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Abstract7

With further extension of the XROM introduced by Zhao et al., by including the ENSO-state-8

dependence of the external noise forcing as well as a seasonal modulation of both the additive and9

state dependent part of the forcing, I am able to improve the ENSO prediction skill considerably,10

especially felt for longer lead times. My new data-driven forecast model is inferred by Maximum11

Likelihood Estimation, from observational data in 1979-2022, which is much more costly than solving12

a linear regression problem by matrix inversion. This is the – completely affordable – price of obtaining13

the currently best forecast model of large scale features of ENSO, falsifying the claim of Zhao et al.14

that a reliable estimation of the state dependence is too data-intensive. I also make a few points of15

scrutiny by introducing a package of four concepts, those of: the apparent, theoretical maximum,16

climatological and true prediction skills. Finally, from the viewpoint of the philosophy of science, I17

examine whether Zhao et al. have delivered on their promise of explaining the enhancement of the18

prediction skill of the XROM in comparison with the celebrated recharge oscillator model (ROM) of19

ENSO.20

1 Introduction21

The authors of the considered article [1] (the “Article” in what follows) have made a great scientific22

leap by demonstrating, if not explaining, that the best model to predict ENSO, an unphysical AI-based23

model [2], owes its extra skill – elevating it above other preexisting (physical) models – from (excuse the24

irony: unwittingly) “taking account” of ENSO’s interaction with other major modes of climate variability.25

The prevailing view is that ENSO is the master of global climate variability, although, the influences of26

other fairly well defined climate subsystems on ENSO also have a growing literature. Yet, a number27

of these articles have been “debunked”, in e.g. [3, 4], showing that the influence that they found is28

just “apparent” – a “mirage” – and their conclusions are based on a lack of depth of the science. In29

this context, the article of Zhao et al. is very welcome restoring confidence in the idea that ENSO can30

be considerably influenced causally. It also gives great pleasure to the scientist to see that the new –31

supposedly – physical model dubbed the “XRO modell” (or XROM) rivalling the AI-based one is so32

simple in its basic construction, even if it has more than 500 parameters.33

Yet, the Article, offered to a broad nonspecialist readership, is asking for some clarification and34

scrutiny. Although, I believe that many seasoned forecasters will also find some of my reasoning and35

analyses novel. To begin with, let us recast the XROM in a mathematical system of notation that36

hopefully makes the meaning clear more immediately. Subsequently, I will propose a modification and37

extension of it which is useful, on the one hand, and makes the model physically rather plausible, on38

the other. The original model consists of the coupled system of stochastic differential equations (SDE)39

written in the Langevin form:40

dxi

dt
= cijxj + fi(xj , t; b

il) + σξ
i ξi(t), and (1a)

dξi
dt

= aiξi + ηi(t), i, j = 1, . . . , J, l = 1, . . . , Li, (1b)
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J = 10, where e.g. the tensor notation cijxj =
∑J

j=1 c
ijxj encodes a linear combination in the sense of41

the “Einstein summation convention”, fi(xj , t; b
il) are some (nonlinear) functions of some of the (possibly42

multiple j) state variables as well as time t, specified by parameters bil, and the ηi are – not necessarily43

independent – realisations of white noise processes of zero mean and variances 2|ai|, i.e., ⟨ηi(t)ηi(t−s)⟩t =44

2|ai| > 0 for s = 0 and 0 otherwise, all obeying normal distributions. We would expect an interdependence45

especially between η1 and η2 belonging to the Niño3.4 (climate) index x1 = T [◦C] and the mean46

Equatorial Pacific thermocline depth x2 = h [m], the two variables governed by the ROM [5] that the47

XROM generalises, i.e., ⟨η1η2⟩t ̸= 0, because they pertain to the same location laterally. We have48

nonlinearities only in the equations for T and the Dipole Mode Index (DMI) x6 = I [◦C] of the Indian49

Ocean Dipole (IOD) oscillatory mode:50

dT

dt
= c1jxj + bTTT

2 + bThTh+ σξ
T ξT , (2)

dI

dt
= c6jxj + bIII

2 + σξ
IξI . (3)

Although, I estimate bII from 1979-2022 observational (reanalysis) data [6] to be statistically insignificant.51

Furthermore, the estimates of many of cij using the same 44 years worth of observational data are also52

insignificant, to be addressed in Sec. 2.3. For some points of analysis, it is worth to treat the “constant53

parameter” (except, perhaps, for c11 = cTT ) model, but, in fact, in the “fully seasonal” XROM proposed54

by Zhao et al., the parameters bil, cij are seasonally (periodically) modulated retaining two (k = 1, 2)55

harmonics. That is,56

cij = cij0 + cijk cos(kΩt− Φijk
c ), (4)

while a formally identical expression applies to bil. – But not to ai and ση
i , which latter they did not57

justify. (In (4), the Einstein summation rule tdw. index k applies, just like fi(xj , t; b
il) in (1a), tdw. index58

i, is clearly meant to be a sum, or in the case of lag variables shortly to be introduced.) Such a temporal59

but periodic modulation makes the deterministic part of the system nonautonomous but cyclostationary60

and the pullback/snapshot ([7]/[8] and references therein) probability density distribution function (PDF)61

p(xi, t) time dependent but periodic.62

Apart from nonlinearity, Zhao et al. claim – citing references – that the state dependence of the noise
forcing of the Equatorial Pacific SST, e.g.

ξT (t) → (1 + βT )ξT (t)

(with a seasonal modulation of β, potentially), could be important but they neglect it because it is data-63

intensive to reliably estimate. On the other hand, Olson et al. [9] for the first time, and subsequently64

Bódai et al. [10] independently, concluded that it plays negligible role in determining ENSO’s skewness.65

Let us point out that these two claims are not necessarily contradictory, because Zhao et al. is presumably66

referring to predictability, not skewness. Also note that because of the above form of state dependence,67

it is also commonly referred to as “correlated additive multiplicative” (CAM) noise.68

In any case, I do propose, first, to include seasonally modulated state dependence, in the T -69

equation (2), at least, such that70

β = β0 + βk cos(kΩt− Φk
β). (5)

Furthermore, note that the cross-correlations of ηi in the XROM entail those of the corresponding ξi.71

However, I think that it is physically implausible that ξi are correlated not because eqs. (1b) are coupled72

(they are not) but because some unmodelled processes represented by ηi are interactive. In this regard,73

consider that the state variables xi are spatially very large scale quantifiers. Furthermore, no physical74

quantity other than temperature is considered (except for h) and only in selected locations. This means75

that the system of partial differential equations of the climate fluid system is drastically coarsegrained and76

“decimated by – subjective but rational – selection”. It is similar to taking a vector autoregressive model77

(VAR) of two state variables and trying to derive an autoregressive (AR) model of just one variable being78

either the mean of the original two variables or just one of them, respectively. Memory terms are well79

known to emerge upon model reduction; see e.g. [11] and references therein. Therefore, second, instead of80

having equations like (1b), I retain only equations (1a) and, upon temporal discretisation (Methods 4.2;81

xn = x(tn), tn = n∆t, ∆t = 1 month, n = 0, 1, 2, . . . ), include memory – or “delay” or “lag” – variables,82
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Figure 1: A very long simulation of the XDROM+ fitted to the ORA (1979-2022) observational data by
MLE as described in Methods. 4.2. Clearly, the process is stationary in view of long time series (a); and
the synthetic true skewness of Nino3.4 is very close to the observed skewness of 0.52, while the seasonal
dependences of the standard deviation (c) and skewness (d) are both very satisfactory. Panel (b) displays
the trajectory projected onto the 2D phase plane of the ROM.

xn−d, d = 0, . . . , D. But only to linear/first order for d ≥ 1. That is, e.g. in eq. (2), or rather in its time-83

discrete version, we have c1jn xnj → c1djn x(n−d)j = c10jn xnj + c11jn x(n−1)j + · · ·+ c1Dj
n x(n−D)j . I will refer to84

a model with delay variables as an XDROM. For reliable model/parameter inference (Methods 4.2), we85

need to include so many D delay variables that the auto-covariances of (raw) fitting residuals ⟨ξ̂nξ̂n−m⟩n86

are statistically insignificant for any m. I find that the inclusion of as few as a single delay variable (per87

xi), D = 1, satisfies this requirement in the case of the 10D XDROM. This is fortunate, indeed, because88

further delay variables would immensely inflate the model parameter space. Finally, third, similarly to89

β, I allow for a seasonal modulation of the CAM noise strength σξ
i . I will refer to a model that has β ̸= 090

and includes the seasonal modulation of it and that of the σξ
i as an XDROM+.91

The XDROM+ inferred from observational data in the period of 1979-2022 [6] seems in view of Fig. 192

very authentic, just like the XROM. However, in quantitative terms, a main novel result in this article93

is that the XDROM+ well outperforms the XROM wrt. prediction skill – when enough data is fed to it94

– increasingly more so for longer forecast lead times (Fig. 5). This makes the XDROM+ the best model95

currently for forecasting large scale features of ENSO.96

On a note of scrutiny, otherwise, I argue that what is calculated by Zhao et al. as for quantifying97

the prediction skill, Pearson’s (linear) correlation coefficient, something that I call here the “observed”98

or “apparent prediction skill”, is useful only in comparing different models or getting a ballpark figure99

of what I call the “climatological skill”. – Although a rather uncertain ballpark figure because of the100

(power) law of large numbers (of a very slow decay). I also demonstrate that the apparent skill calculated101
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from historical data is completely unrelated to what I regard the true skill of a prediction made for the102

immediate future. The latter cannot be defined by a correlation coefficient but rather an ensemble-wise103

root mean square error (E-RMSE or REMSE) of the deterministic prediction, where the ensemble is a104

probabilistic forecast ensemble with all members stemming identically from the current observed state.105

All the points of technical scrutiny pertain to a mathematical and statistical understanding/interpretation106

of the results of Zhao et al. These analyses are aided by ensemble experiments that simulate a synthetic107

truth, taken to be the XDROM in some cases and the XDROM+ in others fitted to observational data108

provided by Sen Zhao. Without such a context, most readers will misunderstand the results of the Arti-109

cle, I believe, which opinion is the result of a “casual extrapolation” from my perception of the referee110

reports and editorial handling as incompetent.111

Finally, I also report on my attempts to further improve the prediction skill (or just “skill” in the fol-112

lowing) by reducing the complexity of the model. To my surprise, I could make only meagre improvement113

this way.114

2 Analysis115

2.1 Climatological, theoretical maximum, apparent116

and true prediction skill117

It is rather informative to define and determine a “theoretical maximum skill” – the second (ii) item118

of the section title. The “number one” basis of the concept is that 1) we have the exact model that119

governs the process to predict. Therefore, apart from defining it, we can only determine the theoretical120

maximum for a “synthetic truth” – ergo, unfortunately, not the actual truth. Hence, this theoretical121

maximum is not a strict reference for the observed skill. But it might well be – and I assume so – a very122

accurate one. Another assumption is that 2) no other model can predict the truth of a specific XDROM123

better than this very XDROM can predict itself. Perhaps this assumption is obviously true (but I have124

a lingering doubt). Third, 3) a further matter that makes the calculated theoretical maximum not an125

accurate reference for the observed skill is that we do not know the parameters of the XDROM even126

if it governs ENSO (and the other xi, i > 2) deadly accurately in terms of 1). The best that we can127

do is that we fit the available observational data by the best model that we can think of (the XDROM128

or the XDROM+, depending on the purpose) and use the estimated parameter values to specify the129

synthetic truth. Still, we can have an idea of the uncertainty of the reference in this regard by simulating130

the model generating many independent realisations of 2022 − 1979 + 1 = 44 years time span, fitting131

the synthetic data to have a synthetic truth for each realisation, determining the theoretical maxima132

for all synthetic truths and, finally, getting the variance of the theoretical maximum skill with respect133

to the different realisations/“alternative truths”/spaghetto (singular, à la Michael Ghil). This is rather134

computationally expensive, however, and thus I choose to rely on my faith/confidence instead. The135

calculation of the theoretical maximum skill takes a Monte Carlo (MC) experiment. For the MC, I136

make Rs = 1000 runs, which are initialised from independent December-January (DJ, t = t0) states137

(remember: D = 1), two years apart each DJ initial condition (IC), of the synthetic truth of an XDROM138

obtained from a long simulation of it. From each IC, I run the XDROM over 44 years (until tf ). At139

an earlier point, say, tt = 25 years, where the subscript t in tt stands for training, the simulations are140

branched out, “forked”: as for an “offshoot”, applying no random innovations for pair-wise corresponding141

(deterministic) forecasts. This offshoot is of τmax = max[τ ] = 20 months span only, the maximal forecast142

lead time that is of interest here. Finally, for each of the lead times τ = 1, . . . , 20 separately, I calculate143

the maximum skill as a correlation coefficient ρmax(τ) = ρ[Tr,p(tt + τ), Tr,t(tt + τ)]r wrt. the variability144

over the MC runs/realisations. (Subscripts r, p, t of T = Niño3.4 stand for ‘realisation’, ‘prediction’,145

‘truth’, respectively.)146

Because of the independence of the realisations, they well sample the snapshot PDF that provides147

a sound definition of the climate [8, 12, 13]. In other words, the MC ensemble well represents the148

climatological distribution. Hence, I refer to such a skill as a “climatological skill”, the first item (i) in149

the section title.150

Because of the periodicity/cyclostationarity of the climatology [14, 9], one would expect the pre-151

dictability to also depend on the season, i.e., that ρmax(τ) are periodic functions of a variable tt. Zhao et152

al. did demonstrate the seasonality of skill in their Fig. 2 (p); here I consider the theoretical maximum153

in addition and use a different ad hoc visual representation. To this end, I actually conduct a set of 12154
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MC experiments with forking at all different months of the year, tt = 300 + n [month], n = 1, . . . , 12.155

The seasonality of predictability is nicely confirmed by Fig. 2 (a). The different curves showing the lead156

time dependence start their nosedive at different times/months because of their relative “distance” from157

spring which poses a barrier to predictability [15, 16]. Apart from this short range of fast change, the158

predictability can persist quite well for a number of months ahead. Taking an (weighted; see ϕ below)159

annual average of the skill for each lead time τ separately, marked by the black dot-dash line, the decline160

of this average skill with increasing τ is very steady.161

When trying to determine the theoretical maximum skill, the approximation can suffer for two reasons.162

One is, in reference to assumptions 1) and 3) above, that the wrong model is used. Say, if we use forecast163

models inferred from data spans of tt = 25 years in each of the said MC experiment (ρTt,max(τ) =164

ρ[Tr,Tt,p(tt + τ), Tr,t(tt + τ)]r, tt = max[Tt]), we obtain the picture seen in Fig. 2 (b). The approximation165

suffers in the word’s practical sense: the skill would always be seen worse (ρTt,max(τ) < ρmax(τ)).166

The other reason why the approximation would suffer is the imperfect representation of the climatol-167

ogy. This is entailed by the very real situation of a finite observational time span. In fact, in a data-driven168

forecasting approach [17, 18], the latter entails both causes, also the first one, as the observational data169

is used not only for evaluating the skill but also for inferring the forecast model. However, one important170

difference between the two causes is that – by chance – finite data can make the skill look better than171

what it actually is. Assumption 2) above, that the true model is the best predictor, implies that a better172

than real skill is an artefact. It is only fair, then, to call the skill determined from finite observational data173

the “observed skill”, ρTo
(τ) (notation regarding the subscript inspired by [19]), where To = {t ∈ [t0, tf ]}174

refers to the time period of observation, a.k.a. “apparent skill” in the parlance of [4], the third item175

(iii) of the section title. This is – and can only be – based on temporal (versus ensemble-wise) statistics:176

ρTo
(τ) = ρ[Tp(t + τ), Tt(t + τ)]t∈Tv

. In the latter, Tv denotes a “model verification” time period, say,177

the leftover upon booking a training time period Tt from the observational time period To. In fact,178

Tv = To \ Tt \ Tp, the backslash denoting set difference and Tp the time period of the latest forecast – or,179

actually, “hindcast” – time span. Obviously, |Tp| = τmax. And Tt is commonly a compact, single piece180

set. Because the sets Tv and Tt are disjunct, the said definition of ρTo
is often called the (conservative)181

“out-of-sample” skill (in contrast with the – in the case of overfitting that is not “benign” [20], stupidly182

– liberal “in-sample” skill). I will refer to this definition, used in Fig. 2 (d), as method #1. However,183

if the model fitting method allows for a “gap” in Tt, then method #1 is wasteful. Instead, we can have184

Tv = Tp and place it every possible way within To. I will refer to this definition of ρTo
, used in Fig. 2 (c),185

as method #2. This way the training data set is considerably larger, |Tt| = |To| − |Tp|, besides that we186

have a larger sample of pairs of the (synthetic) truth and (deterministic) prediction for evaluating the187

(apparent) skill as a sample correlation coefficient. If we can allow for more than one gap in Tt, then188

we can push things to the limit of |Tt| = |To| − 1. Although it is probably not that useful given that189

|Tp| = τmax ≪ To.190

Because ρTo
(τ) does not differentiate between the months when forecasts are made, it is representing191

some sort of an annual average, which is – considering the dot-dash line in Fig. 2 (b) – more likely to192

have a decay of possibly a rather even rate, just like it is shown by the ensemble/spaghetti diagram in193

Fig. 2 (d) sampling possible realisations of ρTo
(τ) for the XDROM process. (The observed skills have194

been evaluated only for 200 of the Rs = 1000 realisations.) For this reason, the said apparent skill can195

be well above the relevant theoretical maximum considering the month when the forecast is made. Alas,196

even the “envelop” max[ρTt,max]tt(τ) (black dashed curve) is “breached” for a rather large proportion of197

realisations/lead times.198

It clearly pays to use method #2 in evaluating the apparent skill. In Fig. 2 (c), the E-mean (black solid)199

approximates the annual mean theoretical maximum quite well already for |To| = 44 years. Although,200

in fact, it is not a straightforward E-mean but ϕ−1⟨ϕ(ρTo
)⟩r, where ϕ(ρ) = atanh(ρ) is the variance-201

stabilising Fisher transformation. However, we see that there is still considerable E-wise variability of the202

apparent skill. Fig. 2 (e) displays the results of an analysis of the dependence of the approximation of203

the true value of the climatological skill and the estimation variance (or standard deviation) on the time204

series length. Clearly, in the limit of infinite length, the theoretical value is approached (the estimate is205

“asymptotically unbiased”). The results show that, first, the respective tendencies are slow, governed by206

scale free power laws (as opposed to fast exponential decays of well defined time scales), and, second, the207

approach of the mean is much faster than the vanishing of variability. The latter is characterised by an208

exponent of about −1/2, although definitely larger in modulus than that, as indicated by the standard209

error in round brackets following the last stable significant digit of the nonlinear regression estimate.210

This result could be expected because the standard deviation of the sample correlation coefficient upon211
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Figure 2: Theoretical maximum and apparent prediction skill of the fully seasonal XDROM. (a,b)
Seasonality of the theoretical maximum prediction skill defined in two different senses. (c,d) Compare the
result using the fitting method [5] of Zhao et al. [1] (green) with three things: my attempts of reproducing
it (red, magenta), the theoretical maximum defined in two different ways (dashed envelopes; see the main
text) and contingencies (the ensemble of thin lines belonging to different independent realisations) subject
to the assumption that the XDROM fitted to 1979-2022 observations by LSQ (Methods 4.2) faithfully
represents ENSO and its teleconnection network. Seasonality of the prediction skill is also shown by
Fig. 2 (p) of the Article, but they use temporal correlation coefficients not E-wise and that figure does
not function to show the envelop. (e) Scaling laws for the apparent skill approximating the E-wise
climatological skill. For this diagram, the apparent skill was evaluated for 500 realisations (for each
choice of the time series length – horizontal axis), whereas doing this only for a 100 realisations leaves
the scaling laws barely recognisable.
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applying the Fisher transformation only depends on the sample size N (not e.g. the true value of the212

correlation coefficient) being (N+3)−1/2, something like the law of large numbers, however, in our case we213

expect a favourable effect from the fact that a longer time series would yield on average a more accurate214

forecast model. The power exponent of the much faster approach of the mean or true value (y∞), on the215

other hand, is about −3/2.216

In panels (c,d), I display my attempts (red, magenta, respectively) of reproducing what the method217

of Zhao et al. gives (new XROM simulation output provided kindly be Sen Zhao, as I am not able to use218

their Python code) relying on data between years 1979-2022 (as available in their Zenodo archive [6]),219

Tt = 25 years (green). It turns out that their method fares better with method #1, and I can only get220

similar results when relying on more training/evaluation data using method #2. I must think that this is221

because my model, the XDROM, is more data-hungry given that it has about twice as many parameters222

owing to featuring delay variables. (But this is just naive speculation.) On the other hand, their fitting223

method, following [5], would not allow for a gap in Tt and, so, they can only employ method #1 to224

calculate the apparent skill. (Neither does Matlab’s nlarx allow for a gap, besides that there seems to225

be a bug in that code, which, as I understand, Mathworks is now working on to eliminate.)226

Finally, we consider the concept of the “true skill”. I think, it is the most meaningful to define this227

skill in the practical context, one when we intend to make a (data-driven) forecast for the immediate228

future relying on as much historical data as we trust to make us a favour instead of working against229

us. That is, we infer the forecast model from data in To (of our choice) and make a forecast for the230

next few months, τ = 1, 2, . . . The statistical quantity that could define the true skill cannot be a231

correlation coefficient, because the forecast is deterministic and hence it has no variance, in which232

case the correlation coefficient is undefined. It can be, however, an ensemble-wise root-mean-square-error,233

E-RMSE or REMSE, REMSETo
(τ) = RMSE[Tr,To,p(tf + τ), Tr,t(tf + τ)]r, tf = max[To], in which case234

the ensemble (of realisations, r) is a forecast ensemble defined by all possible realisations of the noise235

forcing. That is, the REMSE can be evaluated by performing an appropriate new MC experiment.236

2.2 Is the apparent prediction skill useful?237

Let us, then, consider the dependence of the true skill on tf , REMSETo
(tf , τ), as new data is becoming238

available with the passing of time. We can think of this dependence in terms of an expanding window with239

a fixed t0 or a moving window. The choice would not make a material difference had the REMSETo
(tf , τ)240

had a short persistence. This is indeed the case, as shown by Fig. 3. Intending to answer the question241

of the section heading, consider that the apparent skill ρTo
(tf , τ) as a temporal statistic surely has a242

considerable persistence in stark contrast with the true skill. Therefore, in ways of scrutinising the243

Article, I conclude that the apparent skill is not indicative of the true skill. Any reader and244

forecaster should be clear on this point.245

The apparent skill is useful, however, in comparing the predictive power of different models. This claim246

can be backed by the fact that the apparent skill calculated by methods #1 and #2 correlate. Relying on247

the data that produced Fig. 2 (c,d), I evaluated the correlation coefficient for each τ separately and found248

extremely highly significant figures stably around 1/2. Typically, method #2 yields a larger apparent249

skill, clearly, because it is based on more data and, hence, the inferred forecast model tends to be more250

authentic. This fact is instrumental in proving in the next section that the XDROM+ model is superior251

to the XROM of Zhao et al.252

But before that, let us supply evidence for the claim that the apparent skill is not really useful for253

other things than the comparison of models – if not for providing a ballpark figure of the prediction254

skill. Fig. 4 (a) shows that ρTo
(tf , τ) (method #2) and REMSETo

(tf , τ) do not correlate at all for any τ .255

The correlation is taken ensemble-wise, having generated “possible synthetic observations” (alternative256

realities). Then, one might think that the apparent skill has a persistence that is not wholly an artefact to257

do with the sliding window size, say, that of Tv. But, say, the apparent skill could be related in adjacent,258

non-overlapping windows of Tv. To examine this proposition, we use a third method #3 of evaluating259

the apparent skill. This is done by fixing t0 = min[Tt] = 1979 and, as Tv, |Tv| = 19, is moved forward in260

time, taking such Tt’s that max[Tt] = min[Tv]. Then, let us compare the apparent skills evaluated for a261

pair of Tv’s such that max[Tv] = 2022 for one and min[Tv] = 2022 for the other, in terms, again, of an262

E-wise correlation coefficient. The result of this is shown in Fig. 4 (b). That is, any persistence of the263

apparent skill is wholly an artefact, indeed.264
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Figure 3: The true prediction skill in association with a period of observation To: the ensemble-wise
RMSE (or REMSE) REMSETo

(tf , τ). (a) A time series of the REMSE by running the window To and
(b) corresponding power spectra. The spectra are obtained by smoothing the raw estimate using a
Savitzky-Golay filter with a 50 data point window, calling Matlab’s smoothdata, and the raw spectra
are calculated by Matlab’s periodogram. For obtaining time series like that in panel (a), I simulate 100
possible futures τmax ahead for each point in time (month) along a long reference trajectory. At times,
some of the 100 E-members blow up, presumably because of the existence of an attractor at infinity; I
discard those escaping trajectories when calculating the REMSE. When T exits the range of [−5, 10] [◦C],
the realisation is omitted.
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Figure 4: The lack of relationship of the true skill with the apparent skill (a) and the absence of a
physical persistence of the apparent skill (b). Scatter plots are shown for τ = 10 months, and for all
other lead times considered I just plot the level contour of the PDF inside which 95% of the probability
mass is contained as obtained from a (not very accurate) kernel density estimate of the PDF. These
contours are good enough to show that data points scatter in an area extended in all directions, i.e., not
along one specific direction.

2.3 Improvement265

The XDROM+ seems to have a superior predictive power over the X(D)ROM by a considerable266

margin in view of the observed skill; see Fig. 5 (d). To dispel any doubt that the XDROM+ is really a267

superior model in predicting ENSO, I conducted a “small-ensemble” experiment. It is neither necessary268

to go for more than five ensemble members to have statistical confidence, nor is it tempting because269

of the hefty run time of calculating the observed skill using method #2, as the XDROM+ has to be270
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fitted to data by the expensive MLE a number of (To − τmax) [month] times for each E-members. For271

the synthetic truth, to be predicted by both the XDROM and XDROM+, I used the XDROM+ fitted272

to the actual observations 1979-2022. Two diagrams in Fig. 5 (a,b) show the results using method273

#1 and #2, respectively. In addition, the diagram in panel (c) shows these results collectively in a274

different representation (see the figure caption). We can see how the XDROM fares better using method275

#1. However, using method #2, the XDROM+ proves considerably more powerful (all circle markers276

situated below the solid diagonal line of breaking even). The improvement is felt increasingly more at277

longer lead times τ . Panel (d) shows that the skill can be improved further a tiny bit by including K = 3278

instead of 2 harmonics (purple vs gold) for the seasonal modulation of parameters.279

For the purpose of further improving the skill, two simple ways of model complexity reduction are280

described in Methods 4.3. One is by rewriting the 10D X(D)ROM(+) into a 2D or even 1D DROM(+)281

retaining T and h or just T , respectively. The 1D DROM+ has a weaker prediction skill (result not282

shown) and the 2D DROM+ also has a much worse prediction skill than the X(D)ROM for lead times283

up to 15 months. This is so even upon an attempt of optimising for the memory (D) and number (K) of284

harmonics retained. In Fig. 5 (d), the solid sky blue curve shows the best predictability that I have seen285

of a 2D DROM+. And reducing model complexity does not have a favourable effect. It is not clear to me286

why even the 1D and 2D DROM perform comparatively poorly when they are mathematically equivalent287

with the X(D)ROM. Otherwise, it is interesting, even if probably not very useful, that the 2D DROM+288

can outperform the 10D X(D)ROM for longer lead times. On the other hand, I found that ridding about289

70% of the parameters of the XDROM+ (K = 3) yields the best result. However, the improvement is290

meagre compared to the impressive advantage of the XDROM+ itself over the X(D)ROM. This result291

suggests to me that we have a “benign overfitting” [20] in the case of the X(D)ROM(+).292

3 Discussion293

In this paper I scrutinised what we can imply from the single most important result of the Article, namely,294

what I call here the observed or apparent prediction skill. I demonstrated that it is not indicative of what295

I regard as the true skill of a data-driven forecast (Fig. 4).296

Yet, I make the observation that this true skill, the ensemble-wise RMSE, or REMSE, has a persistence297

– even if short – as the window of data from which the forecast model is inferred is extending/moving with298

the passing of time (Fig. 3). Persistence always indicates some determinism and, so, predictability [18].299

Therefore, it would be worthwhile to try to predict the true prediction skill. Interesting questions in this300

regard might be, e.g.: what (hopefully easily interpretable) states of ENSO are responsible for better or301

worse skill (especially the horrible spikes of the REMSE seen in Fig. 3 (a)); how long memory of ENSO302

states does the skill have?303

The apparent skill evaluated from observations of the unique history of our Earth climate can be304

useful in comparing models wrt. their predictive power; but also in providing a ballpark figure of skill305

for a single model. Relating to the latter, I discovered power scaling laws for the ensemble-mean and306

ensemble-standard-deviation of the apparent skill depending on the observational time series length. The307

E-mean approaches the climatological skill much faster than the vanishing of the E-std. Unfortunately,308

though, we have a bottle neck problem regarding the reliability of the ballpark figure of the observed309

skill: the slow vanishing of the E-std, the variability, would keep our approximation of the climatological310

skill by the apparent skill uncertain, inaccurate. Mind how the “technological” (ISO 5725) definition of311

“accuracy” [21] combines the “trueness” (no bias, E-mean) and “precision” (variability, E-std).312

Finally, I remark that from Fig. 2 (m) of the Article it is unclear if the XROM beats the AI-based313

model [2] wrt. prediction skill. Indeed, the main contribution of the Article that it offers, instead, as per314

the title itself, is the explanation of the enhanced prediction skill of the XROM over the ROM. – We have315

a binary alternative and we were promised to get an explanation for the outcome. However, I do not see316

much of an explanation why one or the other model – inferred from data – would have better prediction317

skill. Or we can see the situation in the way that the substance of the explanation is exhausted by the318

statement of the title. Because if we can take it for granted that some major modes of climate variability319

can causally influence ENSO, then it should go without saying that the prediction skill of a model that320

includes those modes – ideally, i.e., regarding the theoretical maximum skill – is better than what has321

only the local ENSO variables (T, h) (say, the ROM). And I think we can take it for granted, because in322

a fully coupled system we can know apriori that there is information flow both ways concerning any two323

state variables; the chances for a one-way flow/coupling, i.e., a master-slave relationship, is zero. It is324
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Figure 5: Improvement of the prediction skill in view of the apparent skill for a small ensemble of
synthetic observations. (a,b) XDROM vs XDROM+ and method #1 vs #2. (c) A scatter plot collecting
all data from (a,b). The colour of markers in (c) correspond to the colour of curves in (a,b). The lead
time τ is not explicitly indicated in (c) but can be inferred since the apparent skill is monotonically
decreasing with τ . (d) Improving skill by model complexity reduction.

akin to the situation with, say, a one-sample t-test for the mean of a population in a practical situation,325

when we know apriori that the null-hypothesis is false, because the chances that it is true are zero. (Thus,326

if we are not able the reject the null-hypothesis, it is because we do not have enough data.)327

Much of what the authors present are results in terms of numerical figures for the “contributions”328

of different modes of variability to the prediction skill. They come up with these by performing three329

sets of experiments as follows (I quote): “(1) uninitialized experiments (referred to as Uj), (2) decoupled330

experiments (Dj) and (3) relaxation towards observations experiments (Rj)”. Mind that we can speak331

about “contributions” only if the principle of superposition applies [10], and the authors claim that in the332

case of the nonlinear XROM “...the uninitialized experiment framework is a suitable approach to quantify333

the nearly additive relative contributions of each basin to ENSO forecast skill”. It is unfortunate that334

the authors do not make their exposition in this regard in the context of response theory which is the335

mathematical basis of the principle of superposition. Thus, we are left unsure what is the forcing and336

what is the system that responds to a forcing (linearly). Anyhow, what has it to do with the promised337

explanation?338

In his monumental yet slim volume “The Structure of Scientific Revolutions” [22], Thomas S. Kuhn339

posits that a theory has only so much explanatory power as predictive power. Had the numerical figures340

of the said contributions been meant to be explained – which is certainly not what the Article’s title341

refers to – then there is no such explanation in the Article in the sense of Kuhn. I would be desperate if342

I was tasked to come up with such explanations, I admit. Vague references to physical processes have no343
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chance of suggesting approximate numerical figures for contributions. Making such references to physical344

processes in an attempt of an explanation is usually called a “handwaving explanation”. I am afraid that345

this is not what people believe the journal Nature would knowingly target.346

I do think that the rather achievable task is the explanation promised indeed by the Article’s title, i.e.,347

explaining the outcome of the said binary alternative. However, I think, it has to do with mathematics348

rather than geophysics. (See also e.g. how some of the same authors purport to explain [23] a statistical349

fluke [24], which had been well known to some forecasting experts [17]. And the cherry on top is the350

anecdote that I shared on Linkedin [25].) Otherwise, as I argued above, any explanation is lacking351

because we are not so much interested in the theoretical maximum skill, but rather the skill of a model352

inferred from finite data. Considering that the promised explanation should be mathematical in nature,353

references to geophysical effects by Zhao et al. are based on hindsight, which could at best be regarded354

as interpretations – instead of explanations. What are not trivial and remain open questions, waiting for355

appropriate mathematical analyses, are: why is the overfitting of the X(D)ROM(+) benign (had [20] not356

actually had it explained already); is there a certain time series length when e.g. the prediction skills of357

the XROM fitted to 10 time series and the ROM to 2 time series of that same length break even (similarly358

to the case of the XDROM versus the XDROM+); if so, why that length; why does the XDROM have a359

memory of roughly only one month; why does e.g. the 2D DROM of any large D have worse skill than360

the 10D XDROM, D = 1?361

I would like to point out that I myself did not supply any explanation as to why the XDROM+ can362

outperform the XDROM only if fed more data than a certain critical amount. I do not quite know yet363

how to tackle that challenge, actually. A further question that I pose is: why is the AI-based model364

completely unable to account for the ingredients of the XDROM+ over the XROM?365

My critique of Zhao et al. that they did not deliver on their promise implies that the authors misrepre-366

sent their merit. (I will not speculate if they do this knowingly or not.) I think their actual merit derives367

from, ad 1, coming up with the XROM, and, ad 2, providing the numerical figures for the contributions.368

To me, the former is far more admirable than the rather straightforward analysis of the latter – even369

if the latter is also genuine scientific novelty given that the contributions cannot be guessed, but one370

needs to perform calculations to find them out. Otherwise, the latter seems to be used to “beef up” the371

paper, on the one hand, and to “have a story to spin”, on the other, perhaps out of a sense of insecurity372

that coming up with the XROM alone is not seen valuable enough by an editor of a “luxury journal”.373

Unfortunately, I observe a “gold rush” in the Earth sciences where scientists make each other believe374

that so-called physical explanations are the holy grail of science. (Does the sound of a title “Unravelling375

the physical mechanism of [*phenomenon*]” ring familiar? Use the word “unravelling”, and you are one376

step closer to success; if you unravel a physical mechanism, actually or purportedly, then you might well377

be in, had you ticked other important boxes [26].) Thus, scientists will feed editors and their peers with378

what they expect. No wonder, then, that in this “echo chamber” a lot of serious issues with the quality379

of science are overlooked. And the few who could and would point it out often do not have a voice.380

I think, we see an article here that exemplifies a grave problem with our current system of scientific381

publishing including – if the manuscript is not desk-rejected [26] – peer review. None of the three reviewers382

of the Article noticed A.) the said misrepresentation of merit and B.) that the promised explanation will383

be mathematical not physical. This story turned out so partly because the editor himself is not competent384

enough, inviting only Earth scientists to reviewing the Article. I think the lesson here is that we need385

to train ourselves, and the next generation of scientists, to look deeper at problems, and from various386

angles. Earth scientists too often lack sufficient or even basic mathematical competence [23, 24], let alone387

some training in philosophy, because of which science evidently badly suffers. I cannot resist pointing out388

the irony that despite of this trend, the primary scientific title also in the STEM subjects is still called389

PhD: Doctor of Philosophy.390

4 Methods391

4.1 Variables and data used392

No new data sets and variables have been considered for this study, only those of the original study,393

archived online on Zenodo [6].394
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4.2 Model inference of the XDROM/XDROM+ by LSQ/MLE and model395

simulation396

Using the Euler-Maruyama SDE numerical integration scheme, the stochastic version of the “forward397

Euler” scheme, we can turn the system of SDEs (1) into a first-order (1) nonlinear (NL) vector (V)398

autoregressive (AR) (discrete time, stochastic) model. It can be codenamed an NLVAR(1) model. Like-399

wise, the XDROM can be turned into an NLVAR(D) model. Matlab’s nlarx would be a perfect tool to400

handle such a model wrt. model inference, and, then, there is simulate and predict, all to serve our401

purposes. Unfortunately, nlarx yields a nonphysical model whose simulation quickly blows up. Likely,402

there is a bug in the code, or the handling of a model with a very high-dimensional parameter space is403

not robustly done. Fortunately, the method of ordinary least squares (LSQ) can be applied for model404

inference, instead. As Zhao et al. suggested, instead of searching for phase parameters like Φijk
c in eq. (4),405

we would better turn it into the form of406

cij = cij0 + Cij
k cos(kΩt) + Sij

k sin(kΩt).

This way we are left with a linear regression problem for the inference of model parameters, which, instead407

of an expensive numerical minimum search, can be solved by matrix inversion (to do with the fact that408

the objective function, the “sum of squares”, is a convex function of the model parameters with a single409

minimum, in which case the initialisation of the minimum search can be arbitrary). Matlab’s nothing410

less than awesome “backslash operator” \, also known as mldivide, handles the XDROM, D = 1,411

featuring > 1k parameters with ease and accuracy. – There is no need for the convoluted method of412

Chen & Jin (2021) trying to reduce the size of a matrix to be numerically inverted. For the purpose of413

model complexity reduction (Methods 4.3), we can obtain standard errors for the parameter estimates414

by resorting to a minimum search using Matlab’s fminunc that outputs the Hessian matrix of entries hij .415

Then, the standard errors are: SEi =
√

h−1
ii , taking the square roots of the diagonal entries of the inverse416

of the Hessian. One can do themselves a favour and initialise the minimum search by the solution of the417

LSQ problem obtained by using the backslash operator. Unfortunately, the inversion of the Hessian by418

Matlab’s inv can fail for a too large matrix. That is, increasing the number K and D of harmonics and419

delay variables, respectively, face a limit.420

The coefficients σξ
i are simply obtained from the raw fitting residuals, as usual. The raw residuals ξ̂i, in421

ways of model/fit diagnostics, are typically found serially not significantly correlated already with D = 1,422

as assumed, but significantly cross-correlated in some cases. Especially ρ[ξ̂T , ξ̂h] is very significant, and423

figuring as about 0.4. When it comes to simulating the model, for authenticity, we ought to prescribe cross-424

correlated white noise forcing: σξ
i ξi,n = lji ζj,n, where ζi,n are uncorrelated normally distributed white425

noise realisations of zero mean and unit variance and the square lower triangular matrix lji can be obtained426

by a Cholesky decomposition (e.g. using Matlab’s chol) because lki l
j
k = qji , where qji = ξ̂i,nξ̂

j,n/(N − 1)427

is the sample covariance matrix. (Ask for a proof from ChatGPT.)428

The XDROM+ cannot be inferred by LSQ. Violation of LSQ’s assumption of additive noise can result429

in surprising effects, such as the sporadic fractality of the objective function [10]. I have managed to430

perform the fitting of XDROM+ to data instead by Maximum Likelihood Estimation, MLE, eq. (7.83)431

of [19] providing the likelihood function. (See also the Methods section of [10].) Here, we cannot avoid432

performing numerical minimum search, which is very expensive. In general, for a model of the complexity433

of the XDROM+, it would be most likely unfeasible. The minimum search needs to be initialised, and I434

was not able to obtain a solution even with the most sensible initial conditions. Instead, it turned out to435

be key to start near the solution. Fortunately, in the case of the XDROM+ it is possible, because it is436

a rather modest extension of the XDROM, which we could fit to data with ease. Then, initial conditions437

for the few more parameters that the XDROM+ features over the XDROM can be chosen simply as438

zeros. Simulation of the XDROM+ too requires generating cross-correlated noise forcing time series as439

described above.440

See Matlab scripts in the Zenodo archive [27] that should be helpful in reproducing the results reported441

here.442

4.3 Model complexity reduction443

Two simple approaches have been considered for model complexity reduction. One is via eliminating state444

variables. As a benchmark model for the Article itself, they considered a commonly used 2D recharge445
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oscillator model (ROM) of ENSO featuring only the first two “ENSO variables” of the XROM, T and446

h. A first-order (as in “VAR(1)”) ROM of ENSO is employed most commonly. The rewriting of the447

XROM would, however, lead rather to an infinite-order 2D NLVAR: limω→∞ NLVAR(ω), in which we448

have delay variables of order d higher than 1, i.e., the immediate future depends on the entirety of the449

past. – Memory terms are well known to emerge upon such model reduction; see e.g. [11] and references450

therein. The “distribution” of coefficients of the delay variables encodes the signature of the teleconnection451

network. If we neglect the (quadratic) nonlinearity in eq. (3) for the IOD (which I have checked to have452

no detectable effect on the model’s prediction skill), then rewriting the XROM of a 10D NLVAR to the453

2D NLVAR is fairly tractable. We gain further insight if we keep only T , omitting even h, to start with.454

Substituting formulae for the (delay) variables of xi, i > 1, into the equation for x1, recursively, the455

formulae being given by the equations (1) for those variables, one would end up with time dependent456

coefficients cosp(Ωt) sinq(Ωt) for x1,(n−d), the larger p, q, the larger d. Using trigonometric “power-457

reduction formulae” [28] (see also https://www.youtube.com/watch?v=jClj4S4qJ8M at e.g. 13:40),458

the coefficients of x1,(n−d) are typically periodic functions of time of an increasing number of harmonics459

proportional with d. Looking farther into the past, this would result in an exponentially increasing number460

of model parameters, which is clearly unaffordable very quickly. Conveniently, however, conditions farther461

in the past matter less, therefore, we can apply a memory cutoff, desirably at a number of time steps462

when coefficient estimates are still significant. In fact, this needs not to be checked directly; it is enough if463

we optimise for the cutoff in terms of the best prediction skill. These considerations certainly apply when464

state variable h is retained. One might want to resolve to cutoff the number of harmonics uniformly465

for delay variables and retain more delay variables/memory. I say this also because even LSQ, using466

Matlab’s backslash operator, faces a limit of the dimensionality of the model parameter space. It is not467

clear to me, though, if in the case of 44 years worth of data we would meet sooner the latter problem468

or the saturation of the number of significant parameters as we increase the model parameter space (by469

increasing D and K).470

The other simple approach is discarding parameters of the XROM/XDROM/XDROM+ whose esti-471

mates are not statistically significant. The aim is to find an optimal model of some reduced nontrivial472

number of parameters, with the best prediction skill. In order to eliminate parameters p one by one, I look473

at their estimate’s (p̂) relative distance from zero: λ|p̂|/SE, which is something like the reciprocal of the474

well known “coefficient of variation”. In here, SE is the standard error of estimation. Clearly, ordering475

the parameters wrt. this distance will yield the same result whatever the value of λ is. Therefore, having476

in mind statistical significance, which is defined in a way that the confidence interval (proportional with477

the SE) excludes zero, I take this order for a step by step model reduction.478

See Matlab scripts in the Zenodo archive [27] that should be helpful in reproducing our results reported479

here.480
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