in Extended
Data Fig. 1a).

When the Kagome truss is subjected to uniaxial loading along one of its symmetry
lines, the cell walls aligned with the loading direction deform purely through stretch-

ing. The local axial strain in these aligned cell walls matches the applied macroscopic



strain (see Fig. 2a). This equivalence of local and macroscopic strains indicates maxi-
mal resistance to uniaxial loading (although, for arbitrary loading directions, the local
and macroscopic strains may not necessarily be equivalent in the Kagome truss). The
remaining cell walls undergo rigid-body motion to accommodate the overall deforma-
tion, meaning that only the cell walls aligned with the loading direction—comprising

one-third of the total cell walls—bear the load.

In 2D, isotropy of the elasticity tensor requires three-fold structural symmetry [5, 6].
Consequently, for an isotropic 2D lattice, at most one-third of the cell walls can con-
tribute to carrying uniaxial loads along a symmetry axis. The fact that the maximum
number of cell walls allowed by isotropy stretch to the maximum possible strain (i.e.,
the applied macroscopic strain) renders the Young’s modulus of the Kagome truss the

upper bound for 2D lattices: E/E; < p/3.

Hydrostatic loading is analogous to uniaxial loading applied uniformly in all di-
rections, and pure shear corresponds to the combined uniaxial tension and uniaxial
compression in two mutually perpendicular directions. It is therefore evident that the

Kagome truss attains the upper bound for all three elastic moduli.

Equations (2) through (5) demonstrate that isotropic materials are characterised by
only two independent elastic constants. This indicates that an isotropic truss exhibiting
a Poisson’s ratio different from that of the Kagome truss can achieve equivalence with
the Kagome truss in only one elastic modulus, while being inferior in the remaining
two. Consequently, a 2D isotropic truss where v # 1/3 exhibits a suboptimal distri-
bution of the solid phase, resulting in a reduced proportion of load-bearing cell walls

under specific loading conditions at low relative densities.

Variational methods used to derive upper bounds on the elastic moduli, including
those of Hashin and Shtrikman, rely on the assumption of an optimal distribution of
solid material that maximizes load-bearing capacity under all loading conditions. For

low-density 2D lattices, this results in vgsmin = Vas = Vhasmax = 1/3, reflecting the



most efficient material arrangement. Similarly, vgs.min < v < Vgs-max defines the range
of Poisson’s ratio where the composite maintains an optimal solid phase distribution.
However, this does not preclude the determination of upper bounds for v < vgg.min Or

U > VHS-max, as explained below.

Equation (A2) illustrates that Ggg is inversely proportional to v, reaching its

peak value at vgs.mim (specifically, at vys|,.——1). Concurrently, the isotropy relation
G = E/(2 + 2v) demonstrates that G increases as v decreases, thus achieving its max-
imum when v — —1. These two principles, when considered in tandem, establish that

Gus

v—s—1 serves as a rigorous upper bound for the shear modulus within the com-
posite’s Poisson’s ratio range from -1 to vgs.min. The corresponding upper bounds for
Young’s modulus and bulk modulus can subsequently be determined employing the

isotropy relations specified in in equations (2) and (4).

In a parallel manner, equation (A3) demonstrates that Kys is a monotonically
increasing function of vy, reaching its maximum at vgs max (i.e., when vs — 0.5). Addi-
tionally, the isotropy relation K = E/(2 — 2v) dictates that K attains its maximum as
v approaches 0.5. The confluence of these two conditions establishes that Kys |, 05
serves as a rigorous upper bound for the bulk modulus within the composite’s Poisson’s
ratio range from vgs max to 0.5. The corresponding upper bounds for Young’s modulus
and shear modulus can be derived through the application of the isotropy relations

elucidated in equations (3) and (4).

Considering the aforementioned factors, the upper limits of the elastic moduli for
two-phase solid-void isotropic materials in 2D can be expressed for any given combi-

nation of 0 < p <land —1 <v < 1. For —1 < v < vgg.min:

s G .
E2UB =2 (1 + V) GNUB7 (Aﬁ)
K 1+v

oL, a7



when vagmin < ¥V < VHS-max.

1-2v)p—(1—
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Supplementary Figs. 1b-d illustrate the evolution of the upper limits of the elastic
moduli as functions of v for p values of 0.75, 0.50, and 0.25. As p approaches zero,

these upper bounds converge to those outlined in equation (6); see also Fig. 1a.

A2. 3D materials

Supplementary Fig. 2a illustrates the relationship between rygs and v for various p
values (equation A18) in 3D solid-void composites. As in the 2D case, vyg covers the
entire thermodynamically feasible range of Poisson’s ratio in 3D, from -1 to 0.5, but
only when p = 1. For p values below 1, the highest ryg is less than 0.5, decreasing
further as p decreases (compare Supplementary Figs. 2b and 2¢). Employing the same
methodology used for 2D, the upper bounds on the elastic moduli for two-phase solid-
void isotropic materials in 3D can be expressed for any given pair of 0 < p < 1 and

—1 < v <0.5. For —1 < v < VgS.max:

Exvg _ Pus _ 2(7T—5vs)p
E Es  3(1—v)(9+5w) —p(1+ 1) (13— 1515)°

(A15)
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(A19)
and for vgg.max < v < 0.5:
Kaop K| 4p
Es - Es vs—0.5 — 9(1 — p)v (AQO)
ENUB
E = 3(1 - 2V) KNUB, (A21)
GNUB - 3(1 — 21/)
E,  2(1+v) Kyve, (A22)

A comparative analysis of Supplementary Figs. 2 and 3 reveal substantial dispari-
ties between the 2D and 3D solid-void composites. In 3D, vgg encompasses the entire
spectrum of negative Poisson’s ratios irrespective of the p value. Furthermore, the up-
per bound of the shear modulus in the negative Poisson’s ratio regime continuously
increases as v decreases, approaching infinity as v tends towards —1 for all p values.

Conversely, this behaviour is observed exclusively at p = 1 in the 2D composites.

Another significant distinction lies in the nature of the material represented by
p — 0 in different dimensions. In 2D, p — 0 corresponds to interconnected beam
networks or truss lattices, whereas in 3D, p — 0 allows for both closed-cell (such
as plate and shell lattices) and open-cell (such as truss lattices) configurations. The
variational formulation of Hashin and Shtrikman does not differentiate between closed-
and open-cell materials. Consequently, the HS upper bounds effectively correspond to
closed-cell materials, which are generally stiffer than open-cell materials. The HS upper

bounds for p — 0 and —1 < v < vggmax reduce to:
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Supplementary Fig. 2 | Upper bounds on the elastic moduli of three-dimensional two-
phase solid-void isotropic composites. a, Variation of vyg (Poisson’s ratio of a composite adhering
to the HS upper bounds for a specific combination of relative density, p, and solid material Poisson’s
ratio, vs; see equation A18), as a function of v5. b-d, Evolution of the upper bounds for Young’s
modulus, shear modulus, and bulk modulus as functions of the composite Poisson’s ratio, v, for:
b, composites with p = 0.75 (equations A15-A22); ¢, closed-cell composites in the limit p — 0
(equations A23-A30), and d, open-cell composites in the limit p — 0 (equations A31-A36).
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N TE s =L (A28)
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Christensen [3] and Gurtner and Durand [4] derived more stringent upper bounds
for open-cell composites (or truss lattices) by constraining the solid distribution in
the composite to slender struts. As in the 2D case, these upper bounds, derived from
variational principles, are limited to a single value of the composite’s Poisson’s ratio,
v = 0.25 in 3D. Here, we extend these bounds to encompass the full range of Poisson’s

ratios. For —1 < v < 0.25:

Gynu  Geep

p
— A3l
FEy FEy 15’ ( )
FE
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The evolution of the upper bounds on the elastic moduli as a function of v for both
closed- and open-cell composites in the limit of p — 0 is shown in Supplementary Figs.

2c and 2d, respectively.



AS8. Hierarchical lattices

In hierarchical or multiscale lattices, each strut is composed of a smaller-scale lattice [7].
Let the mechanical properties of the larger-scale lattice be denoted by the subscript
“1” and those of the smaller-scale lattice by “2”. The overall relative density of the
composite is thus given by p = p; p2. For p; — 0 (implying p — 0), Poisson’s ratio of
the cell wall, vs = 15, can span the full theoretical range from —1 to 1, regardless of
whether the composite is a 2D or 3D material. In the limit of dilute relative density
(p < 1), the upper bounds of the elastic moduli for truss lattices, in both 2D and
3D, remain independent of v5. Thus, hierarchy has no impact on the upper bounds of
truss lattices. However, this principle does not apply to 3D plate or shell lattices, as

evidenced in equations (A23)-(A30).

For low-density 3D plate or shell lattices, shifting the upper limit of v from 0.5 to
1 increases Vgs.max from 0.304 to 0.429 (equation A26). This shift enables the upper
bounds for all three elastic moduli (equations A23-A25) to grow significantly as v
approaches vyg max (i-€., as vg — 1). However, the moduli remain finite since vy can
approach but never attain 1. In the regime where vpgmax < v < 0.5, the upper bounds

simplify to:

K K

EB = THS o1 > 1, (A37)
E

E;JB = 3(1 - 21/) KNUBa (A38)
GNUB 3(1 — 21/)

E,  2(1+v) Knus, (A39)

Equations (A37)-(A39) demonstrates that increasing v beyond vps max does not al-
ter Knugp, which remains significantly larger than Ej. Concurrently, Fxug and Gnus

decrease continuously as v increases, with Exuyg — 3Gnus — 0 as v approaches 0.5.

In our derivation of upper bounds for isotropic materials, encompassing two-dimensional,
three-dimensional, and hierarchical materials, we allowed the Poisson’s ratio of the

composite v to fall below vygmin Or exceed Vs max, Where v is independent of the solid
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material’s Poisson’s ratio v5. This approach involves an implicit assumption that any
thermodynamically permissible v value can be achieved in two-phase solid-void com-
posites through appropriate engineering of the solid phase distribution, regardless of
the relative density p. While this assumption holds for low-density lattices, it remains
subject to scrutiny for high-density composites. Our analysis of various lattices reveals
that v deviates from the extremes of —1 and 1 as p increases. For instance, the Poisson’s
ratio of the hexagonal lattice, which approaches 1 in the low-density limit, decreases
with increasing p, falling below 0.5 for p > 0.5 [8, 9]. It is therefore imperative to note
that the existence of upper bounds on elastic properties does not necessarily imply the
availability of materials that achieve these bounds. Nonetheless, these findings offer in-
sights that may guide future efforts in designing stiff, lightweight materials, broadening

potential directions for material innovation.

B. Mechanical properties and mechanisms of infinite periodic trusses trough

matrix methods

In the regime of low relative density (p < 1), the mechanical behaviour of an infinite
periodic pin-jointed truss closely mirrors that of a rigid-jointed lattice. This correspon-
dence enables a simplified mathematical analysis of the lattice’s mechanical properties

by using the less complex truss model as a proxy.

Seminal papers by Pellegrino and Calladine [10] and Pellegrino [11] established
methods for identifying inextensional mechanisms and self-stress states in finite pin-
jointed truss structures using equilibrium matrix analysis. These methods were subse-
quently expanded by Deshpande et al. [12], Guest and Hutchinson [13], and Hutchinson

and Fleck [14] for application to infinite periodic trusses.

Ickin and Tekoglu [15] recently enhanced existing matrix methods to derive closed-
form expressions for the mechanical properties of lattice materials. They also introduced
an innovative finite element method-based approach to identify self-stress states and
infinitesimal mechanisms in periodic trusses under specific uniform macroscopic loading

conditions (used to create Fig. 2 of this study). This research adopts the methodologies
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outlined in [15]. Below, we elucidate the key steps of the matrix methods as applied
to infinite periodic twisted Kagome trusses. Additionally, we provide MATLAB [16]
codes implementing the matrix methods for twisted Kagome (Appendix A), hexachiral
(Appendix B), and Double Triangular trusses (Appendix C). The unit cells of these
trusses, used in the matrix analysis, are shown in Supplementary Fig. 3 (see also Fig. 1
and Extended Data Fig. 1). For more comprehensive information on matrix methods,

readers are referred to Ickin and Tekoglu [15] and the references therein.

An infinite, periodic, pin-jointed twisted Kagome truss can be generated by trans-
lating the unit cell shown in Supplementary Fig. 3a using the direct lattice translation

k

vector & = nFay, where n* denotes any set of integer values. The translation basis is

defined as a;, = <cos(k:7r/3)z'+sin(/f7r/3)j>2COS(Q)L, with k£ € {1,2}, and ¢ and j being
unit vectors along the x; and z5 axes, respectively. Under a periodic displacement field,

the displacement difference between homologous boundary joint pairs is given by:

d — di? = ((cos(m/3) By + sin(/3) Eyz) 2 cos(0) L,

dy — dY = (cos(w/3) Exy — sin(7/3) Exa )2 cos(0) L, (B1)
where d,(f) is the displacement of the i’th joint along the k-axis direction, and FEj; and
Ejo are the components of the macroscopically homogeneous strain field E imposed
on the pin-jointed truss. Bar elongations can be determined from joint displacements

through the relation:
B-d=e, (B2)

where B is the kinematic matrix, d is the joint displacement vector, e is the bar

elongation vector. For the twisted Kagome trusses:

d'=[d" &) 4P 4 4P &) 4P &) @) 4 4 &), (B3

e =[eg e ez ey e5 e, (B4)
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)

Supplementary Fig. 3 | Node and bar numbering scheme of the unit cells for matrix
analysis. Illustrations of unit cells with corresponding node and bar numbering schemes for three types
of infinite periodic pin-jointed trusses: a, twisted Kagome (0° < 6 < 60°); b, hexachiral (0° < 6 < 90°);
and ¢, Double Triangular (0° < 6 < 180°). Empty circles represent the joints where the cell walls meet,

and unit cell boundaries are indicated by dotted lines.
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cos(f — 7/2)
—cos(0)

—cos(f —7/2)
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cos(6 + 7/3)
cos(f — 7/6)
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cos(f —7/3)
—cos(f0 +7/6)
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0
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cos(f —7/6)

0

0

cos(6 +m/3)

—cos(f# —7/6)

0

where the superscript T denotes the transpose operator.

cos(f — m/3) 0

cos(6 + 7/6) 0

0 0

0 0

0 0

0 0

0 cos(0)

0 — cos(0 — 7/2)
—cos(0 —7/3)  —cos(f)
—cos(0 + 7/6)  cos(0 —7/2)

(B5)

Substituting the periodicity relations (B1) into the unit cell kinematic relation

B - d = e results in the reduced kinematic statement B - d = & for the infinite, pin-

jointed, twisted Kagome truss, where:

cos(6)
cos(0 —m/2)
—cos(#)

—cos(0 —7/2)

— cos(6+7/3)
— cos(6 — 7/6)
cos(6 + 7/3)
cos( — 7 /6)
0

0

cos(0 — 7/3)
— cos(f + 7/6)
0
0
— cos(0 — 7/3)

cos(0 + m/6)
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—cos(f +7/3)
cos(f —7/6)

0

cos( + m/3)

—cos(f —7/6)

cos(0 — 7/3) 0
cos(6 + 7/6)) 0
—cos(0 —7/3)  —cos(f)
—cos(0+7/6) cos(0 —7/2)

0 cos(0)
0 — cos(0 — 7/2)
(B6)
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d'=d" a) a4 4P 4], (B7)
el =le1 e es es+gu(E0) es+gs(E.0) es+gs(E,0)], (B8)
with

g(E,0) = (cos(@) (Eu + 3E5 — 2\/§E12)—

(B9)
cos(f — m/2) (\/§E11 —\V/3Ey — 2E12)) cos(0)L/2,
95(E.0) = (COS(Q) (Ell +3E2» + 2\/§E12>+
(B10)
cos(f —7/2) (\/_EH — V/3FEq + 2E12)) cos(0)L/2,
g6(E,0) = <cos(9) Ey; —cos(0 —7/2) Elg) 2 cos(0 (B11)

The conjugate reduced equilibrium relation is A - £ = 0, where A denotes the
reduced equilibrium matrix and ¢ denotes the reduced bar tension vector. The principle
of virtual work entails A = BT, and the null space of A, Z = Null(A) = Null(B"), is
a linearly independent basis spanning all the reduced bar tension vectors £ compatible

with unit cell-periodic states of self-stress. For the twisted Kagome trusses:

21/3sin(26)/3 2v/3cos(20 +7/6)/3 —24/3sin(20 +7/3)/3 —1 1 0
A

2v/3sin(20 +7/3)/3  —24/3sin(20)/3  —2v/3cos(20 +7/6)/3 —1 0 1
(B12)

It is important to emphasize that each column of the Z matrix represents the rela-
tive tension in each bar for an independent state of bar tensions. For any macroscopic
stress state (where the loading is applied at infinity on the infinite periodic truss, re-
sulting in zero nodal forces), the bar tensions must conform to a linear combination of
these independent tension states. This ensures that the bar tensions satisfy the equi-

librium conditions dictated by the macroscopic stress field.

The bar tension ratios provided by the Z matrix can be expressed through a system

of linear homogeneous equations:

Q(l—n)xl Znx = 0. (B13)
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In this context, [ represents the total number of bars in the unit cell, while n denotes
the number of independent self-stress states (for twisted Kagome trusses, [ = 6 and
n = 2). The matrix Q is defined as the transpose of the left null space of Z, expressed

as:
T

Q= (Null (27)) . (B14)

Given that the bar tensions ¢ corresponding to any macroscopic stress state must be a

linear combination of the columns in the Z matrix, one can express:
Qt =0. (B15)

In this study, we assume, without loss of generality, that all [ bars in the unit cell possess
identical axial rigidity EsA. When expressing bar tensions in terms of bar elongations

(t; = EsAe;/L;, no summation on [), equation (B15) simplifies to:
QeV) =0, (B16)

where each element of e(”) corresponds to the elongation of the of the [th bar relative
to its length, i.e., ¢;/L;. To rewrite equation (B16) in terms of e, the bar lengths are

absorbed into the @ matrix, resulting in:
Piys €6x1 = 0. (B17)

Here, P;; = Q;;(L,/L;), with L, = L as the unit bar length, and no summation over
7. Since the right-hand side remains zero, multiplying by L, does not affect equa-
tion (B17) but ensures that the components of the P matrix are dimensionless. For
twisted Kagome trusses, where the bar lengths are uniform (L; = L, = L), P;; sim-
plifies to @);;. However, this equivalence does not hold for structures with non-uniform

bar lengths, such as Double Triangular trusses (see Appendix C for details).

The twisted Kagome unit cell comprises six bars; however, (B17) provides only four
equations. The remaining two equations for the bar elongations e can be derived by by
recognising that the Z matrix is the left null space of the reduced kinematic matrix B

and that e = e — g(FE):

Z"Bd=2Z"e=0
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—Z'e=Z"g(E). (B18)

Combining (B17) and (B18) into one set of equations provides the complete set of

equations for e:

- lrin)

where the horizontal line between matrices (and vectors) denotes matrix concatenation

operation. For the twisted Kagome lattices, equation (B19) reduces to:

€1

€2

€3

€4

€5

€6

_ 1 1 1 0 0ol
2v/3sin(20 +7/3)/3  2v/3cos(20 +7/6)/3 0 1 00
—2+/3sin(20)/3 —2+/3sin(20 + 7/3)/3 0 0 10
—2+/3cos(20 +7/6)/3 2v/3sin(26)/3 0 0 0 1
2/3sin(26) /3 2v/3cos(20 +7/6)/3 —2/3sin(20 +7/3)/3 -1 1 0
| 2v/3sin(20 + 7/3)/3 —2+/3sin(26)/3 —2v/3cos(20 +7/6)/3 —1 0 1] |
_ 0
0
0
0
V3/2sin(20)L (Eyy — Eg) + v/3(cos(20) + 1)L Eiy
[(V/3/25in(20 +7/3) + 3/4)L (Ev1 — Ex) + v/3(cos(20 + 7/3) + 1/2)L By

(B20)

The last two equations in (B20) show that macroscopic strain producing (E # 0) inex-

tensional mechanisms (e = 0) of the twisted Kagome lattices occur for the equibiaxial
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strain state Ey, = Eyy with F5 = 0, regardless of the twist angle. The collapse modes
correspond to rigid-body rotations of the unit cell’s two triangles at equal angles but
in opposite directions, with node (1) serving as the rotation center (see Supplementary

Fig. 3a). Bar elongations are derived by solving equation (B20):
e1 = (cos(20) + 1) L/4 (Eyy — Ey) + sin(20)L/2 Ey,
e2 = (cos(20 — 7/3)/4+ 1/8) L (Exp — Eny) + (cos(20 + 7/6) /2 + V3/4) L Ei,
e5 = (cos(20+ 7/3)/4+ 1/8) L (Exp — Eny) — (sin(20 + 7/3)/2 + V3/4) L Ehs,
es = (cos(20 — 7/3)/4+ 1/8) L (Exp — Euy) — (cos(20 + 7/6)/2 + V3/4) L En,
e5 = (cos(20 + 7/3)/4 4+ 1/8) L (Eza — Eni) + (sin(20 + 7/3)/2 + v/3/4) L En,

€g — (COS(QQ) + 1) L/4 (EH - EQQ) — SIH(QQ)L/Q Elg. (B21)

The strain energy per unit area of the unit cell represented in Supplementary Fig.
3ais W = t;e;/(25), where S is the unit cell area calculated using S = 2+/3 cos?(#)L2.

The components of the macroscopic stiffness tensor «£ are thus given by:

PW(E) E.Ade(E)a(E)
= = ) 1,2 B22
GCaB'yé aEaﬁaE'y(s LS 5Ea,3 (9E75 v Oéaﬁv’% € { ’ }7 ( )

summed over [ € {1,2,...,6}. By substituting the bar elongations from equation (B21)
into equation (B22), the components of the macroscopic stiffness tensor for twisted
Kagome lattices are obtained:

V3 EA

8 L’
(B23)

oEllll = cL’2222 = _I1122 = _£2211 = o5)1212 = e[)2121 = o[)1221 = o5)2112 =

irrespective of the twist angle 6. The elastic constants of the twisted Kagome lattices

are derived as follows:

= = B24

Es s s 07 ( )
G 351212 COSQ(Q) _

ES ES 8 p? ( 5)



L= Lo L1z
Lage L1

where p = v/3A/(cos?(0) L) is the first-order relative density of the twisted Kagome lat-

=1

: (B26)

tices. The fact that v — —1 at p — 0 for twisted Kagome lattices can also be deduced
as follows. Under uniaxial compression, for example, along the xi-axis, the collapse
mechanism of the pin-jointed twisted Kagome trusses is activated, where E1; = Fo

and Fis = 0, and consequently v = —FEy,/FEjy = —1.

Guest and Hutchinson [13] demonstrated that the null space of the augmented
kinematic matrix, B*'¢ offers a linearly independent basis for the nodal displacements
corresponding to infinitesimal mechanisms in an infinite periodic truss, regardless of
whether they induce macroscopic strain (see also [17]). The MATLAB code provided
in Appendix A illustrates this by calculating the relative nodal displacement ratios for
a collapse mechanism under hydrostatic loading. These computed displacements are in

perfect agreement with the finite element (FE) results shown in Fig. 2h.

Appendix B contains a MATLAB code for analyzing hexachiral lattices. Here, the
hexachiral microarchitecture is characterized by the angle § = arctan(2r/L), instead
of the R, = R/r ratio used in the main text, which simplifies the construction of the
B matrix. The analysis produces an empty Z matrix, irrespective of the 6 value, in-
dicating that infinite periodic hexachiral trusses exhibit macroscopic strain-producing
collapse mechanisms under all loading conditions. Consequently, for p < 1, hexachiral
lattices are bending-dominated across all loading scenarios, in agreement with the re-

sults shown in Figs. 2m-p.

In contrast to the MATLAB codes for the twisted Kagome and hexachiral trusses,
the MATLAB code for Double Triangular trusses, provided in Appendix C, cannot solve
the equations if 6 is defined symbolically. Therefore, the user must assign a specific 6
value for each run. For all 8 values except 60° and 145.66°, the null space of the B*"®
matrix contains two columns, corresponding to the rigid body translations of the entire
truss in the z1 and x5 directions, indicating redundancy and the absence of infinitesimal

mechanisms, whether strain-producing or not. At § = 60°, the truss supports only shear
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loading, while at § = 145.66°, it supports only hydrostatic loading. The MATLAB
code calculates the relative nodal displacement ratios for collapse mechanisms under
hydrostatic loading at § = 60° and pure shear loading at 8 = 145.66°, with the results
perfectly matching the FE simulations presented in Fig. 2.

C. Deformation mechanisms in lattice materials

The effective macroscopic elastic moduli of lattice materials can be expressed as power-
law relationships in terms of the relative density p and the solid’s Young’s modulus Fj
as follows:

7:Aﬁa7 7:Bﬁb7 720507 (Cl)

where A, B, and C' are functions of p, Poisson’s ratio v, and the the lattice’s microar-
chitecture. The exponents a, b, and ¢ typically range from 1 to 3 in 2D lattices and
from 1 to 2 in 3D lattices, with the lower bound corresponding to stretching-dominated
behaviour and the upper bound to bending-dominated behaviour. In the limit of low
relative density (p — 0), the exponents adopt boundary values of either 1 or 3 in 2D,
and 1 or 2 in 3D [7].

For instance, in a 2D hexagonal lattice, which is bending-dominated under uniaxial
and shear loading and stretching-dominated under hydrostatic loading, the exponents
are a = 3, b = 3, and ¢ = 1. If the elastic moduli and Poisson’s ratio were entirely inde-
pendent, there would be eight possible combinations of these exponents as p — 0, each
representing distinct deformation mechanisms under uniaxial, shear, and hydrostatic
loads. Here, we address the central question of which combinations are theoretically

feasible for isotropic lattices.

C1. 2D lattices

Substituting equation (C1) into equations (2) through (4), we obtain:

A
— 5la=b) _q 2
A
-1 ~(a—c)
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QCﬁ(cfb)
=———1 C4
Cﬁ(c_b) +B ) ( )
From (C2), it is clear that if a < b, then v — oo as p — 0. Similarly, (C3) indicates
that if a < ¢, then v — —o0 as p — 0. Therefore, for physically meaningful results, the

following inequalities must hold:
a>b AN a>ec. (Ch)

This leads to the conclusion that the following combinations of deformation modes
are not possible (where S denotes stretching-dominated” and B denotes "bending-
dominated”): a = 1, b = 1,¢ =3 (S, S, B);a=1,b =3, ¢c =3 (S, B, B); and
a=1,0=3,c=1(S, B,S). In other words, if a lattice is stretching-dominated under
uniaxial loading (i.e., a = 1), it must also be stretching-dominated both under shear

and hydrostatic loadings, implying that a =1 <= b=c=1.

In accordance with the inequalities in (C5), a potentially feasible scenario emerges
witha=3,b=1, c=1 (B,S,S). Substituting a = 3 and b = 1 into (C2) yields:

A
uzQ—ﬁQ—l = v—-1 as p—0. (C6)

On the other hand, substituting a = 3 and ¢ = 1 into (C3) produces:

v=1- = v—1 as p—0. (C7)

20"
The contradiction between the results from (C6) and (C7) indicates that the combina-
tiona=3,b=1,c=1 (B, S, S) is also not feasible. FE analyses conducted in this
paper have already established that the remaining four deformation combinations—(S,
S, S), (B, B, B), (B, S, B), and (B, B, S)—are realizable and correspond to different
lattice designs. The following sections will explore these feasible combinations in detail,

along with their associated ranges of Poisson’s ratio.

C1.1. a=b=c (S, S, S or B, B, B)
In cases where the lattice is either stretching- or bending-dominated under all loading

conditions, Poisson’s ratio simplifies to:

(C8)



A
2C

T~ C+B

(C10)

Solving these equations yields the following relations:

_ 4BC _ AC o AB
- B+C’ 40— A’ 4B - A’

(C11)

The examination of equations (C8) to (C11) leads to the following conditions and

their corresponding ranges for Poisson’s ratio:

(2C<A<4C N A<2B N C<B) = -—-1<v<0 (C12)
A=2B=2C = wv=0 (C13)
2B<A<4B N A<2C N B<(C) = 0<v<l] (C14)
(C—-0<«— A—4C) = (B—Byg N v——1) (C15)
(B—-0 <= A—4B) = (C—Cyp N v—1) (C16)

C1.2. a=3, b=1, ¢c=3 (B, S, B)
When the lattice is bending-dominated under uniaxial and hydrostatic loadings and

stretching-dominated under shear, Poisson’s ratio can be expressed as:

A

V= 2752 — 1, (Cl?)
A
=1-— C18
207 ( )
2C p*
= —— - C19
Cp2+B 7 (C19)
leading to the following relations:
4BC AC p? AB
A= —"— = C=———. C20
B+ Cp?’ 4C — A’ 4B — Ap? (C20)
The effect of A, B, and C' on Poisson’s ratio can be expressed through the following
conditions:
(20 < A<4C N Ap><2B N Op*’<B) = -1<v<0 (C21)
Ap*=2B=2Cp> = v=0 (C22)
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(2B < Ap?*<4B N A<2C A B<Cp?) = 0<v<l (C23)
(C—-0 V p—>0<«+<= A—4C) = (B—Buyg N v— —1) (C24)

(B—0 += Ap*—4B) = (C—Cug A v—1) (C25)

C1.3. a=8, b=3, c=1 (B, B, S)
If the lattice is bending-dominated under uniaxial and shear loadings but stretching-

dominated under hydrostatic loading, Poisson’s ratio is given as follows:

A
A _
2C

Accordingly, the relations among the parameters A, B, and C' are given by:

~2
A:B;lffc, B:wfip?, :423_’)A. (C29)
The conditions governing Poisson’s ratio values in this scenario are:

(2C < Ap> <4C AN A<2B N C<Bp?) = —-1<v<0 (C30)
Ap?=2Bp*=2C = wv=0 (C31)
(2B<A<4B A Ap*<2C A Bp*<(C) = 0<v<l (C32)
(C =0 < Ap*—40) = (B—Byg A v— —1) (C33)
(B—=0 V p—0<«<= A—4B) = (C—>Cyg N v—1) (C34)

The parameters A, B, and C, along with the exponents a, b, and ¢, presented in
Extended Data Tables 1 and 2 for various lattices, were obtained by fitting power func-
tions to the finite element results. It is straightforward to demonstrate that, depending
on the deformation mechanism of each lattice (as outlined in Table 1), the fitting co-
efficients can be substituted into the corresponding sets of equations and inequalities

provided in sections C1.1, C1.2, or C1.3, resulting in perfect agreement.
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C2. 3D lattices

For three-dimensional isotropic materials, the expressions for Poisson’s ratio in terms

of elastic moduli are given as:

A . 1E 3G

1
=25 T 26K " 2% 1 3K) (G35)

14

By plugging the effective elastic moduli given in (C1) into (C35), we arrive at the

following representations for Poisson’s ratio:

A

= _—po 1 C36
1 A

= — —pl9 C37
1 3Bp—

=_- - C38
2 2Bp—9 +6C’ (C38)

As with the two-dimensional case, these equations yield physically meaningful values

for Poisson’s ratio only if the following conditions are met:
(a>b N a>c) N (b<a <= c=a). (C39)

These constraints render certain deformation combinations infeasible: a = 1, b = 1,
c=2(5,8Ba=1,b=2,¢c=2(S,B,B);a=1,b=2,¢=1(S, B, S); and
a=2b=1c=1 (B, S, S). Consequently, we are left with four viable combinations,

analogous to those in the two-dimensional scenario.

Below we outline the relationships between Poisson’s ratio v and the parameters A,
B, C', along with the conditions that must be fulfilled for v to attain specific values in

each of the possible deformation combinations.

C2.1. a=b=c (S, S, S or B, B, B)

A

- 1 4

v=oe—L (C40)
1 A

_r_ 4 41
1 3B

T2 2B 4+6C (C42)
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B A AB
9BC BZSC c

A= 07 a5
B +3C’ 9C — A’ 3(38 — A)

BC<A<9C N A<2B AN 3C<2B) = -—-1<v<0
A=2B=3C = v=0

2B<A<3B N A<3C AN 2B<3C) = 0<v<05
(C—-0<«—= A—-9C) = (B—Byg N v—-—1)

(B—-0<«<—= A—=3B) = (C—=Cyg N v—0.5)

C2.2. a=2, b=1, c=2 (B, S, B)

A
v=opP— 1
1 A
=3 60
1 3B
"2 2B+6CH
9BC 3ACH AB
A=pae PToc—a YT s@Boap)

BC<A<9C N Ap<2B N 3Cp<2B) = —-1<v<0
Ap=2B=3Cp = v=0

(2B<Ap<3B N A<3C A 2B<3Cp) = 0<v<05
(C—-0V p—>0<«<= A—->9C) = (B— By N v——1)

(B—0<«<= Ap—3B) = (C—Cyg AN v—0.5)

C2.3. a=2, b=2, c=1 (B, B, §)

(C43)

(C49)
(C50)

(C51)

(C58)
(C59)

(C60)



9BC 3AC ABp

A:m, B:m, O:m. (C61)
(BC <Ap<9C N A<2B AN 3C<2Bp) = -—-1<v<0 (C62)
Ap=2Bp=3C = v=0 (C63)
2B<A<3B N Ap<3C AN 2Bp<3C) = 0<v<05 (C64)
(C—=0<«<= Ap—>9C) = (B—Buyp N v——1) (C65)
(B—-0V p—0<«<= A—-3B) = (C—-Cwp A v—05) (C66)
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APPENDIX A: MATLAB CODE FOR THE STRUCTURAL ANALYSIS
OF THE TWISTED KAGOME TRUSSES

b= o o o %
% Clear all variables from the current workspace to free

% up system memory.

R e e e L e T y/
clear
R et L LS L P %

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

Variables used in the analysis:

tht: The angle that defines the geometry of the infinite
periodic twisted Kagome truss
(see Supplementary Fig. 3a).

rho: Relative density of the truss structure.

E_s: Young's modulus of the material that makes up the

truss's cell walls.

Lu: The unit bar length. For twisted Kagome Kagome truss,
all bars have the same length L = Lu
(see Supplementary Fig. 3a).

A: The cross-sectional area of the bar elements.

a, b, ¢, d, f, r, h, k, m: Direction cosines of the bar

elements.

UC_EL: The edge length of the unit cell (see Fig. XXX).

E_ij (i, j in {1, 2}): Components of the externally
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b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

imposed, macroscopically uniform strain field.

di1l, d12, d22: Deformations of the unit cell in response

to the imposed macroscopic strains.

Eij and nuij (i, j in {1, 2}) represent the truss's
Young's modulus and Poisson's ratio in the i-j
directions, respectively. G is the shear modulus

of the truss.

It is important to note that isotropic properties for the
truss (E11 = E22 = 2G(1 + nul2) = 2G(1 + nu21)) are not
assumed a priori. They emerge directly from the

calculations.

Also, the equation numbers referenced below correspond to
the paper by Ickin, 0. A., and Tekoglu, C.

(August 7, 2024). "Structural Analysis of Periodic
Trusses and Lattice Materials: States of Self-Stress,
Mechanisms, and Mechanical Properties."ASME Journal of

Applied Mechanics. doi: https://doi.org/10.1115/1.4066177

syms tht E_11 E_22 E_ 12 rho E_s Lu A real

b
a
b
C
d
f
r

h

=cos (tht);

=cos (tht-pi/2);
=cos (tht+pi/3);
=cos (tht-pi/6);
=cos (tht+2*xpi/3);
=cos (tht+pi/6) ;
=cos (tht-2*pi/3);
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k=cos (tht-pi/3);
m=cos (tht-pi);
b
L=Lu;
b
UC_EL=2%axLu;
b
d11=UC_EL*E_11/2;
d12=UC_EL*E_12/2;
d22=UC_EL*E_22/2;
/S et T
% Steps 1 and 2 of the flowchart must be performed manually
% by the user.
/B ity b
% Step 3: Obtain and input the reduced kinematic
% matrix (BR).
e L e e P PR R %
BR=[0 0 a b -a -b;

-c -d cd OO0 ;

-f -r 00 f r;

hdO0O0 -h -d;

kr -k -r 0 0;

0 0mb -m -b];
e et %
% Step 4: Compute the Z matrix as the null space of the

% transpose of the reduced kinematic matrix BR.

e b
Z = null(transpose(BR));
e bbb bbb b

% Step 5: Compute the Q matrix as the transpose of the null

% space of the transpose of Z.
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% Step 6: Determine the P matrix.
% Since the bar length is uniform in the twisted Kagome

% truss, the P matrix is equal to the Q matrix

= mm e m e m e %
P=Q;
= m T T m e m e mm e m - %

% Step 7: Solve Eq. (32) to express the bar elongation

% vector ({e}) in terms of the macroscopic strain

% components (E_ij). Perform the matrix concatenation as
% described in Eq. (32), where Left_C and Right C

% correspond to the concatenated matrices on the left and

% right sides of the equation, respectively.

Left C=cat(1,P,Z(:,1).",Z2(:,2).");

b

g(4,1)=(-h*xd11+(sqrt (3) *h-d)*d12+sqrt (3) *d*d22) ;
g(5,1)=(k*xd11+(sqrt (3) xk+r)*xd12+sqrt (3) *r*xd22) ;
g(6,1)=(-2%*m*xd11-2*xbx*xd12) ;

b

Zero_Vector = zeros(4,1);

)

Right_C=cat (1, Zero_Vector,((Z.')*g));

)

e =linsolve(simplify(Left_C), simplify(Right _C));

B e iy b
% Step 8: Calculate the components of the macroscopic

% stiffness tensor L_ijkl (S represents the area of the

% unit cell).
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S = sqrt(3)*UC_EL"2/2;

b

DeDepsll = diff(e, E_11);

L1111 = simplify (dot(DeDepsll, DeDepsil)*
Es x A/ Lu/ 8);

o

DeDeps22 = diff(e, E_22);

L2222

simplify (dot (DeDeps22, DeDeps22) *
Es *x A/ Lu/ S);

b

L1122 = simplify (dot(DeDepsll, DeDeps22)*
Es x A/ Lu / 8);

b

DeDepsl12 = diff(e, E_12) / 2;
L1212 = simplify (dot(DeDepsl12, DeDepsi2)*
Es *x A/ Lu/ S);

e b
% Step 9: Construct the stiffness matrix [L_Mat].
= %

L_Mat = [L1111 L1122 O;...
L1122 L2222 O0;...
0 0 L1212];

% Step 10: Calculate the mechanical properties.

% To express the mechanical properties in terms of the

% truss's relative density (rho), first normalize the

%» moduli by the value of the relative density (rho_val),

% and then multiply the normalized values by rho.

rho_val = simplify(sqrt(3)=*A/(a”2xL));
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b

nul2 = L1122/L2222;
nu21 = L1122/L1111;
E11 = L1111*(1-nul2*nu2l)/rho_val*rho;
E22 = L2222*(1-nul2%*nu2l)/rho_val*rho;

G = L1212/rho_valx*rho;

b

Modulus = ["E 11/E s"; "E 22/E s"; "nu 12"; "nu 21"; "G/E_
"1

Value = [E11/E_s; E22/E_s; nul2; nu2l; G/E_s];

% _________________________________________________________

% Print the mechanical properties in a formatted table.

A —

fprintf ('<strong>Results for any tht value</strong>\n\n');

fprintf ('<strong>Mechanical Properties:</strong>\n\n');

disp(table (Modulus, Value));

A ——

S

%» Identify the macroscopic strain-producing mechanisms. For

%» detailed information, refer to the paper: "A Quest for

% 2D Lattice Materials for Actuation," Journal of the

%» Mechanics and Physics of Solids, 105 (2017), pp. 199-216
/g
BAUG=[0 0 a -a -b 0 0 0;

b

-c-~dcd O O0O0O0 0;
0
0

-f -r O f r 0 0 0;

h d 0 -h -d -h (sqrt(3)*h-d) sqrt(3)*d;
k r -k -r 0 0 k (sqrt(3)x*k+r) sqrt(3)x*r;
0 0 m b -m -b -2*m -2*xb 0];

% _________________________________________________________

% Print null space of the augmented kinematic matrix.

% _________________________________________________________
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fprintf (['<strong> Null space of the augmented

'kinematic matrix:</strong>\n\n']);

NSAKM=null (BAUG) ;
disp(simplify (NSAKM)) ;

% _________________________________________________________

% Print the vector that provides the relative ratios of the

% nodal displacements for the collapse mechanism under

% hydrostatic loading.

A —

fprintf (['<strong>The relative ratios of the nodal
'"displacements for the</strong>\n'l);

fprintf (['<strong>collapse mechanism under

'hydrostatic loading</strong>\n\n']);

disp(simplify (NSAKM(:,3)));
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APPENDIX B: MATLAB CODE FOR THE STRUCTURAL ANALYSIS
OF THE HEXACHIRAL TRUSSES

b= o o o %
% Clear all variables from the current workspace to free

% up system memory.

i il /
clear
e y/

%» Variables used in the analysis:

b

% tht: The angle that defines the geometry of the infinite
yA periodic hexachiral truss

A (see Supplementary Fig. 3b).

b

% a, b, ¢, d, f, r: Direction cosines of the bar elements.
b

% UC_EL = R: The edge length of the unit cell

yA (see Supplementary Fig. 3a).

b

% E_ij (i, j in {1, 2}): Components of the externally

% imposed, macroscopically uniform strain field.

b

% di11, d12, d22: Deformations of the unit cell in response
% to the imposed macroscopic strains.

=== = o o e %
syms tht R E_11 E 22 E_12 real

b

a=cos(pi/2-tht);

b=cos (tht) ;

c=cos(pi/6-tht);

d=cos (pi/3+tht);
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f=cos(pi/6+tht);
r=cos (pi/3-tht) ;
T
UC_EL=R;
b
d11=UC_EL*E_11;
d12=UC_EL*E_12;
d22=UC_EL*E_22;
= = %
%» Steps 1 and 2 of the flowchart must be performed manually
%» by the user.
e e s %
% Step 3: Obtain and input the reduced kinematic
%» matrix (BR).
/Bt sttt T
BR=[-a -b 0 0 0 0 a b OO0 0 O;...

00 -c-d 0O0OO0OO0O<cdOO0;...

0000-fr 00O0O0Tf -r;...

-r -fr £f00O0O0O0O0O0
O -bab=-a000=00"0
000 -dcd=-c0O00
0

000O0O0TCTTf -r -f

o O O O

000O0O0OOOD-=-a-ba;...

-d c000O0O0O0O0O0Gd -cl;
R e e E e E L TP P y/
% Step 4: Compute the Z matrix as the null space of the

% transpose of the reduced kinematic matrix BR.

e %

N
1}
=]
e
'_I
'_I
N
ct
=
o
s
%)
a3

o
%)
o
N\
(vs]
=
p——g
p——a

== %

% Z results in an empty set. This indicates that, in the
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66
67
68
69

BN |
N}

-3
w

% low density limit, the hexachiral lattice exhibits
% bending-dominated behavior under all loading conditions,
% irrespective of the R/r ratio or the angle tht.
S e b
if isempty(Z)
fprintf (['<strong>Z results in an empty set. This '
"indicates that</strong>\n'l);
fprintf (['<strong>in the low density limit, the'
' hexachiral lattice</strong>\n']l);
fprintf (['<strong>exhibits bending-dominated'
' behavior under all loading</strong>\n'l);
fprintf (['<strong>conditions, irrespective of'
' the R/r ratio or the angle tht.</strong>\n\n'l);

end
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APPENDIX C: MATLAB CODE FOR THE STRUCTURAL ANALYSIS
OF THE DOUBLE TRIANGULAR TRUSSES

A
b

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

Clear all variables from the current workspace to free

up system memory.

Variables used in the analysis:

tht: The angle that defines the geometry of the infinite

periodic Double Triangular truss

(see Supplementary Fig. 3c). Note that the infinite

periodic Double Triangular truss exhibits

macroscopic strain-producing collapse mechanisms

only at tht = 60 degrees and tht = 145.6589 degrees.

rho: Relative density of the truss structure.

E s: Young's modulus of the material that makes up the

truss's cell walls.

Lu: The unit bar length. Specifically, bars 1 to 28,
and 36 to 42 have a length L1 = Lu, while bars 29,

30, 31, 33, 34, and 35 have a length L2, defined as:

L2 = (sqrt(3) * d + sin(tht /2)) * Lu (see Fig.

A: The cross-sectional area of the bar elements.

a, b, ¢, d, £f, r, h, k, m, n, p: Direction cosines of the

bar elements.
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b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

UC_EL: The edge length of the unit cell (see Fig. 1le).

E_ij (i, j in {1, 2}): Components of the externally

imposed, macroscopically uniform strain field.

di1l, d12, d22: Deformations of the unit cell in response

to the imposed macroscopic strains.

Eij and nuij (i, j in {1, 2}) represent the truss's
Young 's modulus and Poisson's ratio in the 1i-j
directions, respectively. G is the shear modulus

of the truss.

It is important to note that isotropic properties for the

truss (E11 = E22 2G(1 + nul2) = 2G(1 + nu2l1)) are not

assumed a priori. They emerge directly from the

calculations.

Also, the equation numbers referenced below correspond to
the paper by Ickin, 0. A., and Tekoglu, C.

(August 7, 2024). "Structural Analysis of Periodic
Trusses and Lattice Materials: States of Self-Stress,
Mechanisms , and Mechanical Properties."ASME Jourmnal of

Applied Mechanics. doi: https://doi.org/10.1115/1.4066177

syms E_11 E 22 E_12 rho E_s Lu A

assume (Lu, "real");

tht=(30*pi/180) ;

b
b

tht=(60*pi/180) ;
tht=(145.658906273255289%pi/180) ;
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o

a=cos (tht/2+pi/6);

b=cos (tht/2-pi/3);

c=cos (tht/2+pi/2);

d=cos (tht/2);

f=cos(tht/2-pi/6);

r=cos (tht/2-2%pi/3);

h=cos (tht/2-pi/2);

k=cos (tht/2-5%pi/6) ;

m=cos (tht/2+pi/3);

n=cos (pi/6) ;

p=cos(pi/3);

T

Li1=Lu;

L2=(sqrt (3) *d+sin(tht/2)) *Lu;

b

UC_EL=(4*xf+2*h)*Lu;

T

d11=UC_EL*E_11;

d12=UC_EL*E_12;

d22=sqrt (3) /2*UC_EL*E_22;

= = = = %

% Steps 1 and 2 of the flowchart must be performed manually

% by the user.

e e e E LR R %

% Step 3: Obtain and input the reduced kinematic

% matrix (BR).

/S sttt To

BR = [-fh -d hd 00O0O0OO0OO0OOOOOOOOO0OO0OO0O
000O0O0OO0OOOOOOOO®O0QO0;...
-f-m00fmOOO0OO0O0OO0OO0OO0O0O0OOOOOO0OO0O0OO0O0
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©O O O O O O O O O O O O O O O O O O o O O O o o o o o o o o o
O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o

o
o
[
Hh
|

B

B

o
o
o
o
o
o
o
o

000O0O0OO0OO0OO0OO0 0;
b-k-b000OO0OO0OO0OO0OO0OOO0OOOOO0OOO
0 00O0OO0OOO0OO0OO0 0;

O -f-rfr 00O0O0O0O0OO0OOOOOOODO

O000O0O0OO0OOO0OO0OO0 0;

000-k -b0OO0OkbOOOOOOOOO0DO

00 0 00O0OO0O0 O0;

-r 000O0O0OCfr O0O0O0O0OO0OO0OO0OO
00O0O0OOO 0;
00cd-c-d0O0OO0O0OO0OO0OO0O0OOQO
000O0OOO0 O0;
000ab0O0O0O000O0O0O0OO0O0O0CO

00 000 0 0 0 O;

0 0 -h -d 000hdOOOOOOOO

0 0 0 0 0 0 0 0;

f

00 00 0 0 0;

0 0 0 0 0O cd-c-d0O0OO0OO0O0O
00 0 0 0;

00 00 000 -a-bab0OO0O00O 0

00 0 0 0 0 0;...

0O -f -r00fr 00O0O
0 0 0;...

o
o

000 -f  -mO0OOfmOO

o
o

0 0 0;...

o
o

000O0O0O0O0O-=-a-bab

o
(@)

00 O0;...

o
o

00000 -f -mO0O0Ifm

o
o

0 0 0;...

o
o

000O0O0OO0OO0OO -k -b

o
o
O O O O O O O O O O O O O O O O O O o o o o o o o
O O O O O O O O O O O o o o o o o
o O
o O
O O O O O O O O O O O o o o o o o o o
O O O O O O O O o o o o o o o

o
o

00 O0;...
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000O0O0OO0O0OO0OO0OO0OO0OO0OO
000O0OOO0OOOOOOO0OO0 O0;
000O0OO0OO0OOOOOOOO
fr 000O0O0OO0OO0OOO0OO O;
000O0OO0OO0OO0OOOO0OO

-d cdO0OO0O0OOO0OO0OO0OO0O0;...

000O0O0OO0OO0OOO0OO0OOO0OO

00aboO0O0O00O0O00O00O0O0;...

000O0OO0OO0OO0OOOO0OOO

-d 00 hdOOOOOOODO0;...

000O0OO0OO0OO0OO0OOO0OO

000 -c-d0O0OO0OcdOO0O0 0;
000O0O0OO0OO0OO0OOOO0OOO
0 -h -d 000O0hdOO0O0 O;
000O0O0OO0O0OO0OO0OO0OO0OO0OO
000O0O0-f mfmO OO O;
000O0OO0OO0OOOOOOOO
0 -k -b 00Ok bOOOO0OO0O O;
000O0OOO0OO0OO0OOOO0OOO
000 -a-b0O0O0OO0aboOO0;
000O0OO0OO0OOO0OOOO0OO
000O0O0OO0O0O-f -rfrOO;
000O0O0OO0O0OO0OO0O=-p-n00O0
000O0O0OO0OOO0OOO0OOOTPD;
000O0OO0OO0OOO0OOOO0OO
000O0OOO0OOOOOO -p n;

000O0OO0OO0OOOOO0OOO
100000O0O0O0O0-1 O0;

000O0O0OO0O0OO0CS-kKk -b0O0OO
00 O0OkDbbOOOOOOO 0

000O0OOO0OO0OOOOOOOO

-h -d 00 00 hdd

000O0O0O0O0O0 -c

000O0O0O0OOO -h

000O0O0OO0O0OO0OO

p no0OO0OO0OO0OOO

000O0O0OO0OO0O0ODO

000O0O0OO0OO0OOO

000O0O0OO0OO0OO0OODO



T
o
o
b

o
o
T
o

b
T

-m 0 00 0O0O0O0O0O0O0O0O0;...

-c-d 0000O0O0O0OO0OO0OO0OOO0OOO0O0OCcCdOoOO0OOQ0

00O0O0OOO0OOO0OOO0OOO0O0;...
fr 000O0O0O0O0OO0OOOOOOOO -1
000O0O0O0OOOOOO0OO0 0];

Step 4: Compute the Z matrix as the null space of the

transpose of the reduced kinematic matrix BR.

= null (transpose(BR), 'r');

0

0

00 -10000O0O0OO0CT10;...
0000O0OO0O0OO0O0OO0O0OO0OO0OO0OO0O0OO0OO-pnoO0OO0O0O0O0OO
000O0O0OO0OO0OO0OOTP -n;...
000O0OpPDOOOO0OOO0OOOOOOO
000O0O0OO0OO0OO-=-p -n;...
0000cdOOOO0OO0OOO0OOO0OO0OO0OOQO
0000 =-c-d00O0O0O0O0;...
000O0O0OO0OaboOo0O0O00OO0O0O0OO0OO
000O0=-a-b0O0O0O0O0 0;
000O0OO0OO0OOO0OO0OOO0O0OO0OkKDOOO
00 0O0OOOOT-k -b 0 0;
000O0O0OO0OO0OO0OOOOOOOOORN
000O0OOOO-=-h-d0 0;
00000OO0O0O0fmOO0OOOOOOOO

-r 0000

b

Step 5: Compute the (Q matrix as the transpose of the null

space of the transpose of Z.

Step 6: Determine the P matrix.
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P = (Lu/L1)*Q;
for i=1: 36

P(i,29)=(Lu/L2)*Q(i,29);

P(i,30)=(Lu/L2)*Q(i,30);

P(i,31)=(Lu/L2)*Q(i,31);

P(i,33)=(Lu/L2)*Q(i,33);

P(i,34)=(Lu/L2)*Q(i,34);

P(i,35)=(Lu/L2)*Q(i,35);
end
e b
% Step 7: Solve Eq. (32) to express the bar elongation
% vector ({e}) in terms of the macroscopic strain
%» components (E_ij). Perform the matrix concatenation as
% described in Eq. (32), where Left_C and Right_C
% correspond to the concatenated matrices on the left and

% right sides of the equation, respectively.

o mmmm e - %
Left C = cat(1, P, Z(:,1)."', Z(:,2)."', Z(:,3).",

Z(:,4).", Z(:,B).", Z(:,6).");
%

g(32,1)=(-k*d11-b*d12);

g(33,1)=(d11);

g(34,1)=(0.5e0*xp*d11-(sqrt(3.e0)/2.e0*p+0.5e0%n)
*d12+n*d22) ;

g(35,1)=(0.5e0*p*xd11+(sqrt (3.e0)/2.e0*p+0.5e0%n)
xd12+n*xd22) ;

g(36,1)=(0.5e0*xc*xd11+(sqrt(3.e0)/2.e0*c+0.5e0%d)
*d12+d*d22) ;

g(37,1)=(0.5e0*xa*xd11+(sqrt(3.e0)/2.e0*a+0.5e0%b)
*d12+b*d22) ;
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g(38,1)=(0.5e0*xk*xd11+(sqrt (3.e0)/2.e0*k+0.5e0%b)
*d12+b*d22) ;

g(39,1)=(0.5e0*h*d11+(sqrt(3.e0)/2.e0*%h+0.5e0%d)
*d12+d*d22) ;

g(40,1)=(f*d11+m*d12) ;

g(41,1)=(-c*xd11-d*d12);

g(42,1)=(£f*d11+r*d12);

T

Zero_Vector = zeros(36,1);

T

Right _C = cat(l, Zero_Vector, ((Z.')*g));

b

e = linsolve(vpa(Left_C), vpa(Right_C));
/gy
% Step 8: Calculate the components of the macroscopic

% stiffness tensor L_ijkl (S represents the area of

%» the unit cell).

% _________________________________________________________
S = sqrt(3) * UC_EL"2 / 2;

Ty = = %

%» Note: The summation in Eq. (34) is performed using a dot
% product, as shown below. For bars 2, 4, 6, and 8, which
% have a length of (sqrt(2)/2) * Lu, we divide the

% elongation e_i by sqrt(sqrt(2)/2) for these bars

% (i in {2, 4, 6, 8}). This adjustment ensures that

% dividing the dot product by Lu yields the correct length

% for each bar, as specified in Eq. (34).

Y
e(29,:)=e(29,:)/(sqrt ((sqrt (3)*d+sin(tht/2))));
e(30,:)=e(30,:)/(sqrt ((sqrt (3) *d+sin(tht/2))));
e(31,:)=e(31,:)/(sqrt ((sqrt (3)*d+sin(tht/2))));

45



e(33,:)=e(33,:)/(sqrt ((sqrt(3)*d+sin(tht/2))));

e(34,:)=e(34,:)/(sqrt ((sqrt (3)*d+sin(tht/2))));

e(35,:)=e(35,:)/(sqrt ((sqrt(3)*d+sin(tht/2))));

DeDeps11)

DeDeps22) *

DeDeps22) *

DeDeps12) *

To

DeDepsll = diff(e, E_11);

L1111 = simplify(dot(DeDepsil,
Es *x A/ Lu/ S);

T

DeDeps22 = diff(e, E_22);

L2222 = simplify(dot(DeDeps22,
Es * A/ Lu/ S);

o

L1122 = simplify(dot(DeDepsil,
Es *x A/ Lu/ S);

T

DeDepsl12 = diff(e, E_12) / 2;

L1212 = simplify(dot(DeDepsl2,
Es *x A/ Lu/ S);

o

% Step 9: Construct the stiffness matrix

To

L_Mat = [L1111 L1122 0;

L1122 L2222 0;
0 0 Li1212];
To
% Step 10: Calculate the mechanical properties.

%» To express the mechanical properties in terms of the
% truss's relative density (rho),

% moduli by the value of the relative density (rho_val),

first normalize the

%» and then multiply the normalized values by rho.
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rho_val =vpa((36.0+6.0*(sqrt (3)*d+sin(tht/2)))*Lu*xA/S);

o

nul2 = L1122/L2222;

nu21 = L1122/L1111;

E11 = L1111*(1-nul2%*nu2l1)/rho_val*rho;
E22 = L2222x(1-nul2*nu2l)/rho_valxrho;

G = L1212/rho_val*rho;

b

Modulus = ["E_11/E_s"; "E_22/E s"; "nu_12";
"G/E_s"];

"nu_21";

Value = [E11/E_s; E22/E _s; nul2; nu2l; G/E_s];

% ___________________________________________

%» Print the mechanical properties in a formatted table.

"/o ___________________________________________

fprintf (['<strong>Results for tht = 7.10f'
'</strong>\n\n'], tht*x180/pi);

fprintf (['<strong>Mechanical Properties:'
'</strong>\n\n']l);

disp(table (Modulus, Value)) ;

% ___________________________________________

%» Identify the macroscopic strain-producing

% detailed information, refer to the paper:

mechanisms. For

"A Quest for

% 2D Lattice Materials for Actuation," Journal of the

%» Mechanics and Physics of Solids, 105 (2017), pp. 199-216.

% ___________________________________________

BAUG=[-h -d h 4d 0 0 0O 00O 0OOO0OO0OO0OO0OO0OOO0OO0OOO0O

0000OOOOOOOOOOOOGOO0;...

-f m0O0fmOOOOOOOOOOOOOOOOO0O

000O0OO0OO0OOO0OOOOO0OOO0OOGO0O0;...

00kb-k -pb00O0O0OO0O0OO0OO0OOO0OOO0OOO0OOO0DO0

0000OOOOOOOOOOOOGOO;...
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SO a4 O T O O O O O O O O O O O O O O O O O O O o o o o o o o o
O O O O O O O O O O O O O O O O O O O O o o o o o o o o o o o

O -f-rfr 00O0O0O0OO0OO0OOOOOOOOO

000O0OO0OOOOOOO0OO0 0;

000-k -b0OO0OkbOOOOOOOOOOO

000O0OO0OOO0OOOOOOO0 O0;

-r 00 000O0Cfr 0O0O0OO0O0OO0OO0OO0DO0
000O0OO0OOO0OOO0OO0OO0 0;
000cd-c-d000O0O0O0OO0OOOO
000O0OO0OO0OOO0OOO0 O0;
0000O0OaboOo0000000OO0O0OBO0OO

000O0OO0OOOOOOOOO0 0;

000-h-d000O0hdOO0O0OO0OO0O0OO0O0O0

000O0O0OO0OOO0OOO0OOOO0OO0 0;

0000000 -f mfmOOOOOOOOO

000O0OO0OO0OOOOOOO0 0;

00000O00O00O0OCcd=-c-4d00000®O00O0

000O0OO0OOO0OOOOOO0OO0 0;

0000O0O0O0OO0O0OO0OO=-2a-babo0O0O0®O00Q0

000O0O0OO0OOOOOOOOO;...

00000O0O0O0O0-f -r00fzrOOOOO

000O0OO0OO0OOOOOO0OO0 0;

00000000000 -f m0O0OTIfmOOO

000O0O0OO0OOOOOOOOOOQO;...

0000O0OO0OO0OO0OO0OO0OO0OO0OO0OO0O-=-a-babo

000O0OO0OOOOOOOO0OO0 0;

0000000000000 -f mO0OTfmO

000O0O0OO0OO0OOOOOOOOOQO;...

0000O0OO0OO0OOOOOOO0OOO0O0O®OT-k -bk
000O0O0OO0OOOOOOOOOQO;...

0000O0OO0O0OO0OO0OO0OO0O0OO0O-h-40000O0Hh N

000O0O0OO0OOOOOOOOO0OQ ;...

0000O0O0O0O0OOODOOOOOOOOG®O-f -r
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fr 000O0O0O0OO00OOOOOO O;
000O0O0OO0OO0OO0OOO0OO0OOOOO0OOOOO0OOO0ODO
-c -dcd0OOO0OOOOO0OO0O0O0O0O0 05
000O0O0OO0OO0OOO0OOO0OO0OO0OO0OOO0OOO0OOO0OO-a -b
00 aboO0000O0O0OO0OO0O0O0O0O0OO0;
000O0O0OO0OO0OO0OOOOOOOOOOOOOO0ODO
-h -d 00hdOOOOOOO0O0O0 0 0;
0000O0OO0O0OO0OO0OOO0OO0OOO0OOO0OOO0OOO0OOO0ODO
0000 -¢c-d00cdOOOO0O0O0 0;
000O0O0OO0OO0OO0OOOOOOOOOOOOOODO
00 -h-d0O0O0OhdOOOOO0O0 0
0000O0OO0O0OO0OO0OOO0OOOOOO0OOO0OOO0OOO0ODO
000O0O0O0-f-mfmOOOOOO 0;
000O0O0OO0O0OO0OO0OO0OO0OO0OOO0OOO0OOO0OOO0OOOODO
00 -k -b0O0OkDbOOOOOOOO0 0
000O0O0OO0OO0OO0OOOOOOOOOO0OOOOO0ODO
000O0=-a-b00O0O0abO0O0OO0O0O0;
0000O0OO0O0OO0O0OO0OO0OO0OO0OOO0OOO0OOO0OOO0OOO0ODO
0000O0O0O0O0-f-rfr O0OO0OO O0;
0000O0O0O0O0OO=-p-n00O0OO0O0OO0O0OLO0OOO0CDO
000O0OO0OO0OOO0OOO0OOOODPMDMNDOO O
0000O0OO0O0O0O0OO0O0OO0OO0OO0OO0OOPT-nOOOOOO
000O0O0OO0OOO0OO0OO=-pnOO0O0;...
000O0O0OO0OO0OOO0OOOOOOOOOOOOOODO
0010000O0O0OO0O0OO0-1 0O0O0O0;...
0000O0OO0O0OO0-k-b00O0OO0OOO0OOO0OOOOO0DO0
000O0OOkDOOOOOOOO-k -b 0;...
000O0O0OO0O0OO0OOO0OO0OO0OO0OOO0OOO0OOOOO0OOOODO
0000-100000O0OO01010 0;...
0000O0OO0O0OO0OO0OO0OO0OO0OO0OO0OO0OO0OO0O=-pnoO0O0OO0
000O0OOO0OOOOOOOODPT-n 0.5e0xp...
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-(sqrt(3.e0)/2.e0*xp+0.5e0*n) n;...

000O0OpPDOO0OOO0OO0OOOOOOOO

0 00O

(sqrt (3.

0 00O
0 00O

(sqrt (3.

0 00O
0 00O

(sqrt (3.

0 00O

000O0OOO0OO0 -p
e0)/2.e0*p+0.5e0%*n)
cdOOO0OO0OO0O0O00O0
00 -c-d 0O0O0O0O
e0)/2.e0*c+0.5e0%*d)
00 aboOO0OO0OO0O0O0
00 -a-b0O0OO0O0OO
e0)/2.e0*a+0.5e0%*b)

000O0OOOOOOO

-n 0.5e0%*p...

0 00O

0.5e0%*c...

0 00O

0.5e0*a...

b 000

00 0O0OOO0OOOOT-k -b 0O 0.5e0xk...

(sqrt (3.e0)/2.e0*xk+0.5e0%b) Db;...

000O0OO0OO0OO0OO0OO0OO0OO0OOO0OOO0OOhKhhAdOOO0DO

000O0OOO0OOOOOS-h-d0O0 0.5e0xh...

(sqrt (3.e0)/2.e0*h+0.5e0%d) d;...
00000000 fmOOOODOOOOOOOOODO
-f -m0O0O0O0O0O0O0O0OO0OOO0OO0TILfmO;...
-¢c-d 0O00OO0O0OO0O0OO0OO0OOO0OO0OO0O0O0OTCcCdOoO
000O0OO0OOO0OOO0OOO0OO®O=-¢c -dao;...
fr 0000O0O0O0OO0O0OO0O0OO0OO0OO0OO0O0-f -r0O00O0
0000O0O0O0OO0O0OOO0OO0OOOOTfTrO0];
B s it b
%» Print null space of the augmented kinematic matrix.
e e e E LR R %
fprintf (['<strong> Null space of the augmented '
'kinematic matrix:</strong>\n\n'l);
NSAKM=null (BAUG, 'r');
disp (NSAKM) ;
B it b

%» Print the vector that provides the relative ratios of the
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% nodal displacements for the collapse mechanism under
% hydrostatic loading at tht = 60 degrees.
S
if tht == (60%xpi/180)
fprintf (['<strong>The relative ratios of the nodal'
' displacements for the</strong>\n']);
fprintf (['<strong>collapse mechanism under '
'hydrostatic loading:</strong>\n\n']);
disp (NSAKM(:,3));
end
A ——
% Print the vector that provides the relative ratios of the
% nodal displacements for the collapse mechanism under
% pure shear loading at tht = 145.6589 degrees.
A ——
if tht == (145.658906273255289*pi/180)
fprintf (['<strong>The relative ratios of the nodal'
' displacements for the</strong>\n']);
fprintf (['<strong>collapse mechanism under '
'pure shear:</strong>\n\n']);
disp (NSAKM(: ,4));

end
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