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Supplementary Fig. S1| Raman spectra of the overlapped InSe/Graphene area. The Raman
spectrum of InSe displays three main peaks at 114 cm™, 178 cm™, and 227 cm™!, corresponding to
A1, E, and A; modes, respectively. Note that there are two weak peaks of the InSe nanosheet (black
line in the inset), located at 198 and 213 cm™! indicating that the InSe we used is y-InSe. The Raman
spectrum of Graphene displays two peaks at 1581 cm™, and 2720 cm™!, corresponding to G and 2D

modes.



Cr

e s

Supplementary Fig. S2| Interface characteristics of the InSe/Graphene and InSe/Cr contact.
a, b, Low magnified cross-sectional HRTEM image of InSe/Graphene interface. ¢, d, Low

magnified cross-sectional TEM image of InSe/Cr interface.
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Supplementary Fig. S3| Electrical characterization of InSe and Graphene. a, Optical image of
the InSe with symmetrical Graphene electrodes. b, I-V curve of InSe with Graphene electrodes. ¢,
Transfer characteristic curves of InSe with Graphene electrodes at Vq = 1 V, showing p-type
conduction property. d, Optical image of the InSe with symmetrical Cr electrodes. e, /-V curve of
InSe with Cr electrodes. f, Transfer characteristic curves of InSe with Cr electrodes at Vg =1V,
showing p-type conduction behavior. g, The optical image of the Graphene FET. h, I-V curve of

Graphene FET. i, Transfer characteristic curve of Graphene FET.
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Supplementary Fig. S4| Energy band diagrams of Cr, InSe, and Graphene. a, Contact potential
difference between InSe and Graphene flakes. b, Extracted contact potential difference between

Graphene and InSe flakes from Figure a. ¢, Energy band diagrams of Cr, InSe, and Graphene.

The fermi-level difference between Graphene and InSe is determined by the difference between the
two surface potentials (AEr = Er(Graphene) — Er(InSe) = eVepp(Graphene) — eVepp(InSe), where e
is the charge of an electron and Vcpp represents local surface potential). The Fermi level difference
between InSe and Graphene was 180 meV. Since the work function of Cr and Graphene is 4.6 eV
and 4.96 eV, respectively.! We give the work function of InSe and calculate the Schottky barrier
between the Cr and InSe. The work function of InSe is 5.14 eV showing p-type, which is consistent
with the transfer characteristic curves in Fig. S3. The Schottky barrier between Cr and InSe is 0.54
eV, larger than that between Graphene and InSe. Therefore, two asymmetric Schottky contacts were
formed in our device. Electrical test results (Fig. 2d and Fig. S5) suggest that the InSe Schottky

diode can be fabricated successfully by using Cr and Graphene electrodes.
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Supplementary Fig. S5| The I-V characteristic curves of the other two Cr/InSe/Graphene
Schottky diode devices. a, d, Optical picture of the devices with asymmetric Cr and Graphene
electrodes. The white dotted boxes represent Graphene and the orange dotted boxes represent InSe.
The scale bar is 10 pm. b, e, The I-V curves of the devices were measured at room temperature
within a low bias range, which shows obvious rectification behavior. Besides, it exhibits an ultralow
dark current of about 107> A at V4= -3 V. The insert is the darkfield images of the devices indicating
a very clean interface between the transferred InSe and Graphene. ¢, f, The /-V curves of the devices
were measured at 100 K, showing a steep avalanche breakdown. The voltage firstly swept from 0

Vto -20 V and then from 0V to 5 V.
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Supplementary Fig. S6| The temperature-dependent variations of avalanche breakdown
voltage. a, d, Optical image of the Graphene/InSe/Cr devices. b, e, Avalanche breakdown
characteristics of devices when they were reverse-biased. ¢, f, Avalanche breakdown characteristics
of devices when they were forward-biased.

All devices show the same negative temperature coefficient of breakdown voltage consistent with
the reported phenomenon in the main text. This demonstrates that the temperature-dependent

variations of breakdown voltage in the main text are reproducible.



Supplementary Notel. Determination of a from the multiplication factor (M)
When avalanche multiplication occurs in a junction denoted as 0 < x < L, then the relationship
between the multiplication factor M and the impact ionization rate o is given as the following

equation’:
1= = [y an(B) exp{= [} an (B) — ap(E)dx'} dx s1

It is assumed that the impact ionization rates of electrons and holes are comparable. And this
assumption does not influence the final result critically. With this assumption, the relationship

between the multiplication factor M and the impact ionization rate o is given by the equation

1 (L
1——= [ a(E)dx S2

Note that £ can be a function of x. In addition, it is assumed that the electric field in the channel
does not depend on the position x. Then, the x-dependence of o disappears, and we obtain the
equation

l1-—=La S3

1
M

which is the relation we used to calculate o from M.
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Supplementary Fig. S7| Temperature-dependent M and a at both reverse and forward bias. a,
b, Calculated M under different temperatures as a function of bias voltage from Fig. 3a at reverse
and forward bias. ¢, d, Calculated ionization impact rates at different temperatures as a function of

the inverse field under reverse and forward bias.
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Supplementary Fig. S8| The dependence of the Vi, Vuhd, and M on the temperature

at the reverse bias case extracted from Supplementary Fig. S7a.
It is obvious that the reverse bias operation of the device shows the same tendency for

the dependence of Vi, Vbd, and M on temperature as that of forward operation.
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Supplementary Fig. S9| The breakdown voltage of the Cr/InSe/Cr device. a, The optical
microscope images of the five Cr/InSe/Cr devices. b, AFM images of the five devices with a
scanning range of 30 pm % 30 um. ¢, Height profiles extracted from AFM results, showing the
thickness is 27.4 nm. d, The /-V curves of the corresponding devices showing avalanche breakdown

character with a breakdown voltage around 10.6 V.
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Supplementary Fig. S10| AFM characterization of the Cr/InSe/Cr APD fabricated on hBN. a,
Optical image of C/InSe/Cr APD on hBN. The channel width of each device is guaranteed to be
around 10 um. b, An AFM image of the device shows the thickness of InSe and the channel length
of adjacent electrodes. ¢, Height profiles of InSe extracted from AFM results. The thickness of the
InSe is about 37.3 nm. d, Channel length profiles extracted from AFM results. The length of each

channel is 0.71, 1.62, 2.47, 3.65, and 4.58 um in ascending order.
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Supplementary Fig. S11| Scanning photocurrent mapping (SPCM) experiments on
InSe SJ device. a, Optical image of the Cr/InSe/Cr SJ device. The scale bar is 5 um. b,
Corresponding SPCM images at a reverse bias of 1.4 V showing the depletion region

width is around 1.5 pm. The scale bar is 5 um.
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Supplementary Fig. S12| Optical response characteristics of the GISC-SJ SJ APD at reverse
and forward bias voltages at 100 K. a, The /- curves of the device in a dark state and illumination
under different wavelengths of light under reverse bias. b, The /-V curves of the device in a dark

state and illumination under different wavelengths of light under forward bias.

The GISC-SJ APDs show an obvious response to light illumination at both forward and
reverse bias operations. This confirms that the current breakdown is indeed from the avalanche
process at both operation modes since light illumination will not affect the Zener breakdown.
Besides, it is worth noting that the device could respond to 1310 and 1550 nm beyond the cut-off
wavelength of InSe. This phenomenon should be attributed to the internal photoelectron emission
(IPE) effect.** For light beyond the cut-off wavelength of InSe, if the energy of hot electrons emitted
from Cr (Graphene) is higher than the Schottky barrier at the interface of the Cr/InSe and
Graphene/InSe junction (0.5 hv > ¢sgn), photoexcited hot electrons directly transport over the

barrier and trigger impact ionization.
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Supplementary Fig. S13| Photoresponse performance of the GISC-SJ device at

room temperature.
Since the spot size of the laser is concentrated and is smaller than the effective detection
area of the APD, the actual lowest optical power on our device is 5.7 pW. Based on the

response time ~ 190 us, the corresponding photodetection limit is about 2900 photons

(5.7 pWx 194 us/hvsa).
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Supplementary Fig. S14| Responsivity and Detectivity as a function of reverse bias. a,
Calculated responsivity of the APD as a function of reverse bias. b, Calculated detectivity of the

APD as a function of reverse bias.

The responsivity R= Ipn/Pesr indicates how much photocurrent can be produced by unit incident
power on the photodetector, while the detectivity is given by D* =RA"?(2elyar) "?. Here R and D*

are given at Per =5.7 pW.
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Supplementary Table 1. Summary of the M and breakdown voltage reported in

this work and previous literatures with different types of material.

Material Temperature (K) Vq(V) Iaark (A) M Ref.
Si 300 40 - 6x10° 5
Si/Ge 300 10.3 1x1071° 1.2x10? 6
InGaAs/InP 225 61.0 1x10™ 1.0x10° 7
InAlAsSb 300 19.6 1x107 7.0x10° 8
InAlAsSb/GaShb 300 45.0 1x10°® 1.5x10? 9
WSe>/MoS» 300 30 5x1071° 1.0x10° 10
WSe; 300 3 1x10! 4.7x10? 11
WSe; 300 24 1x1071 5.0x10° 12
MoS; 100 20 1x10712 1.2x10° 13
InSe 160 5.1 1x10712 3x10° 14
InSe 100 3.9 1x1071 2.3x107 This work

Here, the M value of 2.3 x10” and the corresponding Va of 3.9 V are extracted from Fig.

S5c. The highest M value of 6.3x10 is extracted from Fig. S5f.

17



Supplementary Table 2. Comparison of Ecr for different types of materials.

Material Indirect bandgap (eV) Ecr (kV/cm) Ref.
Ge 0.66 100 15
Si 1.12 300 15
GaP 2.26 1000 15
SiC(3C, B) 2.36 1300 15
SiC(6H, a) 2.96 2400 15
SiC(4H, a) 3.25 3180 15
MoS, 1.2 960 16
WSe; 1.0 75 17
BP 0.3 55 18
InSe 1.25 11.5 This work

18



Supplementary Table 3. Comparison of responsivity and detectivity of the InSe
Schottky junctions APD with reported PV, PG, and APD photodetectors based on

2D materials.

Device Material Wavelength  Responsivity Detectivity Ref
ateria ef.
type nm ones
(nm) (A/W) (Jones)
InSe 785 7.5%10° 4.6x10" 19
InSe/Graphene 400 3.0x10! 1.3x10" 20
PV InSe/AsP 520 1.0x10° 1.0x10"? 21
InSe/GaTe 520 3.0x10! 2.0x101 22
InSe/GaSe 410 3.5x10? 2.2x101 23
InSe 532 1.4x10% 1.6x10"13 24
PG InSe/WSe» 532 1.0x10* 1.3x10" 25
InSe/ReS: 365 1.9x10° 6.5x10" 26
InSe/Ti2,CTx 405 1.0x10° 7.3x10" 27
WSez/MoS; 532 1.4x10? 1.3x10"? 28
APD Bi,0,Se 516 3.0x10° 4.6x10" 29
This
Cr/InSe/Graphene 520 4.5%x10° 1.8x10'¢
work

PV is short for photovoltaic and PG is short for photogating.
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