Preprints are preliminary reports that have not undergone peer review.

6 Research Sq uare They should not be considered conclusive, used to inform clinical practice,

or referenced by the media as validated information.

On the Performance of Large Language Models on
Introductory Programming Assignments

Nishat Raihan

mraihan2@gmu, edu

George Mason University

Dhiman Goswami
George Mason University

Sadiya Sayara Chowdhury Puspo
George Mason University

Mohammed Latif Siddiq
University of Notre Dame

Christian Newman
Rochester Institute of Technology

Tharindu Ranasinghe
Lancaster University

Joanna C.S. Santos
University of Notre Dame

Marcos Zampieri
George Mason University

Research Article

Keywords: Benchmark Dataset, Code LLM, Prompting
Posted Date: November 13th, 2024

DOI: https://doi.org/10.21203/rs.3.rs-5348871/v1

License: € ® This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-5348871/v1
https://doi.org/10.21203/rs.3.rs-5348871/v1
https://doi.org/10.21203/rs.3.rs-5348871/v1
https://creativecommons.org/licenses/by/4.0/

On the Performance of Large Language Models
on Introductory Programming Assignments

Nishat Raihan'”, Dhiman Goswami’,
Sadiya Sayara Chowdhury Puspo!, Mohammed Latif Siddiq?,
Christian Newman?®, Tharindu Ranasinghe*, Joanna C.S. Santos?,
Marcos Zampieri'

LGeorge Mason University, Fairfax, VA, USA.
2University of Notre Dame, Notre Dame, IN, USA.
3Rochester Institute of Technology, Rochester, NY, USA.
4Lancaster University, Lancaster, UK.

*Corresponding author(s). E-mail(s): mraihan2@gmu.edu;

Abstract

Recent advances in artificial intelligence (AI), machine learning (ML), and natu-
ral language processing (NLP) have led to the development of a new generation
of Large Language Models (LLMs) trained on massive amounts of data. Com-
mercial applications (e.g., ChatGPT) have made this available to the general
public, enabling the use of LLMs to produce high-quality texts for academic
and professional purposes. Educational institutions are increasingly aware of stu-
dents’ use of Al-generated content and are researching its impact and potential
misuse. Computer Science (CS) and related fields are particularly affected, as
LLMs can also generate programming code in various languages. To understand
the potential impact of publicly available LLMs in CS education, we extend our
previously introduced CSEPrompts [1], a framework comprising hundreds of pro-
gramming exercise prompts and multiple-choice questions from introductory CS
and programming courses. We provide experimental results on CSEPrompts, eval-
uating the performance of several LLMs in generating Python code and answering
basic computer science and programming questions, offering insights into the
implications of this technology for CS education.

Keywords: Benchmark Dataset, Code LLM, Prompting

1 Introduction

The past decade has witnessed a remarkable evolution in natural language processing
(NLP) models. We have progressed from n-gram and word embedding models, such
as word2vec [2] and GloVe [3], to sophisticated context-aware models like ELMo [4],
and BERT [5]. These advancements have significantly enhanced performance across
various NLP tasks [6]. More recently, Large Language Models (LLMs) such as GPT
[7, 8] have further revolutionized the field. The impact of the latest generation of
LLMs has been explored in a variety of domains. Nori et al. [9] explore their use in
healthcare, while Tack and Piech [10] investigate their impact on education, heralding
a new era in generative Al.

The impact of GPT models on education has also been the subject of several
recent studies, which include studies conducted by Lo [7], Sok and Heng [11], Halaweh
[12] among others. While these models offer numerous opportunities in educational
technology, such as enhanced writing assistants, intelligent tutoring systems, and
automatic assessment tools, they also raise concerns about potential misuse, partic-
ularly in coding tasks. Savelka et al. [13] find that while GPT scores may not meet
course completion criteria, the model exhibits notable capabilities, including the abil-
ity to correct solutions based on auto-grader feedback. This capability raises concerns
about students potentially exploiting this technology to generate complete essays
and programming assignments, thereby artificially inflating their grades. Furthermore,
Surameery and Shakor [14] demonstrate that ChatGPT excels in debugging, bug
prediction, and explanation, although it has limitations in reasoning and integration.

Recent studies explore the use of LLMs for assessment in various domains. Katz
et al. [15] examine its application in law, Zhang et al. [16] in mathematics and computer
science, Haruna-Cooper and Rashid [17] in medicine and Raihan et al. [18] in Computer
Science Education. These studies evidence the high quality of the models’ output, with
some suggesting that these models could even ”pass the bar exam” Katz et al. [15].
Such findings underscore the potential impact of LLMs on educational assessment and
the need for further investigation.

In this paper, we build upon our original CSEPrompts benchmark [1] to introduce
CSEPrompts 2.0. This extension encompasses three key areas: an increased number
of multiple-choice question (MCQ) prompts, evaluations of newer and more recent
models, and a detailed error analysis. We present a comprehensive evaluation that
goes beyond GPT, examining the performance of eight models capable of generating
both English text and Python code on introductory CS and programming course
assignments. To facilitate reproducibility and ensure further research in this area,
we develop CSEPrompts 2.0 as a robust framework. It comprises 219 programming
prompts and 100 MCQs, carefully collected from coding websites and massive open
online courses (MOOCs). This diverse set of prompts allows for a thorough assessment
of LLM capabilities in the context of CS education. Our investigation addresses the
following research questions:

e RQ1: How well do state-of-the-art LLMs perform on introductory CS assignments
compared to existing Benchmarks?

® RQ2: Is there a significant difference in the performance of LLMs when completing
assignments from coding websites compared to academic MOOCs?

® RQ3: Are state-of-the-art LLMs better at generating code or answering MCQs?

e RQ4: Are Code LLMs better at generating code and/or answering MCQs than raw
LLMs?

We aim to provide some key insights into the capabilities and limitations of LLMs in CS
education, informing both educators and researchers about the potential implications
of these powerful tools in academic settings.

2 Related Work

2.1 Code Generation Models

Early automated code generation methods concentrated on inferring user intent from
high-level specifications or input-output examples [19-21]. These methods convert task
specifications into constraints, and a program is generated once it demonstrates com-
pliance with those constraints [19]. With the advent of attention-based transformer
models [22], code generation has evolved into a sequence-to-sequence task, where user
intent is expressed through natural language. Most coding tasks involved code com-
pletion, code infilling, comment generation, and similar tasks that were often handled
using encoder-only models like BERT [5]. Models such as CodeBERT [23], Graph-
CodeBERT [24], and SynCoBERT [25] are pre-trained on text-code pairs, including
Abstract Syntax Trees (ASTs) and Control Flow Graphs (CFGs) to capture syntac-
tic and semantic code structures. However, encoder-only models are not primarily
designed for generative tasks and exhibit subpar performance in code generation [25].

The emergence of generative models based on encoder-decoder architectures, such
as CodeT5 [26], and decoder-only architectures, like CodeGen [27], CodeLLaMA
[28], and StarCoder [29], has significantly improved code generation capabilities. Zan
et al. [30] conduct a comprehensive survey, highlighting the superior performance of
these models in code generation tasks. With these advancements, the need for uni-
fied benchmarks to evaluate and compare code generation models has become more
pronounced.

2.2 Code Generation Benchmark

Several benchmarks have been introduced to assess the performance of code generation
models. HumanEval, introduced alongside OpenAl’s Codex model [31], and MBPP
(Mostly Basic Python Problems) [32] are among the most widely used. These datasets
contain coding prompts paired with human-generated solutions and three test cases for
each task. Other benchmarks include CONCODE [33], DS-1000 [34], and extensions
like HumanEval+ [35] and MBPP+ [36].

Recently, Large Language Models (LLMs) like GPT-3 [37], GPT-4 [8], and fine-
tuned code models like CodeLLaMA [28] and StarCoder [29] have demonstrated
remarkable code generation abilities. These models are evaluated on benchmarks like
HumanEval and MBPP, consistently outperforming previous models. For instance,
Roziere et al. Roziere et al. [28] show that CodeLLaMA achieves state-of-the-art results

on HumanEval, demonstrating the effectiveness of decoder-only architectures for code
generation. Siddiq et al. [38] analyzed these benchmark datasets and found several
quality issues, such as insufficient contextual information.

In addition to code generation, other related tasks, such as code completion, which
involves predicting the next token or sequence of tokens in code, have been extensively
explored. Models like GPT-J [39], GPT-NeoX [40], and PaLM-Coder [41] are applied
to code completion tasks using prompts longer than one sentence. Svyatkovskiy et al.
[42] introduce IntelliCode Compose, a transformer-based model for real-time code
completion, emphasizing the importance of handling multi-line code completions.

Despite these advancements, existing datasets and benchmarks primarily focus on
general-purpose coding tasks relevant to software development but do not adequately
address educational coding tasks. Educational coding tasks often require a deep
understanding of specific programming language syntax and semantics, evaluating the
learner’s comprehension of fundamental concepts. These tasks differ significantly from
the prompts included in existing benchmarks.

To bridge this gap, we introduce CSEPrompts 2.0, an extension of our previ-
ous work [1]. Our framework provides diverse programming exercise prompts and
multiple-choice questions retrieved from introductory CS and programming courses.
Each programming prompt is paired with five test cases, compared to three in most
benchmarks, offering a more rigorous evaluation of code correctness.

While significant progress has been made in code generation and related tasks using
LLMs, benchmarks focusing on educational coding tasks remain needed. CSEPrompts
2.0 addresses this need by providing a comprehensive framework for evaluating LLMs
on introductory CS assignments, thereby contributing to the understanding of LLMs’
potential in educational contexts.

3 CSEPrompts 2.0

We introduce CSEPrompts 2.0', an enhanced evaluation framework consisting of cod-
ing prompts from coding websites and academic MOOCs (Table A1). CSEPrompts 2.0
features a total of 319 exercise prompts, comprising 219 programming prompts and 100
multiple-choice questions, as shown in Table 1. The framework represents a significant
evolution from its predecessor, incorporating a more diverse range of programming
challenges and assessment formats. The programming prompts span various difficulty
levels and conceptual areas, from basic syntax and control structures to more com-
plex algorithmic problems. The multiple-choice questions are carefully curated to test
theoretical understanding and practical knowledge of programming concepts. Each
programming prompt is accompanied by comprehensive test cases, ensuring thorough
validation of LLM-generated solutions.

Coding Websites

We select five leading online resources for introductory Python learning, detailed in
Table 1. These platforms are chosen based on their interactivity, diversity of chal-
lenges, and structured learning approaches. They offer a variety of coding exercises,

Thttps://github.com/mraihan-gmu/CSEPrompts

https://github.com/mraihan-gmu/CSEPrompts

Table 1: Summary of Coding Prompts from Various Sources

Coding Websites MOOC:s - Coding Prompts MOOCs - MCQs

Platform Prompts | University Course Prompts | Uni./Org. Course Prompts

CodingBat 24 Harvard CS50 29 GT CS1301xI 20

LearnPython 16 UMich PforE 7 GT CS1301x1I 20

Edabit 29 GT CS1301xI 11 GT CS1301xIIT 16

Python Principles 26 GT CS1301xII 20 GT CS1301xIV 16

HackerRank 23 GT CS1301xIIT 17 Meta Programming in Python 28
Total 118 Total 101 Total 100

interactive tutorials, and cater to a broad spectrum of skill levels. The strong com-
munities and instant feedback mechanisms provided by these platforms are crucial for
effective programming education.

MOOCs

Our study also incorporates programming assignments and multiple-choice questions
from several MOOCs offered by prestigious institutions such as Harvard University,
the University of Michigan, and the Georgia Institute of Technology, as detailed in
Table 1. These courses, available on platforms like edX and Coursera, focus on intro-
ductory Python programming for beginners and those with some prior experience.
We select courses emphasizing practical programming exercises while excluding tasks
involving file I/O or command-line operations. Additionally, we gather 100 multiple-
choice questions from various sources, each containing 5 to 10 options with one correct
answer and multiple distractors.

Table 2: Statistics for Prompts

Metric CodingSites | Academic | MCQ
Total Prompts 118 101 100
Max. No. of Tokens 101 372 221
Min. No. of Tokens 5 17 15
Mean No. of Tokens 28 158 106
Standard Deviation 16 72 51

Dataset Statistics

The prompts from coding sites are generally shorter than those from MOOCs, as shown
in Table 2. For each prompt, we collect a minimum of 5 test cases, primarily from the
source platforms. When necessary, we supplement with additional test cases generated
using Pynguin [43], an open-source unit test generator for Python. To ensure the
quality and relevance of Pynguin-generated tests, we manually review them, focusing
on edge cases and comprehensive code coverage. For MCQs, we obtain correct answers
from the original platforms. We collect LLM-generated responses for each prompt,
manually clean them to isolate code snippets, and label them based on the number
of passed test cases. We present a few prompts fro each subset of CSEPrompts 2.0 in
Appendix 2.

Data Collection Strategy

Unlike benchmarks such as HumanEval [44] or MBPP [32], which are created specif-
ically to test how well LLMs generate code, our approach reflects actual classroom
programming assignments. We carefully gather prompts from real academic courses
and coding websites, checking for overlap and maintaining the original difficulty level
of these tasks. This method ensures our dataset represents the types of problems
students actually encounter in their programming education, rather than artificially
constructed test cases. By using authentic educational content, we provide a more
realistic assessment of how LLMs perform on the kind of programming challenges that
form the foundation of computer science education.

4 Experiments

Large Langauge Models (LLMs)

We experiment with eight different LLMs that represent diverse architectural designs
and implementations. Our selection is based on their exceptional performance across
established leaderboards maintained by respected research communities: the EvalPlus
LeaderBoard [45], AllenAT's WildBench? and HuggingFace’s BigCode LLM?. In our
evaluation of CSEPrompts 2.0, we include two proprietary models from OpenAl:
GPT-4o [46] and GPT3.5 [44], both of which demonstrate state-of-the-art performance
across various NLP tasks. For open-source base models, we test Llama-3 [47] and Mis-
tral [48], each offering unique approaches to model architecture and optimization. We
complete our evaluation with four code-specific models that have been fine-tuned for
programming tasks: Code-Llama [28], StarCoder [29], MagiCoder [49], and Wizard-
Coder [50]. This diverse selection of models allows us to comprehensively assess both
general-purpose language models and specialized code generation systems, providing
insights into their relative strengths in handling educational programming tasks.

7

"You are a helpful AI assistant. You are given the following problem:

Write a function named capital_indexes. The function takes a sin-
gle parameter, which is a string. Your function should return
a list of all the indexes in the string that have capital letters.

’Please write a Python code snippet to solve the problem. Thanks.’

Fig. 1: Sample Prompt for Coding Tasks; includes 3 parts - a system prompt, the
task description, and the instruction.

Zhttps://huggingface.co/spaces/allenai/WildBench
3https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

https://huggingface.co/spaces/allenai/WildBench
https://huggingface.co/spaces/bigcode/bigcode-models-leaderboard

Code Generation

We prepare prompts and test each model on tasks from CSEPrompts 2.0. Figure 1
and 2 show the simple prompt format used for the models. The generated responses,
including code, pseudo-code, and explanations, are manually cleaned to isolate the
code. We then evaluate these codes using pytest [51], which enables efficient creation
of readable Python unit tests.

["You are a helpful AI assistant. You are given a Multiple Choice Question. ’]

(False and True) or (False or True)
Is this statement resolved to True or False?

® True
® False
® Statement will not compile

[*You need to pick one or multiple correct answers from the given ones. Thanks.’]

Fig. 2: Sample Prompt for MCQs; includes 3 parts - a system prompt, the MCQ with
multiple choices, and the instruction.

FEvaluation Metric

In our work, we employ the pass@l metric, a variant of pass@k [31]. Pass@k metric
evaluates the probability that at least one out of k generated samples are functionally
correct (i.e., passed all functional test cases). To evaluate the pass@k, we generate
n samples per prompt (n > k), count the number of samples ¢ that are functionally
correct (¢ < n), and calculate the unbiased estimator E by Kulal et al. [52]:

("s")
k
We use pass@1 in this work, which measures how often a model passes all test
cases on its first attempt.

passQk = Eprompts [1 —

5 Results
5.1 Coding Tasks

For our analysis, we employ the pass@1 metric, a variant of pass@k, which measures
how often a model passes all test cases on its first attempt. This metric provides a
rigorous assessment of model performance in real-world programming scenarios where
immediate correctness is crucial. Figure 3 illustrates the performance across different
models and prompt sources. Proprietary models (GPT-40 and GPT3.5) demonstrate
superior performance on both MOOC and CodingSite prompts, followed by code-
finetuned models. Notably, all models consistently perform better on CodingSite

00 HumanEval [l iMBPP [0 ¢cSEPrompts -MOOCs B CSEPrompts -Academic
I I I I

100 I I I I
80| mll =l - 1
S 60|] .
<
A
40 |- s
20 |- IHH B
I {0\ Q‘ &\ v‘ 45 &\ \\
» : ® d d >
éf, ‘2&’% _ 906 §)ob \;§ <z§\?y 906 g
G ‘b‘éo q;g bey \}) \?’

Fig. 3: Comparing CSEPrompts with HumanEval and MBPP based on Pass@]1.

prompts compared to MOOC prompts, suggesting a difference in prompt complex-
ity or structure between these sources. This performance gap may be attributed to
the more structured nature of coding website problems compared to the potentially
broader, more conceptual requirements of academic assignments.

To contextualize our results, we compare CSEPrompts 2.0 with other widely used
benchmarks. Our analysis reveals that the difficulty level of CSEPrompts 2.0 falls
between that of HumanEval and MBPP, providing a balanced challenge for evaluat-
ing code generation capabilities. This intermediate positioning makes our benchmark
particularly suitable for assessing both the basic and advanced capabilities of code
generation models in educational contexts.

5.2 MCQ Tasks

We compare our Multiple Choice Question (MCQ) task results with the MathQA-
Python benchmark [32], which contains coding-related question-answer pairs. The
MCQ subset of CSEPrompts 2.0 introduces the first Code-MCQ benchmark in this
domain, addressing a significant gap in the evaluation of LLMs’ comprehension of
programming concepts. Figure 4 illustrates LLM performance on both datasets. Our
analysis reveals that models generally find MCQ tasks easier than open-ended QA
tasks, likely due to the additional context and limited answer set guiding responses.
Notably, while proprietary models excel in this task, code-finetuned models under-
perform, possibly due to their specialization in structured code generation rather
than MCQ-style prompts. This performance disparity suggests that the ability to
generate code does not necessarily translate to strong performance in understand-
ing and answering questions about programming concepts, highlighting an important
distinction in model capabilities.

I0MathQA [10 CSEPrompts -MCQ
[[

80 [76]
64
60 54 52 i
%’0 —
g 42 4
g 40| 0 36 .
o 28
o
20 - 18 17 1, i
2
| B B B B
T T T T T T T T
> o W & & & Vad &
Cg&/ Q,& @@ @/{é’ .90 bC)O \>‘§/ &C)O
0 ’\}) ’b’% ‘b‘& b‘Zy %\?

Fig. 4: Comparing CSEPrompts -MCQ with MathQA based on Zero Shot Prompting
(in percentage).

6 Error Analysis

In this section, we present an error analysis of different code generation models in two
distinct environments: coding sites and academic settings. Our analysis reveals four
major categories of errors consistently encountered by these models: (1) syntax-related
issues (Indentation and general Syntaz errors), (2) naming and referencing problems
(Name, Attribute, and Key errors), (3) data handling errors (Value and Type errors),
and (4) runtime issues (Recursion, Import, and SystemEwit errors). Tables 3 and 4
show the percentage distribution of these error types for each model in coding sites
and academic tasks, respectively. This comprehensive categorization enables a detailed
assessment of model performance across different programming contexts.

Table 3: Error Analysis (in percentage): Coding Sites

Error Type GPT4o | GPT 3.5 | Magi Coder | Wizard Coder | Code LLaMA | Star Coder | LLaMA3 | Mistral
Name 2.00 2.50 4.00 4.50 5.00 4.50 - -
Indentation 1.00 3.00 5.00 7.00 7.00 8.00 9.00
Value 1.50 4.00 - - 8.00 8.00 9.00 10.00
Type 2.00 4.50 5.00 6.00 7.00 8.50 - -
Syntax 0.50 0.50 8.50 9.50 10.00 11.00
UnboundLocal - 2.00 2.50 4.00 4.50 5.50 7.00 8.00
Attribute - - - 3.50 4.50 5.00 6.00 7.00
Recursion 1.00 1.50 3.50 6.00 7.00 8.00
ModuleNotFound 1.00 1.50 2.50 3.50 4.50 6.00 7.00
Index - 1.00 2.00 3.50 4.50 5.50 - 8.00
Key - - 2.00 - - 4.50 6.00 7.00
Import 2.50 2.00 4.00 6.00 7.00
Tab - 0.50 - - 2.50 - 6.00 -
System Exit - 0.50 - 2.00 2.50 3.00 4.00 5.00
Infinite Loop 0.50 2.00 4.00 5.00

In the coding sites environment (Table 3), we observe a relatively even distribu-
tion of errors across categories, with Name, Indentation, and Type errors emerging as
the most prevalent across models. Notably, Magi Coder shows a significant proportion
of Name errors (4.00%), suggesting challenges with variable naming and scope man-
agement. Similarly, GPT 3.5 exhibits notable Name errors (2.50%). The more recent
models - Star Coder, LLaMA3, and Mistral - demonstrate higher rates of Syntaz errors,
indicating fundamental challenges with code structure and formatting requirements.

Table 4: Error Analysis (in percentage): Academic

Error Type GPT4o | GPT 3.5 | Magi Coder | Wizard Coder | Code LLaMA | Star Coder | LLaMA3 | Mistral
Name 1.00 5.25 7.25 3.00 3.50 2.00 4.00
Indentation 1.00 2.50 3.75 2.25 2.00 5.50 3.00 2.50
Value 0.50 3.00 2.00 1.00 1.00 3.50 2.50 1.00
Type 2.50 3.50 3.00 3.50 1.50 5.00 4.50 2.00
Syntax 5.50 6.00 5.75
Attribute 0.50 3.00 2.50 2.25 2.00 3.75 3.25 3.00
Recursion 0.25 1.50 1.75 2.50 2.50 2.00 2.75 2.25
ModuleNotFound 0.25 2.00 1.25 1.75 2.00 3.00 2.25 2.50
Index 0.50 1.50 2.50 1.50 1.00 2.25 3.00 2.75
Key - 0.50 1.00 1.00 1.00 1.75 1.25 1.50
Import - 0.75 0.50 1.25 1.50 1.50 2.00 1.75
ZeroDivision 1.00 1.00 1.00 1.00 1.00

FileNotFound 0.50 1.50 0.75 1.00 0.75 - - -
Exception — 0.25 0.50 0.75 0.75 0.25 0.50 0.75

The academic environment (Table 4) presents a markedly different error distri-
bution pattern. Models like Code LLaMA, Star Coder, LLaMA3, and Mistral show
elevated rates of Syntax, Value, and Type errors. For instance, Mistral’s high Syntaz
error rate (5.75%) and consistent Value error occurrences point to difficulties in han-
dling academic code complexity. These patterns suggest that these models struggle
with both advanced programming concepts and the more rigorous syntax require-
ments typical in academic assignments, particularly when dealing with complex data
structures and algorithmic implementations.

Cross-environmental comparison reveals GPT40’s consistent superior performance,
maintaining low error rates across all major categories in both settings. This consis-
tency suggests a robust capability in generating correct code regardless of the context.
The generally higher error rates in academic settings likely stem from several factors:
the presence of more complex algorithms, requirements for specialized libraries, and
stricter formatting standards. These elements may be underrepresented in the training
data of models like Code LLaMA and Mistral.

Furthermore, academic tasks often demand a deeper grasp of theoretical concepts,
potentially exceeding these models’ current capabilities. These findings underscore
the importance of careful model selection based on the intended application context,
particularly in educational settings where code quality and conceptual understanding
are equally important.

10

7 Conclusion and Future Work

In this work, we evaluated the performance of various Large Language Models
(LLMSs) on introductory computer science tasks, focusing on Multiple Choice Ques-
tions (MCQs) and Python programming assignments. We compiled CSEPrompts 2.0,
a diverse evaluation framework comprising prompts from online coding platforms, aca-
demic resources, and programming courses. By analyzing eight state-of-the-art LLMs,
we provided detailed performance metrics and error analyses to address four key
research questions.

RQ1: How do LLMs perform on introductory CS assignments?

Our results show that all evaluated models can generate high-quality outputs
on CSEPrompts 2.0, with GPT-based models demonstrating superior performance.
GPT40 and GPT 3.5 consistently outperformed other models in both MCQs and cod-
ing tasks. The models performed better on CSEPrompts 2.0 [MOOCs| compared to
existing benchmarks but faced challenges with CSEPrompts 2.0 [Academic], indicating
a need for improvement in handling academic-style prompts. This performance pattern
suggests that while LLMs have achieved significant capabilities in programming tasks,
there remains room for enhancement in managing academic-specific requirements.

RQ2: Is there a performance difference between coding websites and
academic MOOCs?

We observed a performance variance between prompts from coding websites and those
from academic MOOCs. Most LLMs found prompts from coding websites more man-
ageable, achieving higher accuracy and exhibiting fewer errors. In contrast, prompts
from academic MOOCs posed greater challenges, leading to increased error rates. This
suggests that academic MOOC content presents more complex or abstract concepts
that require deeper understanding. The disparity highlights the unique challenges
posed by educational content, where problems often integrate theoretical concepts
with practical implementation requirements.

RQ3: How do LLMs perform in code generation tasks compared to MCQs?

Contrary to our initial assumption that text-focused LLMs would excel in MCQs, the
evaluation showed that the tested LLMs generally performed better in code generation
tasks. The models were able to produce syntactically correct and logically coherent
code more consistently than selecting correct answers in MCQs. This outcome sug-
gests that LLMs may benefit from the structured nature of programming languages,
which provides clear syntax and semantics, whereas MCQs often require nuanced com-
prehension and reasoning. This finding indicates that despite their natural language
capabilities, LLMs might be more adept at handling well-structured programming
tasks than interpreting and responding to conceptual questions.

RQ/4: How do Code LLMs compare to general-purpose LLMs in CS tasks?

While larger models like GPT40 and GPT 3.5 achieved the highest performance across
all tasks, we observed that general-purpose LLMs typically performed better on MCQs,

11

whereas Code LLMs showed stronger performance in coding tasks. This reflects the
specialized training of Code LLMs on programming code repositories, enhancing their
ability to generate code that adheres to programming standards. The performance
distinction suggests that model specialization plays a crucial role in task-specific capa-
bilities, though general-purpose models with sufficient scale can maintain competitive
performance across diverse tasks. This insight has important implications for choosing
appropriate models for different educational applications.

These findings highlight the importance of selecting appropriate models based
on specific task requirements in educational contexts. Understanding each model’s
strengths and limitations is crucial for effective deployment in different coding
environments.

Our future research directions encompass several key areas. First, we plan to
expand CSEPrompts 2.0 by incorporating a more diverse set of coding prompts and
MCQs that span multiple programming languages and advanced computer science
topics. Second, we aim to evaluate emerging LLMs and conduct in-depth analyses
of code characteristics that are particularly relevant to specific course types, includ-
ing code comprehensibility, security considerations, and algorithmic complexity. This
targeted approach would enable us to assess LLMs’ capabilities in generating course-
specific code examples—for instance, emphasizing security features in cybersecurity
courses or code readability in introductory programming classes.

Additionally, we intend to investigate the underlying factors that contribute to per-
formance disparities between academic and non-academic prompts, as understanding
these differences could yield valuable insights for both model development and edu-
cational applications. The application of our findings to computer science education
and automated assessment systems offers promising opportunities to enhance peda-
gogical experiences and customize LLM deployment according to specific educational
objectives.

In conclusion, this analysis establishes a comprehensive foundation for understand-
ing LLM performance in introductory computer science contexts. By systematically
identifying both the capabilities and limitations of current models, we contribute to
the ongoing development of Al technologies in computer science education. These
insights will guide the evolution of more effective and pedagogically sound integra-
tion of LLMs in educational assessment and instruction, ultimately supporting both
educators and students in the learning process.

Funding None

12

References

[1]

[9]

[10]

[11]

[12]

[13]

Raihan, N., Goswami, D., Puspo, S.S.C., Newman, C., Ranasinghe, T., Zampieri,
M.: Cseprompts: A benchmark of introductory computer science prompts. In:
International Symposium on Methodologies for Intelligent Systems (2024)

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed rep-
resentations of words and phrases and their compositionality. In: Proceedings of
NIPS (2013)

Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word
representation. In: Proceedings of EMNLP (2014)

Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettle-
moyer, L.: Deep contextualized word representations. In: Proceedings of ACL
(2018)

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of NAACL
(2018)

Rogers, A., Kovaleva, O., Rumshisky, A.: A primer in bertology: What we
know about how bert works. Transactions of the Association for Computational
Linguistics 8, 842-866 (2020)

Lo, C.K.: What is the impact of chatgpt on education? a rapid review of the
literature. Education Sciences 13(4), 410 (2023)

Achiam, J., Adler, S., Agarwal, S., et al.: Gpt-4 technical report. arXiv:2303.08774
(2023)

Nori, H., King, N., McKinney, S.M., Carignan, D., Horvitz, E.: Capabilities of
gpt-4 on medical challenge problems. arXiv preprint arXiv:2303.13375 (2023)

Tack, A., Piech, C.: The ai teacher test: Measuring the pedagogical ability of
blender and gpt-3 in educational dialogues. In: Proceedings of EDM (2022)

Sok, S., Heng, K.: Chatgpt for education and research: A review of benefits and
risks. Available at SSRN 4378735 (2023)

Halaweh, M.: Chatgpt in education: Strategies for responsible implementation.
Contemporary Educational Technology 15(2) (2023)

Savelka, J., Agarwal, A., Bogart, C., Song, Y., Sakr, M.: Can generative pre-

trained transformers (gpt) pass assessments in higher education programming
courses? arXiv preprint arXiv:2303.09325 (2023)

13

[14]

[15]

[16]

Surameery, N.M.S., Shakor, M.Y.: Use chat gpt to solve programming bugs. Inter-
national Journal of Information Technology & Computer Engineering (IJITC)
ISSN: 2455-5290 3(01), 1722 (2023)

Katz, D.M., Bommarito, M.J., Gao, S., Arredondo, P.: Gpt-4 passes the bar exam.
SSRN (2023)

Zhang, S.J., Florin, S., Lee, et al.: Exploring the mit mathematics and eecs
curriculum using large language models. arXiv preprint arXiv:2306.08997 (2023)

Haruna-Cooper, L., Rashid, M.A.: Gpt-4: the future of artificial intelligence
in medical school assessments. Journal of the Royal Society of Medicine,
01410768231181251 (2023)

Raihan, N., Siddiq, M.L., Santos, J., Zampieri, M.: Large language models
in computer science education: A systematic literature review. arXiv preprint
arXiv:2410.16349 (2024)

Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Foundations and
Trends®) in Programming Languages 4(1-2), 1-119 (2017)

Green, C.: Application of theorem proving to problem solving. In: Proc. of the
1st Intl. Joint Conf. on Artificial Intelligence. IJCAI’69, pp. 219-239. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1969)

Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. Commun.
ACM 14(3), 151-165 (1971) https://doi.org/10.1145/362566.362568

Vaswani, A., Shazeer, N.; Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L.u., Polosukhin, I.: Attention is all you need. In: Guyon, 1., Luxburg,
U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.)
Advances in Neural Information Processing Systems, vol. 30. Curran Associates,
Inc., 777 (2017)

Feng, Z., Guo, D., Tang, D., Duan, N., et al.: Codebert: A pre-trained model
for programming and natural languages. In: Findings of the Association for
Computational Linguistics: EMNLP 2020 (2020)

Guo, D., Ren, S., Lu, S., Feng, Z., al., T.: Graphcodebert: Pre-training code
representations with data flow. arXiv preprint arXiv:2009.08366 (2020)

Wang, X., Wang, Y., Mi, F., Zhou, P., Wan, Y., Liu, X., Li, L., Wu, H., Liu,
J., Jiang, X.: Syncobert: Syntax-guided multi-modal contrastive pre-training for

code representation. arXiv preprint arXiv:2108.04556 (2021)

Wang, Y., Wang, W., Joty, S., Hoi, S.C.: Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In:

14

https://doi.org/10.1145/362566.362568

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (2021)

Nijkamp, E., Lee, J., Touvron, H., et al.: Codegen: An open large language model
for code with multi-turn program synthesis. arXiv:2203.13474 (2022)

Roziere, B., Gehring, J., Gloeckle, F., al., S.: Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950 (2023)

Li, R., Allal, L.B., Zi, Y., Muennighoff, N., Kocetkov, D., et al.: Starcoder: may
the source be with you! arXiv preprint arXiv:2305.06161 (2023)

Zan, X.V., Deng, M., Yang, D., et al.: A survey of benchmarks for natural
language to code generation. In: ACL (2022)

Chen, M., Tworek, J., Jun, H., et al.: Evaluating large language models trained
on code. arXiv:2107.03374 (2021)

Austin, J., Odena, A., Nye, M., al., B.: Program synthesis with large language
models. arXiv preprint arXiv:2108.07732 (2021)

Iyer, S., Konstas, 1., Cheung, A., Zettlemoyer, L.: Mapping language to code
in programmatic context. In: Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing (2018)

Lai, Y., Li, C., Wang, Y., Zhang, T., Zhong, R.: Ds-1000: A natural and reli-
able benchmark for data science code generation. In: International Conference on
Machine Learning (2023). PMLR

Liu, J., Xia, C.S., Wang, Y., Zhang, L.: Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210 (2023)

Guo, W., Yang, J., Yang, K., al., L.: Instruction fusion: Advancing prompt
evolution through hybridization. arXiv preprint arXiv:2312.15692 (2023)

Brown, T.B., Mann, B., Ryder, N., et al.: Language models are few-shot learners.
Advances in neural information processing systems (2020)

Siddiq, M.L., Dristi, S.B., Saha, J., Santos, J.C.S.: The fault in our stars: Qual-
ity assessment of code generation benchmarksn. In: 24th IEEE International
Conference on Source Code Analysis and Manipulation (SCAM) (2024)

Wang, B., Komatsuzaki, A.: GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model (2021)

Black, S., Gao, L., Wang, P., et al.: Gpt-neox-20b: An open-source autoregressive
language model. arXiv:2204.06745 (2022)

15

[41]

[42]

[43]

[46]

[47]

[48]

[49]

[50]

Chowdhery, A., Narang, S., Devlin, J., et al.: Palm: Scaling language modeling
with pathways. arXiv:2204.02311 (2022)

Svyatkovskiy, A., Zhao, S.K., Fu, S., et al.: Fast and memory-efficient neural code
completion. In: ICML (2021)

Lukasczyk, S., Fraser, G.: Pynguin: Automated unit test generation for python.
In: Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: Companion Proceedings, pp. 168-172 (2022)

OpenAl: Gpt-4 technical report. ArXiv abs/2303.08774 (2023)

Liu, J., Xia, C.S., Wang, Y., Zhang, L.: Is your code generated by chatgpt
really correct? rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems 36 (2024)

OpenAl: Gpt-4 omni: A comprehensive multimodal model for language, vision,
and beyond. arXiv preprint arXiv:2408.01234 (2024)

Dubey, A., Jauhri, A., et al.: The llama 3 herd of models. arXiv preprint
arXiv:2407.21783 (2024)

Jiang, A.Q., Sablayrolles, A., Mensch, A., et al.: Mistral 7b. arXiv preprint
arXiv:2310.06825 (2023)

Wei, Y., Wang, Z., Liu, J., Ding, Y., Zhang, L.: Magicoder: Source code is all you
need. arXiv preprint arXiv:2312.02120 (2023)

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C., Ma, J., Lin,
Q., Jiang, D.: Wizardcoder: Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568 (2023)

krekel, team: pytest: helps you write better programs (2023). https://docs.pytest.
org/en/7.4.x/

Kulal, S., Pasupat, P., Chandra, K., Lee, M., Padon, O., Aiken, A., Liang,
P.S.: Spoc: Search-based pseudocode to code. In: Wallach, H., Larochelle, H.,
Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural
Information Processing Systems, vol. 32. Curran Associates, Inc., 7?7 (2019)

16

https://docs.pytest.org/en/7.4.x/
https://docs.pytest.org/en/7.4.x/

Appendix A Data Sources

Table A1: List of Coding Websites & MOOCs

Name Link

CodingBat https://codingbat.com/python

Learn Python https://www.learnpython.org

Edabit https://edabit.com/challenges/python3

Python Principles
Hacker Rank

Edx

Coursera

CS50 (Harvard)
PforE (UMich)
CS1301xI (GT)
CS1301xII (GT)
CS1301xI1I (GT)
CS1301xIV (GT)
Programming in Python (Meta)

https://pythonprinciples.com/challenges/
https://www.hackerrank.com/domains/python

https://www.edx.org

https://www.coursera.org
https://learning.edx.org/course/course-v1:HarvardX+CS50S+Scratch /home
https://www.coursera.org/learn/python/home
https://learning.edx.org/course/course-v1:GTx+CS1301xI+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xI141T2023 /home
https://learning.edx.org/course/course-v1:GTx+CS1301xI11+1T2023 /home
https://learning.edx.org/course/course-v1:GTx+CS1301xIV+1T2023 /home
https://www.coursera.org/learn/programming-in-python

17

https://codingbat.com/python
https://www.learnpython.org
https://edabit.com/challenges/python3
https://pythonprinciples.com/challenges/
https://www.hackerrank.com/domains/python
https://www.edx.org
https://www.coursera.org
https://learning.edx.org/course/course-v1:HarvardX+CS50S+Scratch/home
https://www.coursera.org/learn/python/home
https://learning.edx.org/course/course-v1:GTx+CS1301xI+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xII+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xIII+1T2023/home
https://learning.edx.org/course/course-v1:GTx+CS1301xIV+1T2023/home
https://www.coursera.org/learn/programming-in-python

2 Sample Prompts

Prompt1l.
You are given the coefficients of a polynomial P.
Your task is to find the value of P at point x.
Prompt2.
You are given a square matrix A with dimensions N x N.
Your task is to find the determinant.
Prompt3.

(a) Sample Prompts from the Coding Sites.

Promptl.
implement a program that prompts the user for the answer to the Great
Question of Life, the Universe and Everything, outputting Yes if the
user inputs 42 or (case-insensitively) forty-two or forty two.
Otherwise output No.

Prompt2.
implement a program that prompts the user for a greeting. If the
greeting starts with "hello", output $0. If the greeting starts with
an "h" (but not "hello"), output $20. Otherwise, output $100. Ignore
any leading whitespace in the user’s greeting, and treat the user’s
greeting case-insensitively.

Prompt3.
(b) Sample Prompts from the MOOCs.

Promptl.

def func(x): return x * 2

print (func(3))

What is the output?

6 3 9 None
Prompt2.

print (float(5))

What will be the output?
5 5.0 None Error
Prompt3.

(c) Sample MCQ Prompts.

Fig. B1: Sample prompts from CSEPrompts 2.0

18

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

e CSEPromptsmain.zip

https://assets-eu.researchsquare.com/files/rs-5348871/v1/6adb5583d24d90a40b35fabd.zip

	Introduction
	Related Work
	Code Generation Models
	Code Generation Benchmark

	CSEPrompts 2.0
	Coding Websites
	MOOCs
	Dataset Statistics
	Data Collection Strategy

	Experiments
	Large Langauge Models (LLMs)
	Code Generation
	Evaluation Metric

	Results
	Coding Tasks
	MCQ Tasks

	Error Analysis
	Conclusion and Future Work
	RQ1: How do LLMs perform on introductory CS assignments?
	RQ2: Is there a performance difference between coding websites and academic MOOCs?
	RQ3: How do LLMs perform in code generation tasks compared to MCQs?
	RQ4: How do Code LLMs compare to general-purpose LLMs in CS tasks?

	Data Sources
	Sample Prompts

